Silver dichotomy for countable cofinalities

Vincenzo Dimonte

August 24, 2018

Joint work with Xianghui Shi

Open problems

Previously...

When λ is a strong limit cardinal of cofinality ω , descriptive set theory can be done in $^{\lambda}2$, or equivalently in $^{\omega}\lambda$, $\prod_{n\in\omega}\lambda_n$ or $V_{\lambda+1}$.

Many results in classical descriptive set theory hold also in this setting.

In general, the results that are dependent to some tree-structure generalize very well.

 $IO(\lambda)$ has an influence on this setting in the same way that AD has an influence on classical descriptive set theory.

Theorem (Silver, 1993)

Let X be a Polish space and $E \subseteq X^2$ be a coanalytic equivalence relation on X. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection φ : ^ω2 → X such that for distinct x, y ∈ ^ω2 ¬φ(x)Eφ(y).

Is this true also for the generalized Baire space?

Theorem (Friedman, Kulikov 2014)

Suppose V = L and κ inaccessible. Then the order $\langle \mathcal{P}(\kappa), \subset \rangle$ can be embedded into the set of Borel equivalence relations on 2^{κ} strictly below the identity, ordered with Borel reducibility.

Theorem (Silver, 1993)

Let *E* be a coanalytic equivalence relation on $^{\omega}2$. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection φ : 2^ω → ^ω2 such that for distinct x, y ∈ 2^ω ¬φ(x)Eφ(y).

Theorem?

Let *E* be a coanalytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection φ : Π_{n∈ω}λ_n → Π_{n∈ω}λ_n such that for distinct x, y ∈ Π_{n∈ω}λ_n ¬φ(x)Eφ(y).

Theorem?

Let *E* be a coanalytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- *E* has at most λ many classes;
- there is a continuous injection φ : Π_{n∈ω}λ_n → Π_{n∈ω}λ_n such that for distinct x, y ∈ Π_{n∈ω}λ_n ¬φ(x)Eφ(y).

Theorem! (D.-Shi)

Let λ_n be measurable cardinals. Let *E* be a coanalytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- *E* has at most λ many classes;
- there is a continuous injection φ : Π_{n∈ω}λ_n → Π_{n∈ω}λ_n such that for distinct x, y ∈ Π_{n∈ω}λ_n ¬φ(x)Eφ(y).

"Definition"

Let *E* be an equivalence relation on some product space. We say that *E* has the "singleton property" if for all x, y, if they differ *only* in one coordinate, then $\neg xEy$.

Theorem (Shelah 1988)

If *E* is a co-analytic equivalence relation on ^{ω}2 with the singleton property, then there is a continuous injection $\varphi : {}^{\omega}2 \rightarrow {}^{\omega}2$ such that for distinct $x, y \in {}^{\omega}2 \neg \varphi(x)E\varphi(y)$.

"Definition"

Let *E* be an equivalence relation on some product space. We say that *E* has the "singleton property" if for all x, y, if they differ *only* in one coordinate, then $\neg xEy$.

Theorem (Shelah 2003)

Let λ_n be measurable cardinals. If E is a co-analytic equivalence relation on $\prod_{n \in \omega} \lambda_n$ with the singleton property, then there is a continuous injection $\varphi : \prod_{n \in \omega} \lambda_n \to \prod_{n \in \omega} \lambda_n$ such that for distinct $x, y \in \prod_{n \in \omega} \lambda_n \neg \varphi(x) E \varphi(y)$.

Fix a dense subset S of ${}^{<\omega}2$ that intersects every level in exactly one element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem (G_0 -dichotomy)

Let G be an analytic directed graph on $^{\omega}2$. Then exactly one of the following holds:

- there is a (Borel) ℵ₀-colouring of *G*;
- there is a continuous function from ${}^{\omega}2$ to itself that is a homomorphism from G_0 to G.

 G_0 -dichotomy

Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level in exactly one element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a ℵ₀-colouring of G;
- there is a continuous function from Π_{n∈ω}λ_n to itself that is a homomorphism from G₀ to G.

 G_0 -dichotomy

Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a ℵ₀-colouring of G;
- there is a continuous function from Π_{n∈ω}λ_n to itself that is a homomorphism from G₀ to G.

 G_0 -dichotomy

Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a λ -colouring of G;
- there is a continuous function from $\prod_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

```
Theorem! (D.-Shi)
```

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a λ-colouring of G (actually, something more complicated, but equivalent for graphs that are the complement of an equivalence relation);
- there is a continuous function from $\prod_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

Now, let *E* be a co-analytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then its complement *G* is an analytic directed graph, therefore either *E* has $\leq \lambda$ equivalence classes, or there is a continuous function $\varphi : \prod_{n \in \omega} \lambda_n \to \prod_{n \in \omega} \lambda_n$ such that $x, y \in G_0$ iff $\neg \varphi(x) E \varphi(y)$. The problem is now that φ is possibly not injective.

Classically, from the G_0 -dichotomy to Silver Dichotomy we use the meagre-comeagre structure of ${}^{\omega}2$. This creates many problems in $\Pi_{n\in\omega}\lambda_n$, but Shelah's theorem can save us: the complement of G_0 has the singleton property, and we can use a similar argument to finally prove the Silver Dichotomy.

Can we get rid of the measurable cardinals?

Are measurable cardinals the key to understand the Baire structure of $^{\lambda}2?$

One of the main points of the Axiom of Determinacy is that it generalizes regularity properties for all subsets of reals. This is true also for Silver Dichotomy:

Theorem (AD)

Let *E* be an equivalence relation on ${}^{\omega}2$. Then exactly one of the following holds:

- the classes of *E* are well-ordered;
- there is a continuous injection φ : ^ω2 → ^ω2 such that for distinct x, y ∈ ^ω2 ¬φ(x)Eφ(y).

One of the main points of I0 is that it generalizes AD-like results to higher cardinal. Does it work also in this case?

Open problem $IO(\lambda)$

Let *E* be an equivalence relation on $^{\lambda}2$. Is it true that exactly one of the following holds?

- the classes of *E* are well-ordered;
- there is a continuous injection φ : ^λ2 → ^λ2 such that for distinct x, y ∈ ^λ2 ¬φ(x)Eφ(y).

Forbidden slide 1 (not enough time)

Brief summary of proof of Shelah's result.

Consider the double diagonal Prikry forcing \mathbb{P} that adds *two* Prikry sequences in λ . This forcing has two important characteristics:

- if *M* is a model of cardinality λ, then there is a *M*-generic set for ℙ in *V*;
- only the tails of the generic are meaningful, so changing just one coordinate maintain the genericity.

Forbidden slide 2 (not enough time)

The fact that *E* is co-analytic is also important: this means that the formula that defines *E* is absolute between models that contain V_{λ} .

So the proof goes like this: pick M small model that contains everything. If there is a condition of \mathbb{P} that forces that the two elements of the generic are E-related, then also those in V are E-related. Switching one coordinate we do the same, but this contradicts the singleton property or the fact that E is an equivalence relation. Using generic absoluteness, we have a partial result:

Theorem

Suppose IO(λ), as witness by j, and let $(\lambda_n)_{n\in\omega}$ be the critical sequence of j. Suppose that all subsets of $V_{\lambda+1}$ are U(j)-representable. Then if $E \in L(V_{\lambda+1})$ is an equivalence relation with the singleton property, there is a continuous injection $\prod_{n\in\omega}\lambda_n \to \prod_{n\in\omega}\lambda_n$ such that for distinct $x, y \in \prod_{n\in\omega}\lambda_n \neg \varphi(x)E\varphi(y)$. Thanks for watching.