◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1 / 17

10, Generic Absoluteness and Combinatorics

Vincenzo Dimonte

INFTY Final Conference 04 March 2014

Introduction	Infodump	Inside the machinery	Open questions
Theorem (Kunen, 1971)		
If $j: V \prec$	M, then $M eq V$.		J

Introduction	Infodump	Inside the machinery	Open questions		

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

Kunen's proof uses a choice function that is in $V_{\lambda+2}$.

Introduction	Infodump	Inside the machinery	Open questions

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

Kunen's proof uses a choice function that is in $V_{\lambda+2}$. So

Corollary

There is no $j: V_{\eta} \prec V_{\eta}$, with $\eta \ge \lambda + 2$.

```
I3 iff there exists \lambda s.t. \exists j : V_{\lambda} \prec V_{\lambda};
```


・ロト ・ 御 ト ・ 国 ト ・ 国 ト … 国

3 / 17

This leaves room for a new breed of large cardinal hypotheses: Definition

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;

◆□▶ ◆圖▶ ◆園▶ ◆園▶ ─ 園

3 / 17

This leaves room for a new breed of large cardinal hypotheses: Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- 1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 三回 めんの

3 / 17

This leaves room for a new breed of large cardinal hypotheses: Definition

- 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;
- 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$;
- I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$;

10 For some λ there exists a

 $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1}), \text{ with } \operatorname{crt}(j) < \lambda$

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$; 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$; 11 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$; 10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\operatorname{crt}(j) < \lambda$

Why are they large cardinals?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$; 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$; 11 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$; 10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\operatorname{crt}(j) < \lambda$

Why are they large cardinals?

The critical point of j is measurable, *n*-huge, supercompact in V_{λ} .

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$; 12 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec_1 V_{\lambda+1}$; 11 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$; 10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\operatorname{crt}(j) < \lambda$

Why are they large cardinals?

The critical point of j is measurable, *n*-huge, supercompact in V_{λ} . λ is a strong limit cardinal (in fact, Rowbottom).

It is an easy exercise to see that, given $j,\,\lambda$ is unique

It is an easy exercise to see that, given $j,\,\lambda$ is unique. Suppose $j:\,V_\lambda\prec\,V_\lambda.$

Consider $\langle \operatorname{crt}(j), j(\operatorname{crt}(j)), j(j(\operatorname{crt}(j)), \ldots \rangle$

It is an easy exercise to see that, given $j,\,\lambda$ is unique. Suppose $j:\,V_\lambda\prec V_\lambda.$

Consider $\langle \operatorname{crt}(j), j(\operatorname{crt}(j)), j(j(\operatorname{crt}(j)), \ldots) \rangle$. The supremum of this sequence, η , is a fixed point for j

< □ > < @ > < 茎 > < 茎 > 茎 のへで 4 / 17

It is an easy exercise to see that, given $j,\ \lambda$ is unique. Suppose $j:V_\lambda\prec V_\lambda.$

Consider $\langle \operatorname{crt}(j), j(\operatorname{crt}(j)), j(j(\operatorname{crt}(j)), \dots \rangle$. The supremum of this sequence, η , is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$

・ロト・日本・日本・日本・日本・日本

4 / 17

It is an easy exercise to see that, given $j,\,\lambda$ is unique. Suppose $j:\,V_\lambda\prec V_\lambda.$

Consider $\langle \operatorname{crt}(j), j(\operatorname{crt}(j)), j(j(\operatorname{crt}(j)), \dots \rangle$. The supremum of this sequence, η , is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$. Contradiction

It is an easy exercise to see that, given $j,\ \lambda$ is unique. Suppose $j:V_\lambda\prec V_\lambda.$

Consider $\langle \operatorname{crt}(j), j(\operatorname{crt}(j)), j(j(\operatorname{crt}(j)), \dots \rangle$. The supremum of this sequence, η , is a fixed point for j. If $\eta < \lambda$, then $j(\eta + 2) = \eta + 2$, so $j \upharpoonright V_{\eta+2} : V_{\eta+2} \prec V_{\eta+2}$. Contradiction. So $\eta = \lambda$.

Introduction	Infodump	Inside the machinery	Open questions

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following

Introduction	Infodump	Inside the machinery	Open questions

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

• GCH

Introduction	Infodump	Inside the machinery	Open questions

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- V=HOD

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

< □ > < □ > < □ > < □ > < □ > < □ >

5 / 17

- GCH
- failure of GCH at regular cardinals
- V=HOD
- 🛇

Suppose I* is I3, I2, I1 or I0. Then I* is consistent with each of the following:

- GCH
- failure of GCH at regular cardinals
- V=HOD
- 🛇
- etc...

