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K is measurable iff is a k-complete ultrafilter on k.

(Keisler, 62) iff it's the critical point of an elementary
embedding j : V < M.

(Solovay, Reinhardt, 60's) k is y-supercompact iff it's the
critical point of an elementary embedding j : V < M such that
T C M (and v < j(k)).

(Reinhardt, 67) x is n-extendible iff there is a ¢ and a

J + Vieqn < V¢, with & critical point of j and 1 < j(k).
(Reinhardt, 70) x is a Reinhardt cardinal iff it's the critical
point of an elementary embedding j : V < V.

Introduction



Higher
Determinacy
Axioms

Vinc
Dimo

Theorem (Kunen, 1971)

If j: V < M, then M # V.

Introduction



Higher
Determinacy
Axioms

Vi

Dimonte Theorem (Kunen, 1971)

If j: V < M, then M # V.

Introduction The critical sequence has an important role in the proof:



Higher
Determinacy
Axioms

Theorem (Kunen, 1971)
If j: V<M, then M# V.

Introduction The critical sequence has an important role in the proof:
Definition

ko = crit(j), knt1 = j(Kn),




Higher
Determinacy
Axioms

Theorem (Kunen, 1971)
If j: V<M, then M# V.

Introduction The critical sequence has an important role in the proof:
Definition

ko = crit(f), knt1 = j(Kn), A = sup,c,, Kn.




Higher
Determinacy
Axioms

Vince

[ Theorem (Kunen, 1971)
Ifj: V < M, then M # V.

Introduction The critical sequence has an important role in the proof:
Definition

ko = crit(f), knt1 = j(Kn), A = sup,c,, Kn.

Kunen's proof uses a choice function that is in V2. So

Thereisno j: V, <V,




Higher
Determinacy
Axioms

Vincenzo
Dimonte

Theorem (Kunen, 1971)
If j: V<M, then M# V.

Introduction The critical sequence has an important role in the proof:
Definition

ko = crit(f), knt1 = j(Kn), A = sup,c,, Kn.

Kunen's proof uses a choice function that is in V2. So

Thereisno j: V; < V;, with n > A+ 2.
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Daedalus Path Better to stay low and going back to cardinals
weaker than supercompact (strong, Woodin,
etc.).

Icarus Path Let's see how high we can get before burning our
wings.

Introduction

Definition
I3: There exists an elementary embedding j : V) < V).

I1: There exists an elementary embedding
J Va1 < Vo

Technical note: if j,k: Vi1 < Vhgrand j [ Vi =k [ V),
then j = k.
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Woodin proposed an even stronger axiom:
Definition
[0: There exists an elementary embedding j : L(Viy1) <

L(Viy1) with ert(j) < A

The popularity of these axioms was strenghtened by
Determinacy results:

(Martin 1980) 12 — Det(N3).
(Woodin 1984) 10 — Con(ADg)

These results, however, after a while became obsolete, and
nowadays there is no equivalence result.
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But this doesn’'t mean that Determinacy is out of the game...
Introduction
10 in fact is more interesting than the other axioms, since it
produces a structure on L(V);1) that is strikingly similar to the
structure of L(R) under AD.

Since A has cofinality w, V) is similar to V,,, so V)1 is similar
to R.
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LR) | L(Vr+1)
© is regular @\L/(A‘ﬁ“) is regular
DC holds DC, holds.

In fact these analogies hold for every model of HODy, ,,.
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Second degree analogies (under 10 and AD):

L(R) under AD | L(V+1) under 10
w1 is measurable At is measurable
the Coding Lemma holds | the Coding Lemma holds.

Introduction

The most immediate corollary for the Coding Lemma is:
For every a < © there exists a surjection 7 : R — P(«).
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Theorem

Suppose that there exists j : L(Viy1) < L(Va41) with crt(j) <
[ - A. Then © is a limit of «y such that:

~ is weakly inaccessible in L(V)1);
v =051 and j(v) = 7;
for all 6 < v, P(,B) N L(V,\Jrl) € L7(V)\+1);

for cofinally k <, K is a measurable cardinal in L(V)41)
and this is witnessed by the club filter on a stationary set;

Ly(Vat1) < Lo(Vat1).
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Unknown degree analogy:

Introduction

Let Sg\+ be the set of the ordinals in A™ with cofinality §. Then
there exists a partition (S, : a < ) of 5§‘+ in 7 < A stationary
sets such that for every a < 7 the club filter of AT on S, is an
ultrafilter.

