Rank-to-rank hypotheses and the failure of GCH	
Vincenzo Dimonte	Dould to would be mothered and the failure of
	Rank-to-rank hypotheses and the failure of
	GCH
	loint work with Sy Friedman
	Some work with Sy Theaman

Vincenzo Dimonte

21 June 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Vincenzo Dimonte

Rank-to-rank hypotheses and the failure of GCH Vincenzo Dimonte	
	Magic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Rank-to-rank hypotheses and the failure of GCH Vincenzo Dimonte	
	Magic

Vincenzo Dimonte

> Vincenzo Dimonte

Investigation on the power function is as old as set theory.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

> Vincenzo Dimonte

Investigation on the power function is as old as set theory. The behaviour of the power function at regular cardinals has been completely solved by Easton (1970)

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

> Vincenzo Dimonte

Investigation on the power function is as old as set theory. The behaviour of the power function at regular cardinals has been completely solved by Easton (1970):

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (Easton, 1970)

Let $E : \operatorname{Reg} \to \operatorname{Card}$ a class function such that

•
$$\alpha < \beta \rightarrow E(\alpha) \leq E(\beta);$$

•
$$\operatorname{cof}(E(\alpha)) > \alpha$$
 for all $\alpha \in \operatorname{Reg}$.

> Vincenzo Dimonte

Investigation on the power function is as old as set theory. The behaviour of the power function at regular cardinals has been completely solved by Easton (1970):

Theorem (Easton, 1970)

Let $E : \operatorname{Reg} \to \operatorname{Card} a$ class function such that

•
$$\alpha < \beta \rightarrow E(\alpha) \leq E(\beta);$$

• $cof(E(\alpha)) > \alpha$ for all $\alpha \in Reg.$

Then there exist definable, directed closed, reverse Easton iterations \mathbb{P} of length the ordinals such that, if G is generic for \mathbb{P} , $V[G] \models \text{GCH}$, or $V[G] \models \forall \kappa (\kappa \text{ regular } \rightarrow 2^{\kappa} = E(\kappa)).$

> Vincenzo Dimonte

Investigation on the power function is as old as set theory. The behaviour of the power function at regular cardinals has been completely solved by Easton (1970):

Theorem (Easton, 1970)

Let $E : \operatorname{Reg} \to \operatorname{Card} a$ class function such that

•
$$\alpha < \beta \rightarrow E(\alpha) \leq E(\beta);$$

• $cof(E(\alpha)) > \alpha$ for all $\alpha \in Reg.$

Then there exist definable, directed closed, reverse Easton iterations \mathbb{P} of length the ordinals such that, if G is generic for \mathbb{P} , $V[G] \vDash \text{GCH}$, or $V[G] \vDash \forall \kappa (\kappa \text{ regular } \rightarrow 2^{\kappa} = E(\kappa)).$

We summarize the last sentence as "everything goes for the regulars".

> Vincenzo Dimonte

The singular cardinals are much more difficult to deal with, and large cardinals have an important role

> Vincenzo Dimonte

The singular cardinals are much more difficult to deal with, and large cardinals have an important role.

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. Then if GCH holds below $\lambda,$ it must hold at λ

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Vincenzo Dimonte

The singular cardinals are much more difficult to deal with, and large cardinals have an important role.

Theorem (Silver, 1974)

Let λ be a singular cardinal of uncountable cofinality. Then if GCH holds below λ , it must hold at λ .

Theorem (Solovay, 1974)

Let κ be a strongly compact cardinal. Let λ be a singular strong limit cardinal greater than κ . Then $2^{\lambda} = \lambda^+$.

> Vincenzo Dimonte

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Vincenzo Dimonte

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

The *critical sequence* has an important role in the proof: Definition

$$\kappa_0 = \operatorname{crit}(j), \ \kappa_{n+1} = j(\kappa_n), \ \lambda = \sup_{n \in \omega} \kappa_n.$$

> Vincenzo Dimonte

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

The *critical sequence* has an important role in the proof: Definition

$$\kappa_0 = crit(j), \ \kappa_{n+1} = j(\kappa_n), \ \lambda = \sup_{n \in \omega} \kappa_n.$$

Kunen's proof uses a choice function that is in $V_{\lambda+2}$. So

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Corollary

There is no $j: V_{\eta} \prec V_{\eta}$, with $\eta \ge \lambda + 2$.

