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Previously...
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When λ is a strong limit cardinal of cofinality ω, descriptive set
theory can be done in λ2, or equivalently in ωλ, Πn∈ωλn or Vλ+1.

Many results in classical descriptive set theory hold also in this
setting.

In general, the results that are dependent to some tree-structure
generalize very well.

I0(λ) has an influence on this setting in the same way that AD has
an influence on classical descriptive set theory.
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Theorem (Silver, 1993)

Let X be a Polish space and E ⊆ X 2 be a coanalytic equivalence
relation on X . Then exactly one of the following holds:

• E has at most countably many classes;

• there is a continuous injection ϕ : ω2→ X such that for
distinct x , y ∈ ω2 ¬ϕ(x)Eϕ(y).
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Is this true also for the generalized Baire space?

Theorem (Friedman, Kulikov 2014)

Suppose V = L and κ inaccessible. Then the order 〈P(κ),⊂〉 can be
embedded into the set of Borel equivalence relations on 2κ strictly
below the identity, ordered with Borel reducibility.
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Theorem (Silver, 1993)

Let E be a coanalytic equivalence relation on ω2. Then exactly one
of the following holds:

• E has at most countably many classes;

• there is a continuous injection ϕ : 2ω → ω2 such that for
distinct x , y ∈ 2ω ¬ϕ(x)Eϕ(y).
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Theorem?

Let E be a coanalytic equivalence relation on Πn∈ωλn. Then exactly
one of the following holds:

• E has at most countably many classes;

• there is a continuous injection ϕ : Πn∈ωλn → Πn∈ωλn such
that for distinct x , y ∈ Πn∈ωλn ¬ϕ(x)Eϕ(y).
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Theorem?

Let E be a coanalytic equivalence relation on Πn∈ωλn. Then exactly
one of the following holds:

• E has at most λ many classes;

• there is a continuous injection ϕ : Πn∈ωλn → Πn∈ωλn such
that for distinct x , y ∈ Πn∈ωλn ¬ϕ(x)Eϕ(y).
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Theorem! (D.-Shi)

Let λn be measurable cardinals. Let E be a coanalytic equivalence
relation on Πn∈ωλn. Then exactly one of the following holds:

• E has at most λ many classes;

• there is a continuous injection ϕ : Πn∈ωλn → Πn∈ωλn such
that for distinct x , y ∈ Πn∈ωλn ¬ϕ(x)Eϕ(y).

9 / 24



Introduction A theorem by Shelah G0-dichotomy Open problems

“Definition”

Let E be an equivalence relation on some product space. We say
that E has the “singleton property” if for all x , y , if they differ only
in one coordinate, then ¬xEy .

Theorem (Shelah 1988)

If E is a co-analytic equivalence relation on ω2 with the singleton
property, then there is a continuous injection ϕ : ω2→ ω2 such that
for distinct x , y ∈ ω2 ¬ϕ(x)Eϕ(y).
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“Definition”

Let E be an equivalence relation on some product space. We say
that E has the “singleton property” if for all x , y , if they differ only
in one coordinate, then ¬xEy .

Theorem (Shelah 2003)

Let λn be measurable cardinals.If E is a co-analytic equivalence
relation on Πn∈ωλn with the singleton property, then there is a
continuous injection ϕ : Πn∈ωλn → Πn∈ωλn such that for distinct
x , y ∈ Πn∈ωλn ¬ϕ(x)Eϕ(y).
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Fix a dense subset S of <ω2 that intersects every level in exactly
one element. Let G0 be the directed graph that couples two
elements if they start with an element of S and differ only in the
next coordinate.
Theorem (G0-dichotomy)

Let G be an analytic directed graph on ω2. Then exactly one of the
following holds:

• there is a (Borel) ℵ0-colouring of G ;

• there is a continuous function from ω2 to itself that is a
homomorphism from G0 to G .

This actually generalizes nicely, with almost the same proof.
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Fix a dense subset S of Πn∈ωλn that intersects every level in
exactly one element. Let G0 be the directed graph that couples
two elements if they start with an element of S and differ only in
the next coordinate.
Theorem?

Let G be an analytic directed graph on Πn∈ωλn. Then exactly one
of the following holds:

• there is a ℵ0-colouring of G ;

• there is a continuous function from Πn∈ωλn to itself that is a
homomorphism from G0 to G .