Introduction	Infodump	Inside the machinery	Open questions

Theorem (D., Wu, 2014)

ï					4						
ł		ι	r	0	a	u	C	ι	0	n	

・ロト ・日ト ・日

< ≣ >

6 / 17

Theorem (D., Wu, 2014)

Suppose I0. Then I1, i.e., $j: V_{\lambda+1} \prec V_{\lambda+1}$, is consistent with each of the following:

• the failure of SCH at λ

(日)

▲ ■
 6 / 17

Theorem (D., Wu, 2014)

- the failure of SCH at λ
- the *first* failure of SCH at λ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

6 / 17

Theorem (D., Wu, 2014)

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

6 / 17

Theorem (D., Wu, 2014)

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP + (Very good scale)$ at λ

★白▶ ★課▶ ★注▶ ★注▶ 一注

6 / 17

Theorem (D., Wu, 2014)

- the failure of SCH at λ
- the *first* failure of SCH at λ
- $TP(\lambda^{++})$
- $\neg SCH + \neg AP + (Very good scale)$ at λ
- etc...

The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

• $(V_{\lambda+1})^{V[G]} = V_{\lambda+1}$: this case is trivial, j is still a witness in V[G];

・ロト・4回ト・4回ト・目 うへの

7 / 17

The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

• $(V_{\lambda+1})^{V[G]} = V_{\lambda+1}$: this case is trivial, j is still a witness in V[G];

・ロト・雪ト・雨・・雨・ 雨・ ろんの

7 / 17

• $\mathbb{P} \in V_{\operatorname{crt}(j)}$: define the extension $k(\tau_G) = j(\tau)_G$.

The key of the proofs is the relationship between rank-into-rank embeddings and forcing. There are some easy cases:

- $(V_{\lambda+1})^{V[G]} = V_{\lambda+1}$: this case is trivial, j is still a witness in V[G];
- $\mathbb{P} \in V_{\operatorname{crt}(j)}$: define the extension $k(\tau_G) = j(\tau)_G$.
- $\mathbb{P} \in V_{\lambda}$: as before, since iterating j we can have $\operatorname{crt}(j) < \lambda$ as large as we want.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

7 / 17

Infodump

Inside the machinery

Open questions

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

8 / 17

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I1 is preserved in the forcing extension if \mathbb{P} is:
Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I1 is preserved in the forcing extension if \mathbb{P} is:

 a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I1 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ , $V^{\mathbb{P}_{\delta}} \vDash |\mathbb{Q}_{\delta}| \le 2^{\delta}$)

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I1 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ , $V^{\mathbb{P}_{\delta}} \vDash |\mathbb{Q}_{\delta}| \leq 2^{\delta}$)
- directed closed (for all δ , \mathbb{Q}_{δ} is $< \delta$ -directed closed)

Theorem (Hamkins, 1994)

Suppose I1 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I1 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- simple (for all δ , $V^{\mathbb{P}_{\delta}} \vDash |\mathbb{Q}_{\delta}| \leq 2^{\delta}$)
- directed closed (for all δ , \mathbb{Q}_{δ} is $< \delta$ -directed closed)
- *j*-coherent (for all δ , $j(\mathbb{P}_{\delta}) = \mathbb{P}_{j(\delta)}$)

◆□> ◆御> ◆臣> ◆臣> ○臣

Theorem (Corazza, 2007)

Suppose 13 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then 13 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- adequate (for all δ , $V^{\mathbb{P}_{\delta}} \models |\mathbb{Q}_{\delta}| \le$ the smallest inaccessible bigger than δ)
- directed closed (for all δ , \mathbb{Q}_{δ} is $< \delta$ -directed closed)
- *j*-coherent (for all δ , $j(\mathbb{P}_{\delta}) = \mathbb{P}_{j(\delta)}$)

・ロト ・聞 ト ・ヨト ・ヨト

10 / 17

Theorem (D., Friedman, 2013)

Suppose I3,I2,I1,I0 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I3,I2,I1,I0 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- adequate (for all δ , $V^{\mathbb{P}_{\delta}} \models |\mathbb{Q}_{\delta}| \le$ the smallest inaccessible bigger than δ)
- directed closed (for all δ , \mathbb{Q}_{δ} is $< \delta$ -directed closed)
- *j*-coherent (for all δ , $j(\mathbb{P}_{\delta}) = \mathbb{P}_{j(\delta)}$)