> Vincenzo Dimonte

Theorem (Kunen, 1971)

If $j: V \prec M$, then $M \neq V$.

The *critical sequence* has an important role in the proof: Definition

$$\kappa_0 = crit(j), \ \kappa_{n+1} = j(\kappa_n), \ \lambda = \sup_{n \in \omega} \kappa_n.$$

Kunen's proof uses a choice function that is in $V_{\lambda+2}$. So

Corollary

There is no $j: V_{\eta} \prec V_{\eta}$, with $\eta \geq \lambda + 2$.

This leaves room for a new breed of large cardinal hypotheses:

Vincenzo Dimonte

Definition

I3 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

Rank-to-rank hypotheses and the failure of GCH

> Vincenzo Dimonte

I3 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Rank-to-rank hypotheses

and the failure

Vincenzo Dimonte 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

Rank-to-rank hypotheses and the failure of GCH

> Vincenzo Dimonte

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a

 $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1}), \text{ with } \operatorname{crt}(j) < \lambda$

What are the immediate consequences of this hypotheses?

Rank-to-rank hypotheses and the failure of GCH

> Vincenzo Dimonte

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a

 $j: L(V_{\lambda+1}) \prec L(V_{\lambda+1}), \text{ with } \operatorname{crt}(j) < \lambda$

What are the immediate consequences of this hypotheses?

• λ is the supremum of $\langle \kappa_i : i \in \omega \rangle$

Rank-to-rank hypotheses

and the failure

Vincenzo Dimonte 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$

What are the immediate consequences of this hypotheses?

- λ is the supremum of $\langle \kappa_i : i \in \omega \rangle$
- κ_i are pretty large cardinals (*n*-huge for every *n*, so measurable...)

Rank-to-rank hypotheses and the failure of GCH

> Vincenzo Dimonte

13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $\operatorname{crt}(j) < \lambda$

What are the immediate consequences of this hypotheses?

- λ is the supremum of $\langle \kappa_i : i \in \omega \rangle$
- κ_i are pretty large cardinals (*n*-huge for every *n*, so measurable...)

•
$$V_{\kappa_0} \prec V_{\lambda}$$
, so $V_{\lambda} \vDash \mathsf{ZFC}$
Definition

Rank-to-rank hypotheses

and the failure

Vincenzo Dimonte 13 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$

What are the immediate consequences of this hypotheses?

- λ is the supremum of $\langle \kappa_i : i \in \omega \rangle$
- κ_i are pretty large cardinals (*n*-huge for every *n*, so measurable...)
- $V_{\kappa_0} \prec V_{\lambda}$, so $V_{\lambda} \vDash \mathsf{ZFC}$
- I0 is incompatible with $L(V_{\lambda+1}) \models AC$

Definition

Rank-to-rank hypotheses

and the failure of GCH

> Vincenzo Dimonte

I3 iff there exists λ s.t. $\exists j : V_{\lambda} \prec V_{\lambda}$;

12 iff there exists λ s.t. $\exists j : V \prec M$, with $V_{\lambda} \subseteq M$ and λ is the supremum of the critical sequence;

I1 iff there exists λ s.t. $\exists j : V_{\lambda+1} \prec V_{\lambda+1}$.

10 For some λ there exists a $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$, with $crt(j) < \lambda$

What are the immediate consequences of this hypotheses?

- λ is the supremum of $\langle \kappa_i : i \in \omega \rangle$
- κ_i are pretty large cardinals (*n*-huge for every *n*, so measurable...)
- $V_{\kappa_0} \prec V_{\lambda}$, so $V_{\lambda} \vDash \mathsf{ZFC}$
- I0 is incompatible with $L(V_{\lambda+1}) \models AC$
- under IO $L(V_{\lambda+1})$ is similar to $L(\mathbb{R})$ under AD.

