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Investigation on the power function is as old as set theory.

The behaviour of the power function at regular cardinals has
been completely solved by Easton (1970):

Theorem (Easton, 1970)

Let E : Reg→ Card a class function such that

α < β → E (α) ≤ E (β);

cof(E (α)) > α for all α ∈ Reg.

Then there exist definable, directed closed, reverse Easton iter-
ations P of length the ordinals such that, if G is generic for P,
V [G ] � GCH, or V [G ] � ∀κ(κ regular → 2κ = E (κ)).

We summarize the last sentence as “everything goes for the
regulars”.
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large cardinals have an important role

.

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. Then if
GCH holds below λ, it must hold at λ.

Theorem (Solovay, 1974)

Let κ be a strongly compact cardinal. Let λ be a singular strong
limit cardinal greater than κ. Then 2λ = λ+.
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Theorem (Kunen, 1971)

If j : V ≺ M, then M 6= V .

The critical sequence has an important role in the proof:

Definition

κ0 = crit(j), κn+1 = j(κn), λ = supn∈ω κn.

Kunen’s proof uses a choice function that is in Vλ+2. So

Corollary

There is no j : Vη ≺ Vη, with η ≥ λ+ 2.

This leaves room for a new breed of large cardinal hypotheses:
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Definition

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : V ≺ M, with Vλ ⊆ M
and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1.

I0 For some λ there exists a
j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ

What are the immediate consequences of this hypotheses?

λ is the supremum of 〈κi : i ∈ ω〉
κi are pretty large cardinals (n-huge for every n, so
measurable...)

Vκ0 ≺ Vλ, so Vλ � ZFC

I0 is incompatible with L(Vλ+1) �AC

under I0 L(Vλ+1) is similar to L(R) under AD.
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j is always determined by j � Vλ.

Notation problem: what is the large cardinal?
Usually it is the critical point of the elementary embedding
But in this case it is not unique: let j : Vλ ≺ Vλ, then
j(j) =

⋃
n∈ω j(j ∩ Vκn) is an elementary embedding.

crt(j(j)) = κ1.
So, we can think of λ as a large cardinal. But it is singular.
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Reminder: lifting lemma

Lifting Lemma

Assume j : M ≺ M is an elementary embedding between models
of ZF, G is M-generic for a poset P ∈ M, and j“G ⊆ G .

Then
j lifts to j∗ : M[G ] ≺ M[G ].

We can divide the ordinals in three parts:

[0, κ0) if a forcing is in Vκ0 , then j will lift;

(λ,∞) if a forcing doesn’t add subsets of Vλ, then j will
lift;

[κ0, λ] this is the sensitive part.
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Theorem (Hamkins, 1994)

Con(I1+GCH)

Theorem (Friedman, 2007)

Con(I2+GCH)

Theorem (Corazza, 2007)

Con(I3+GCH)

New Theorem!

Con(I∗+ everything goes at regulars)
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The key result here is:

Theorem

If j witnesses I∗ and G is generic for a definable, directed closed,
λ-small, reverse Easton iteration of length λ, then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that q  p ∈ Ġ → j(p) ∈ Ġ .
This can be done because the conditions are few (λ-smallness),
so the images of the conditions are few and therefore one can
find a condition below all of them (directed closure).
By the lifting lemma j lifts to Vλ+1[G ], L(Vλ+1)[G ].
Now Vλ+1[G ] = V [G ]λ+1 and L(V [G ]λ+1) ⊆ L(Vλ+1)[G ].
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We are focused on the power function, but the same key result
can be used to prove other consistencies, like ♦κ for all κ
regulars, V = HOD, etc...

What about singular cardinals?
Solovay restricts us: κ0 is strongly compact in Vλ, so the
strong limit singulars satisfy GCH co-boundedly in κ0 (and κ1,
κ2, . . . ).
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So we will talk about λ.

The problem is that when we add, by forcing, many subsets of
Vλ, (more than |Vλ+1|), we cannot possibly have
Vλ+1[G ] = V [G ]λ+1.
Therefore we change strategy, and we will use deep work by
Woodin on I0.
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Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ be a proper elemen-
tary embedding. Let (Mω, jω) be the ω-th iterate of j . Then for
all α < λ+ there exists an elementary embedding

π : Lα(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity.
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What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

j0,ω(κ0) = λ, so λ is regular and measurable;

Vλ � ZFC, so Vj0,ω(λ) ∩Mω � ZFC;

〈κi : i ∈ ω〉 is Mω-generic for the Prikry forcing at λ.

Instancies of generic absoluteness:
Let Mω[〈κi : i ∈ ω〉] = N. Then

N ∩ Vλ+1 = (Vλ+1)N ≺ Vλ+1;

exists π : L1(N ∩ Vλ+1) = (L1(Vλ+1))N ≺ L1(Vλ+1).
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First path.

Fix a j that witnesses I0.

If k witnesses I3, then k ∈ Vλ+1. But j � Vλ witnesses I3, so
N � I3.
If k witnesses I1, then k is definable from k � Vλ, so
k ∈ L1(Vλ+1). But j � Vλ+1 witnesses I1, so N � I1.

Second path.

We can suppose that for all regulars 2κ = κ++, so in particular
for κ0. Then in Mω we have 2λ = λ++.
Prikry forcing is very nice: it doesn’t add bounded subsets of λ
and is λ+-cc.
Therefore we have 2λ = λ++ in N.
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Complete Theorem

Suppose I0. Then for any α < λ+ it is consistent ZFC + ∃j :
Lα(Vλ+1) ≺ Lα(Vλ+1) + everything goes below λ (at regulars)
and at λ.

Example

For any δ < λ, we can have 2κ = κ+δ+1.
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Open Questions

Is it possible to avoid I0?

Is it possible to prove the consistency of I0 + everything goes,
even using stronger hypotheses?

Conjecture

If ∃j : L((Vλ+1)]) ≺ L((Vλ+1)]) then is I0 + everything goes at
λ consistent?
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