<ロ> (四) (四) (三) (三) (三) (三)

11 / 17

Theorem (D., Friedman, 2013)

Suppose I3,I2,I1,I0 witnessed by j and λ . Let \mathbb{P} be a forcing iteration of length λ , with \mathbb{Q}_{δ} its stages and \mathbb{P}_{δ} its initial segments. Then I3,I2,I1,I0 is preserved in the forcing extension if \mathbb{P} is:

- a reverse Easton iteration (nontrivial forcing only at limit stages, direct limit at inaccessible stages, inverse limit otherwise)
- λ -bounded (for all δ , $V^{\mathbb{P}_{\delta}} \vDash |\mathbb{Q}_{\delta}| \le \lambda$)
- directed closed (for all δ , \mathbb{Q}_{δ} is $< \delta$ -directed closed)
- *j*-coherent (for all δ , $j(\mathbb{P}_{\delta}) = \mathbb{P}_{j(\delta)}$)

Note: if j,λ,κ witness IO, then j is iterable and if M_ω is its $\omega\text{-th}$ iteration,

<ロト <部ト < 国ト < 国ト = 国

12 / 17

Note: if j, λ, κ witness I0, then j is iterable and if M_{ω} is its ω -th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_{ω} .

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists j: $L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$

<ロ> (四) (四) (三) (三) (三) (三)

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_{ω}

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_{ω} and there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[\vec{\kappa}]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = \operatorname{id}$

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_{ω} and there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[\vec{\kappa}]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = \operatorname{id}$.

So, I1(λ) holds in $M_{\omega}[\vec{\kappa}]$

<ロト < 部ト < 言ト < 言ト 言 の(12 / 17

<ロ> (四) (四) (三) (三) (三)

12 / 17

Note: if j, λ, κ witness I0, then j is iterable and if M_{ω} is its ω -th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_{ω} .

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_{ω} and there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[\vec{\kappa}]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = \operatorname{id}$.

So, $I1(\lambda)$ holds in $M_{\omega}[\vec{\kappa}]$, and therefore $I1(\kappa)$ holds in a Prikry forcing extension of $L(V_{\lambda+1})$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

12 / 17

Note: if j, λ, κ witness I0, then j is iterable and if M_{ω} is its ω -th iteration, then $j_{0,\omega}(\kappa) = \lambda$, and λ is measurable, huge, etc... in M_{ω} .

Generic Absoluteness Theorem (Woodin, 2012)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, and let $\kappa_0 = \operatorname{crt}(j) < \lambda$ and $\kappa_{n+1} = j(\kappa_n)$. Let (M_{ω}, j_{ω}) the ω -th iterate of $(L(V_{\lambda+1}), j)$. Then $\vec{\kappa}$ is Prikry-generic for λ in M_{ω} and there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[\vec{\kappa}]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = \operatorname{id}$.

So, $I1(\lambda)$ holds in $M_{\omega}[\vec{\kappa}]$, and therefore $I1(\kappa)$ holds in a Prikry forcing extension of $L(V_{\lambda+1})$ (of V).

Infodump

Inside the machinery

Open questions

Where is Generic Absoluteness coming from?

Infodump

Open questions

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

13 / 17

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $\mathbb{U}(j)$ -representable (Cramer)

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▼ のへの

13 / 17

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $\mathbb{U}(j)$ -representable (Cramer), and the "simple" ones are uniformely $\mathbb{U}(j)$ -representable (they behave well w.r.t j) (Woodin)

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $\mathbb{U}(j)$ -representable (Cramer), and the "simple" ones are uniformely $\mathbb{U}(j)$ -representable (they behave well w.r.t j) (Woodin).

An example: j and the theory of $V_{\lambda+1}$ are simple. therefore coded by some structure

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▼ のへの

13 / 17

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $\mathbb{U}(j)$ -representable (Cramer), and the "simple" ones are uniformely $\mathbb{U}(j)$ -representable (they behave well w.r.t j) (Woodin).

An example: j and the theory of $V_{\lambda+1}$ are simple. therefore coded by some structure. In M_ω the sets disappear, but the structure remains

Where is Generic Absoluteness coming from?