This goes in the direction of " The club filter on wy is an
ultrafilter”.
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e However, there is also some letdown. For example, the Wadge
Dimonte Theorem doesn’t hold:

Theorem

Suppose there is an elementary embedding j : L(Vii1) <
L(Viy1) with crtj < A, and that A is a limit of supercompact
cardinals. Suppose c is a V-generic Cohen real. Then there exist
two sets X, Y € V[c]x42 such that

Introduction

m there is an elemntary embedding

Je: L(X, Y, V]clas1) — L(X, Y, V[c]as1) with crt(j) < A;
m X ¢ Lo(Y, V)
m Y & L,(X, V]clat1)
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10 is called Higher Determinacy Axiom, because it has
consequences similar to Determinacy, but in a larger model.
Is it possible to find stronger Higher Determinacy Axioms?
Higher The first step is to find analogies with L(A,R) F AD, with

Determinacy

Axiom A g R

J o L(X, Vag1) < L(X, Vaqa), with X C Vi,
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Himente However, the third analogy resisted all attempts to be proved,
without further hypotheses.

Let j: L(X, V)\+1) < L(X, V/\+1) with X C V1.

Then
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Uy={Z e L(X,Vay1) N Vaso:j [ Vi €(2)}

generates an elementary embedding ji;, and there exists a
ky @ L(X, Viay1) < L(X, Viy1) with crt(ky) > © such that
J=kuoju.

So the “important part” of j is under Lg(X, V\y1).
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Axioms
Let j : L(X, Vat1) < L(X, Va41) with X C Vyiq. Then j is
weakly proper iff j = jy.

Definition

Let j : L(X, V)\Jr]_) < L(X, V)\Jrl) with X € V,i1. Then j
Dererminacy is proper if it is weakly proper and (X, j(X),j(j(X)),...) €
Axiom L(X, V)\-i-l)-

If j is proper, then the third degree analogies hold.

A further step would be to find a Higher Determinacy Axiom
correspondent to ADg.

There is no evident elementary embedding form... so the way
chose by Woodin is defining an analogous of the minimum
model of ADg.
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w-club filter in ©HTa),
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Define a sequence of [, € P(R) by induction on a:
Mo = L(R) N P(R);
If o is a limit ordinal then Ty, = L((Us-, [5)*) N P(R);

If cof (L)) = w, then To11 = L((Ta)¥, R) NP(R),
otherwise o411 = L(n) [F] N P(R), where F is the
w-club filter in ©HTa),

The sequence stops when L(I,) ¥ AD or 'y, = o41
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analogy can be false.
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Before that, we need to consider also j : L(N) < L(N), with
Vi1 €N C V.

The situation is more complicated, because even the first
analogy can be false.

So we will consider “mainly” N such that

L(N) F HOD¢x3uv, ,,» With X C Vi,

In that case, first and second degree analogies hold.

A similar ultrapower theorem exists, and we define similarly
weakly proper embeddings.
Definition

Let j : L(N) < L(N) with Vjy1 € N C V4o and N = L(N) N

V\42. Then j is proper if it is weakly proper and for every X € N
(X,4(X),j((X)),...) € L(N).
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Before that, we need to consider also j : L(N) < L(N), with
Vi1 €N C V.

The situation is more complicated, because even the first
analogy can be false.

So we will consider “mainly” N such that

L(N) F HOD¢x3uv, ,,» With X C Vi,

In that case, first and second degree analogies hold.

A similar ultrapower theorem exists, and we define similarly
weakly proper embeddings.
Definition

Let j : L(N) < L(N) with Vjy1 € N C V4o and N = L(N) N

V\42. Then j is proper if it is weakly proper and for every X € N
(X,4(X),j((X)),...) € L(N).

If j is proper, the third analogy hold.
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S Suppose that there exists a class / of indiscernibles of
(L(X),€,{a: ae X}, X) such that every cardinal > |X] is in /.
Then X% is the theory of the indiscernibles in the language
Higher {etu{a:ae X} U{X}, ie.