This actually generalizes nicely, with almost the same proof.
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Fix a dense subset S of Πn∈ωλn that intersects every level n in
exactly κn−1 element. Let G0 be the directed graph that couples
two elements if they start with an element of S and differ only in
the next coordinate.
Theorem?

Let G be an analytic directed graph on Πn∈ωλn. Then exactly one
of the following holds:

• there is a ℵ0-colouring of G ;

• there is a continuous function from Πn∈ωλn to itself that is a
homomorphism from G0 to G .

This actually generalizes nicely, with almost the same proof.
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Fix a dense subset S of Πn∈ωλn that intersects every level n in
exactly κn−1 element. Let G0 be the directed graph that couples
two elements if they start with an element of S and differ only in
the next coordinate.
Theorem?

Let G be an analytic directed graph on Πn∈ωλn. Then exactly one
of the following holds:

• there is a λ-colouring of G ;

• there is a continuous function from Πn∈ωλn to itself that is a
homomorphism from G0 to G .

This actually generalizes nicely, with almost the same proof.
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Fix a dense subset S of Πn∈ωλn that intersects every level n in
exactly κn−1 element. Let G0 be the directed graph that couples
two elements if they start with an element of S and differ only in
the next coordinate.
Theorem! (D.-Shi)

Let G be an analytic directed graph on Πn∈ωλn. Then exactly one
of the following holds:

• there is a λ-colouring of G (actually, something more
complicated, but equivalent for graphs that are the
complement of an equivalence relation);

• there is a continuous function from Πn∈ωλn to itself that is a
homomorphism from G0 to G .

This actually generalizes nicely, with almost the same proof.
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Now, let E be a co-analytic equivalence relation on Πn∈ωλn. Then
its complement G is an analytic directed graph, therefore either E
has ≤ λ equivalence classes, or there is a continuous function
ϕ : Πn∈ωλn → Πn∈ωλn such that x , y ∈ G0 iff ¬ϕ(x)Eϕ(y). The
problem is now that ϕ is possibly not injective.

Classically, from the G0-dichotomy to Silver Dichotomy we use the
meagre-comeagre structure of ω2. This creates many problems in
Πn∈ωλn, but Shelah’s theorem can save us: the complement of G0

has the singleton property, and we can use a similar argument to
finally prove the Silver Dichotomy.
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Can we get rid of the measurable cardinals?

Are measurable cardinals the key to understand the Baire structure
of λ2?
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One of the main points of the Axiom of Determinacy is that it
generalizes regularity properties for all subsets of reals. This is true
also for Silver Dichotomy:

Theorem (AD)

Let E be an equivalence relation on ω2. Then exactly one of the
following holds:

• the classes of E are well-ordered;

• there is a continuous injection ϕ : ω2→ ω2 such that for
distinct x , y ∈ ω2 ¬ϕ(x)Eϕ(y).
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One of the main points of I0 is that it generalizes AD-like results
to higher cardinal. Does it work also in this case?

Open problem I0(λ)

Let E be an equivalence relation on λ2. Is it true that exactly one
of the following holds?

• the classes of E are well-ordered;

• there is a continuous injection ϕ : λ2→ λ2 such that for
distinct x , y ∈ λ2 ¬ϕ(x)Eϕ(y).
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Forbidden slide 1 (not enough time)
Brief summary of proof of Shelah’s result.
Consider the double diagonal Prikry forcing P that adds two Prikry
sequences in λ. This forcing has two important characteristics:

• if M is a model of cardinality λ, then there is a M-generic set
for P in V ;

• only the tails of the generic are meaningful, so changing just
one coordinate maintain the genericity.
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Forbidden slide 2 (not enough time)
The fact that E is co-analytic is also important: this means that
the formula that defines E is absolute between models that contain
Vλ.
So the proof goes like this: pick M small model that contains
everything. If there is a condition of P that forces that the two
elements of the generic are E -related, then also those in V are
E -related. Switching one coordinate we do the same, but this
contradicts the singleton property or the fact that E is an
equivalence relation.
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Using generic absoluteness, we have a partial result:

Theorem

Suppose I0(λ), as witness by j , and let (λn)n∈ω be the critical se-
quence of j . Suppose that all subsets of Vλ+1 are U(j)-representable.
Then if E ∈ L(Vλ+1) is an equivalence relation with the singleton
property, there is a continuous injection Πn∈ωλn → Πn∈ωλn such
that for distinct x , y ∈ Πn∈ωλn ¬ϕ(x)Eϕ(y).
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Thanks for watching.
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