I0 is very similar to $AD^{L(\mathbb{R})}$. Woodin defined $\mathbb{U}(j)$ -representable sets in a manner similar to homogeneusly Souslin sets.

All the subsets of $V_{\lambda+1}$ in $L(\mathbb{R})$ are $\mathbb{U}(j)$ -representable (Cramer), and the "simple" ones are uniformely $\mathbb{U}(j)$ -representable (they behave well w.r.t j) (Woodin).

An example: j and the theory of $V_{\lambda+1}$ are simple. therefore coded by some structure. In M_{ω} the sets disappear, but the structure remains. $\vec{\kappa}$ is the key to decrypt the code and reconstruct the sets.

> <ロト < 部ト < 言ト < 言ト こ の < C 13 / 17

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω -sequence

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω -sequence.

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_{ω}, j_{ω}) be the ω -th iterate of $(L(V_{\lambda+1}), j)$

Generic Absoluteness Theorem (extended)

14 / 17

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω -sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_{ω}, j_{ω}) be the ω -th iterate of $(L(V_{\lambda+1}), j)$. Let $G \in V$ generic for M_{ω} such that $(cof(\lambda) = \omega)^{M_{\omega}[G]}$

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω -sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_{ω}, j_{ω}) be the ω -th iterate of $(L(V_{\lambda+1}), j)$. Let $G \in V$ generic for M_{ω} such that $(cof(\lambda) = \omega)^{M_{\omega}[G]}$. Then there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[G]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = id$

<ロ> (四) (四) (三) (三) (三)

The Theorem holds also with any Prikry-generic in V instead of $\vec{\kappa}$, and with a bit of work it is possible to extend it to any generic in V that adds a cofinal ω -sequence.

Generic Absoluteness Theorem (extended)

Suppose there exists $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$. Let (M_{ω}, j_{ω}) be the ω -th iterate of $(L(V_{\lambda+1}), j)$. Let $G \in V$ generic for M_{ω} such that $(cof(\lambda) = \omega)^{M_{\omega}[G]}$. Then there exists $\pi : (L_{\omega}(V_{\lambda+1}))^{M_{\omega}[G]} \prec L_{\omega}(V_{\lambda+1})$ with $\pi \upharpoonright V_{\lambda} = id$.

Therefore assuming $IO(j, \lambda, \kappa)$, if \mathbb{P} is a forcing notion that adds a cofinal ω -sequence to κ and such that $j_{0,\omega}(\mathbb{P})$ has a generic in V, then $I1(\kappa)$ holds in a generic extension of V.

<ロ> (四) (四) (三) (三) (三)

Definition

A forcing notion \mathbb{P} is λ -good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda, \forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q

・ロト ・ 一 ト ・ モト ・ モト

15 / 17

Sufficient condition:

Definition

A forcing notion \mathbb{P} is λ -good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda, \forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i -generic

Definition

A forcing notion \mathbb{P} is λ -good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda, \forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i -generic.

Pikry forcing is λ -good

Definition

A forcing notion \mathbb{P} is λ -good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda, \forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i -generic.

Pikry forcing is $\lambda\text{-good},$ Gitik-Magidor extender Prikry forcing is $\lambda\text{-good}$

Definition

A forcing notion \mathbb{P} is λ -good iff for any \mathcal{D} family of open dense sets, $|\mathcal{D}| < \lambda, \forall p \in \mathbb{P} \exists q \in \mathbb{P} \exists \langle \mathcal{D}_i : i \in \omega \rangle$ such that $\mathcal{D} = \bigcup_{i \in \omega} \mathcal{D}_i$ and \mathcal{D}_i is dense below q, i.e., $\forall r \leq q \exists r^* \leq r$ such that \mathcal{F}_{r^*} is \mathcal{D}_i -generic.

Pikry forcing is λ -good, Gitik-Magidor extender Prikry forcing is λ -good, diagonal supercompact Prikry forcing is λ -good...
Is there a Prikry-like forcing that is not λ -good?

Is there a Prikry-like forcing that is not λ -good? Is there a sufficient condition for λ -goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?

Is there a Prikry-like forcing that is not λ -good? Is there a sufficient condition for λ -goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?

What about I0 (or above)?

Is there a Prikry-like forcing that is not λ -good? Is there a sufficient condition for λ -goodness that does not need new definitions (main suspects: Prikry condition, geometric condition)?

16 / 17

What about I0 (or above)?

Is it possible to avoid generic absoluteness?

Thanks for your attention