Determinacy
Axiom

Xt ={e(a1,...,an, X,y 0n) :31,...,3n € X,
L(X)E p(a1,...,an, X,i1,...,in) for some (any)
indiscernibles i; < --- < i, € I}

X* contains the “truth" of L(X), so it cannot be in L(X).
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Definition
The sequence
(Ea(Vat1) :a < Ty,,)

is defined as:
EQ(Vat1) = L(Vag1) N Vigo;
for a limit, EQ(Vat1) = L(Upey EJ(Vat1)) N Vasa;

for «v limit,
if (cof(@Eg(V“l)) < )\)L(Eg(v*“)) then

Eqi1(Vas1) = LI(ES(Vau1))) N Vi
if (cof(@Ea(Van)))LE(VA1)) > X then

E3 1 (Vat1) = L(E(ES(Vat1))) N Vasa;
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Definition
for « = B + 2, if there exists X C V)41 such that
EB—H(V)"H) = L(X V/\-i-l) N V42 and EQ (V/\+1) < X,
then
Eg2(Vag) = L((X, Va1)F) N Vayo

otherwise we stop the sequence.

Va < TVAH 3X C V)41 such that Eg(V)\+1) < X and
3j: L(X, Vag1) — L(X, V1) proper;
Va limit a +1 < Ty, , iff

(Cof(@Eg(VAJrl))) 0(Vas1)) >\ —
3Z € EY(Vas1) L(ES(Vas1)) = (HODy, , uzy) HES(VAr)),
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Let N = L(U{Eg(VAH) o< TVAH}) N Vy2. Suppose that
cof (ON) > ;
forall Z e N L(N) # (HODV>\+1U{Z})L(N);

there is an elementary embedding j : L(N) < L(N) with
crt(j) < A
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Definition

Let N = L(U{Eg(VAH) o< TVAH}) N Vy2. Suppose that
cof (ON) > ;
forall Z e N L(N) # (HODV>\+1U{Z})L(N);

there is an elementary embedding j : L(N) < L(N) with
crt(j) < A
Then E2 (V1) exists and EQ (Vy,1) = N.
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Three important facts:

m Ifa< B < T, then OF < ©F,
gieg_t';f;linacy m The EQ sequence is absolute, i.e. for every M such that
foiem L(M) N Vyy2, Va1 € M for every a < TM,
((Eg B <a))M = <E[(3J B < a).
m If & < T, then there exists an elementary embedding
J i L(E%) < L(ED).




Higher
Determinacy
Axioms

Vincenzo
Dimo
The E? sequence can be considered as the “standard” example

of Higher Determinacy Axioms.

Very Brief
Digression



Higher
Determinacy
Axioms

Vincenzo
Dimonte

The E? sequence can be considered as the “standard” example
of Higher Determinacy Axioms.

Theorem
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The E? sequence can be considered as the “standard” example
of Higher Determinacy Axioms.

Theorem

Let X C Vi1 such that there exists j : L(X,Vii1) <

L(X, Vay1). Let Y € L(X, Vagp1)NVii2 such that ©LY>Varn) <

Very Brit QX VA1) Then (Y, Vi) exists and (Y, V1)t €
L(Xa V)\+1)'

So, two different concepts of “largeness” in this case coincide.
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J o L(X,Vai1) < L(X,Vay1). Then, either TX = T and
sup, <y OF1 < ©LX:Van) or there exists < T such that
TX = n+1 and OF = OLX:\Vau) Moreover, if a < TX
Very Brief then EX = E?.
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Vincenzo

Dimonte Theorem

Suppose X C Vi1 and there is an elementary embedding
J o L(X,Vai1) < L(X,Vay1). Then, either TX = T and
sup, <y OF1 < ©LX:Van) or there exists < T such that
TX = n+1 and OF = OLX:\Vau) Moreover, if a < TX
Very Brief then EX = E?.

Digression

So, if there exists j : L(X, Vat1) < L(X, Va41) and
OLX:Van1) < ©F% | then there exists j : L(EQ) < L(ED) and
OES — @L(X,Vas1).
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We've seen that properness is quite important for establishing
Determinacy results.
But is it really a property?

Theorem

Suppose oo < T. If
ma=0or

m « is a successor ordinal, or

Main Results

® « is a limit ordinal with cofinality > w

then every weakly proper elementary embedding j : L(ES) <
L(ED) is proper.
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Main Results

We can think of two possible scenarios:
Definition
« is partially non-proper if there exist j, k : L(EQ) < L(EQ)
such that j is proper and k is not proper;
« is totally non-proper if every elementary embedding
J: L(E®) < L(ED) is not proper.

