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Kunen's proof uses a choice function that is in V5. So
Corollary

Thereisno j: V, < V,, withn > X+ 2.
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Definition

I3 iff there exists A s.t. Jj: V) < Vj;

12 iff there exists A s.t. 3j : iy <1 Vs

I1 iff there exists A s.t. 3j : Vigq1 < Viya;

|0 For some )\ there exists a
J: L(V/\Jrl) < L(V)\+1), with crt(j) <A

Why are they large cardinals?
The critical point of j is measurable, n-huge, supercompact in V.
A is a strong limit cardinal (in fact, Rowbottom).
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It is an easy exercise to see that, given j, X is unique. Suppose
J: Vi< V.

Consider (crt(j),j(crt(j)),j(j(crt(f)),...). The supremum of this
sequence, 7, is a fixed point for j. If n < A, then j(n+2) =n+2,
so j [ Vg2 1 Vg2 < Vj4o. Contradiction. So n = A
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Theorem (D., Friedman, 2013)
Suppose I* is 13, 12, 11 or 10. Then I* is consistent with each of the
following:

e GCH

e failure of GCH at regular cardinals

e V=HOD

LR

e etc...
o
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The key of the proofs is the relationship between rank-into-rank
embeddings and forcing. There are some easy cases:
o (V,\+1)V[G] = V)41 this case is trivial, J is still a witness in
VIG];
o P € Vy(j): define the extension k(7¢) = j(7)c-
e P € V) as before, since iterating j we can have crt(j) < A as

large as we want.
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Theorem (Corazza, 2007)

Suppose |3 witnessed by j and A. Let PP be a forcing iteration of
length A\, with Qs its stages and Py its initial segments. Then I3 is
preserved in the forcing extension if P is:
e a reverse Easton iteration (nontrivial forcing only at limit
stages, direct limit at inaccessible stages, inverse limit
otherwise)

e adequate (for all §, V¥5  |Qs| < the smallest inaccessible
bigger than )
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9 /17



Introduction Infodump Inside the machinery Open questions

Theorem (D., Friedman, 2013)

Suppose 13,12,11,10 witnessed by j and A. Let P be a forcing iteration
of length A\, with Q5 its stages and Py its initial segments. Then
13,12,11,10 is preserved in the forcing extension if P is:

e a reverse Easton iteration (nontrivial forcing only at limit
stages, direct limit at inaccessible stages, inverse limit
otherwise)

e adequate (for all 4, V5  |Qs] < the smallest inaccessible
bigger than )

o directed closed (for all §, Qs is < d-directed closed)

e j-coherent (for all 6, j(Ps) = Pj(5))
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Theorem (D., Friedman, 2013)

Suppose 13,12,11,10 witnessed by j and A. Let P be a forcing iteration
of length A, with Qs its stages and Py its initial segments. Then
13,12,11,10 is preserved in the forcing extension if PP is:

e a reverse Easton iteration (nontrivial forcing only at limit
stages, direct limit at inaccessible stages, inverse limit
otherwise)

e \-bounded (for all §, VFs = |Qs| < \)
e directed closed (for all §, Q5 is < d-directed closed)
e j-coherent (for all 6, j(Ps) = Pj(5))
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7 (Lo(Vagr))MelFl < L,(Vag1) with © | V) = id.

So, 11(\) holds in M,[<], and therefore 11(x) holds in a Prikry
forcing extension of L(Vy41) (of V).
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sets in a manner similar to homogeneusly Souslin sets.

All the subsets of V)11 in L(R) are U(j)-representable (Cramer),
and the “simple” ones are uniformely U(j)-representable (they
behave well w.r.t j) (Woodin).

An example: j and the theory of V)1 are simple. therefore coded

by some structure. In M,, the sets disappear, but the structure
remains. K is the key to decrypt the code and reconstruct the sets.
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The Theorem holds also with any Prikry-generic in V instead of &,
and with a bit of work it is possible to extend it to any generic in
V that adds a cofinal w-sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists j : L(Vy41) < L(Vay1). Let (M,,j.) be
the w-th iterate of (L(Vi4+1),Jj). Let G € V generic for M,, such
that (cof(\) = w)M~I€]. Then there exists 7 : (L, (Vay1))M1€] <
Lo(Vagr) with 7 [ Vy = id.

Therefore assuming 10(j, A, k), if P is a forcing notion that adds a
cofinal w-sequence to x and such that jo,(IP) has a generic in V,
then I1(x) holds in a generic extension of V.
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Is there a Prikry-like forcing that is not A-good? Is there a
sufficient condition for A-goodness that does not need new
definitions (main suspects: Prikry condition, geometric condition)?

What about 10 (or above)?

Is it possible to avoid generic absoluteness?
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Thanks for your attention
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