We will prove that both exist. The key Lemma is the following:

Suppose o < T and ©Fa is regular in L(ED). If j : L(ED) <
L(ED) is proper then the set of fixed points of j is cofinal in
of:.
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Vincenzo

Himente In our case, for every a, (EQ)* ¢ L(E?).
If a is a limit and EY = [J EJ, then we can slice (E2)* in
smaller pieces, digestible by L(ED):

(Eg)gn = (B n({e}Ufa:ac EQYU{X}U{ir,...,in})

Forevery f<a, ncw (an)% . € E2, but L(E?) doesn't know
that they are sharp fragments.

Totally
Non-proper

St Soif k: Eg < EQ, k(sharp fragment) can be anything.
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Definition
We say that k : Eg < EQ is sharp-friendly if it maps sharp
fragments to sharp fragments.

Eg < EQ is sharp-friendly, iff it's possible to extend it to
L(Eg) < L(ED).

k :
k-




Higher
Determinacy
Axioms

Define in | = {3 < T :Vy < 3 L(E®) F V =HODy, , }.

Totally
Non-proper
Ordinals



Higher
Determinacy
Axioms

Vincenzo
Dimonte

Definein | = {8 < T :V¥y < 8 L(E?) E V =HODy,_,}.
Beyond (Eg)fﬂy,,,, we can define also (Eg),ﬂy that it's a theory in
the language with constants from ES.

Totally
Non-proper
Ordinals



Higher
Determinacy
Axioms

Vincenzo
Dimonte

Definein | = {8 < T :V¥y < 8 L(E?) E V =HODy,_,}.
Beyond (Eg)fﬂy,,,, we can define also (Eg),ﬂy that it's a theory in

the language with constants from ES.
Let 5 l.

Totally
Non-proper
Ordinals



Higher
Determinacy
Axioms

Vincenzo
Dimonte

Definein | = {8 < T :V¥y < 8 L(E?) E V =HODy,_,}.
Beyond (Eg)fﬂy,,,, we can define also (Eg),ﬂy that it's a theory in

the language with constants from ES.
Let 3 € I. Define I as the set of all 4's such that the sharp in

3 reflects on 7, i.e. (Efy’)ii = (Eg)ﬁW

Totally
Non-proper
Ordinals



Higher
Determinacy
Axioms

Vincenzo
Dimonte

Definein | = {8 < T :V¥y < 8 L(E?) E V =HODy,_,}.
Beyond (Eg)fﬂy,,,, we can define also (Eg)gy that it's a theory in

the language with constants from ES.
Let 3 € I. Define I as the set of all 4's such that the sharp in

3 reflects on 7, i.e. (EEY’)ii = (Eg)ﬁW

Toually Let 5 € / such that ot(/g) = A. I

Ordinals



Higher
Determinacy
Axioms

Vincenzo
Dimonte

Definein | = {8 < T :V¥y < 8 L(E?) E V =HODy,_,}.
Beyond (Eg)fﬂy,,,, we can define also (Eg)gy that it's a theory in

the language with constants from ES.
Let 3 € I. Define I as the set of all 4's such that the sharp in

3 reflects on 7, i.e. (EEY’)ii = (Eg)ﬁW

Totally Let 5 € / such that ot(/g) = A. Then § is totally non-proper.

Non-proper
Ordinals
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Vincenzo
Dimonte

By the Lemma above, we only have to find an « such that we
know that there exists a proper elementary embedding

j i L(ES) < L(E?), and a sharp-friendly elementary embedding
k : EQ < EQ whose extension is not proper.

Partially
non-proper
ordinal



Higher Define the game G, in L((E2)):
Determinacy
Axioms

Vincenzo I (ko, Bo) (ki, B1) (ko, B2)

Dimonte

I ) Uil

with the following rules:
u ko = @;
m Kiy1: Eg{ =< EO’_+1 sharp-friendly;

m for every v < B, kiy1((EQ)5.n) = (Eg)im(v),n;
m Gimi <o
ey m Giv1 > i

ordinal

m ki C kiy1 and kiz1(5i) = Bita;
m Il wins if and only if | at a certain point can't play
anymore.
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Notation

From now on, we call o the minimum ordinal such that
L((EDH) N Vagz = EQ.

Then both L(E2) and L((E2)*) have good qualities, and « is
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Higher So we have to find an « such that a = ©F«, cof(a) = w and
Determinacy

Axioms G, is determined for I.

Notation

From now on, we call o the minimum ordinal such that
L((EDH) N Vagz = EQ.

Then both L(E2) and L((E2)*) have good qualities, and « is
“large” in L((E9)®).

m o = OF = 9(&),
u L(ES), L((Eg)ﬂ) FV= HODV>\+1;
s m « is regular in L((EQ)®).

1-prop
ordinal

Note that, since there exists j : L(EQ,,) < L(E2,,),
J T L((E2)?) is an elementary embedding, so in L((EQ)*) the
first and second degree analogies hold.
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Dimonte

In L((E2)*) Il cannot have a winning strategy for the game G,.

We fix j : L((E2)*) < L((E2)).

Claim. For every (3, < a, there is a surjection in L((E2)*) from
V)41 to the set of all the k, such that (k,, 3,) is a legal move
for I. O

Partially
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If Il had a winning strategy 7, it would be definable.

So we can define the set C of the ordinals closed under 7, i.e.
of the ordinals 7 such that if 8, < 7, then for every k,

7((kn, Bn)) < n. By the first claim C is a club.

Since C is definable and « is regular, C has ordertype «.
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B
If Il had a winning strategy 7, it would be definable.

So we can define the set C of the ordinals closed under 7, i.e.
of the ordinals 7 such that if 8, < 7, then for every k,
7((kn, Bn)) < n. By the first claim C is a club.

Since C is definable and « is regular, C has ordertype «.
But then if | plays the k,-th element of C as 3, and j | Egn_
as k;,, | wins, and that’s a contradiction.

1
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Dinone
If Il had a winning strategy 7, it would be definable.

So we can define the set C of the ordinals closed under 7, i.e.
of the ordinals 7 such that if 8, < 7, then for every k,
7((kn, Bn)) < n. By the first claim C is a club.

Since C is definable and « is regular, C has ordertype «.
But then if | plays the k,-th element of C as 3, and j | Egn_
as k;,, | wins, and that’s a contradiction.

1

Since cof(a) = w and for every j : L(ED,,) < L(E2,,)

Partially
non-proper

ordinal j I L(ED) is proper, then « is a partially non-proper ordinal.
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The ordertype of I, is «, so there exists an ag < « such that
ot(lay) = A

Proof.

This is because in (EQ)* there are few partial Skolem functions.
Let v < c. Then H = HE((EQ)# N E?) is small, so the least
1 such that H C E,? is less than a.
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ot(loy) = A

Proof.

This is because in (EQ)* there are few partial Skolem functions.
Let v < o. Then H = H(ED*((E%)* EO) is small, so the least
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The ordertype of I, is «, so there exists an ag < « such that
ot(loy) = A

Proof.

This is because in (EQ)* there are few partial Skolem functions.
Let v < o. Then H = H(ED*((E%)* EO) is small, so the least
1 such that H C E is less than a.

So we can build a cIub of v's such that

(E9)¥ N Un<7 i < (E9)%. Since “being a sharp” is a local
property, this means that (E2)? reflects in v, i.e. v € I,.

This proves that /I, is a club in a. Since I, € L((E?)*) and « is
regular in L((E2)*), we're done. O
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Dimonte Are there other differences?

Lemma

Let o and 3 as above.

m Let j: L(EQ) < L(E?) weakly proper. Then there exist at
least |o|™0 different weakly proper non-proper (proper)
elementary embeddings k : L(EQ) < L(EQ) such that
kI Vi=j1TVa

m For every j, k : L(Eg) =< L(Eg) weakly proper if
J T VA =k Vy, then j = k.
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The structure of the previous proofs is the following:
m If Ego exists, then I C 7T;

m if | C 7T, then there exists n such that
L((EQ)*) N Va2 = EQ, and we can define o;

m « is a partially non-proper ordinal, and there exists a
totally non-proper ordinal below it

Some of these implications cannot be reversed.
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There are plenty of open problems, and most of them seems
very difficult:

m Are there other partially or totally non-proper ordinals?
m Is it possible to have consistency-like results?

m Are there non-proper elementary embeddings between
models like L(X, V)11)?

m Is the existence of EO inconsistent?

Implications
and open
problems
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