Rank-to-rank
hypotheses
and the failure
of GCH

Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Rank-to-rank
hypotheses
and the failure
of GCH

Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Notation problem: what is the large cardinal?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Notation problem: what *is* the large cardinal? Usually it is the critical point of the elementary embedding

> Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Notation problem: what *is* the large cardinal? Usually it is the critical point of the elementary embedding But in this case it is not unique

> Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Notation problem: what *is* the large cardinal? Usually it is the critical point of the elementary embedding But in this case it is not unique: let $j: V_{\lambda} \prec V_{\lambda}$, then $j(j) = \bigcup_{n \in \omega} j(j \cap V_{\kappa_n})$ is an elementary embedding. $\operatorname{crt}(j(j)) = \kappa_1$.

> Vincenzo Dimonte

Remark

j is always determined by $j \upharpoonright V_{\lambda}$.

Notation problem: what *is* the large cardinal? Usually it is the critical point of the elementary embedding But in this case it is not unique: let $j : V_{\lambda} \prec V_{\lambda}$, then $j(j) = \bigcup_{n \in \omega} j(j \cap V_{\kappa_n})$ is an elementary embedding. $\operatorname{crt}(j(j)) = \kappa_1$. So, we can think of λ as a large cardinal. But it is singular.

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$.

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$. Then j lifts to $j^* : M[G] \prec M[G]$.

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$. Then j lifts to $j^* : M[G] \prec M[G]$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

We can divide the ordinals in three parts:

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$. Then j lifts to $j^* : M[G] \prec M[G]$.

We can divide the ordinals in three parts:

• $[0, \kappa_0)$ if a forcing is in V_{κ_0} , then j will lift;

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$. Then j lifts to $j^* : M[G] \prec M[G]$.

We can divide the ordinals in three parts:

- $[0, \kappa_0)$ if a forcing is in V_{κ_0} , then j will lift;
- (λ, ∞) if a forcing doesn't add subsets of V_{λ} , then j will lift;

> Vincenzo Dimonte

Reminder: lifting lemma

Lifting Lemma

Assume $j : M \prec M$ is an elementary embedding between models of ZF, G is M-generic for a poset $\mathbb{P} \in M$, and j " $G \subseteq G$. Then j lifts to $j^* : M[G] \prec M[G]$.

We can divide the ordinals in three parts:

- $[0, \kappa_0)$ if a forcing is in V_{κ_0} , then j will lift;
- (λ, ∞) if a forcing doesn't add subsets of V_{λ} , then j will lift;
- $[\kappa_0, \lambda]$ this is the sensitive part.

> Vincenzo Dimonte

Theorem (Hamkins, 1994) Con(I1+GCH)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

> Vincenzo Dimonte

Theorem (Hamkins, 1994)

Con(I1+GCH)

Theorem (Friedman, 2007)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Con(I2+GCH)

> Vincenzo Dimonte

```
Theorem (Hamkins, 1994)
Con(I1+GCH)
Theorem (Friedman, 2007)
Con(I2+GCH)
Theorem (Corazza, 2007)
Con(I3+GCH)
```

```
Rank-to-rank
hypotheses
and the failure
of GCH
```

Vincenzo Dimonte

Theorem (Hamkins, 1994)	
Con(I1+GCH)	
Theorem (Friedman, 2007)	
Con(I2+GCH)	
Theorem (Corazza, 2007)	
Con(I3+GCH)	
New Theorem!	

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$.

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$. This can be done because the conditions are few (λ -smallness)

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$. This can be done because the conditions are few (λ -smallness), so the images of the conditions are few

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$. This can be done because the conditions are few (λ -smallness), so the images of the conditions are few and therefore one can find a condition below all of them (directed closure).

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$. This can be done because the conditions are few (λ -smallness), so the images of the conditions are few and therefore one can find a condition below all of them (directed closure). By the lifting lemma j lifts to $V_{\lambda+1}[G]$, $L(V_{\lambda+1})[G]$.

Vincenzo Dimonte

The key result here is:

Theorem

If j witnesses I^{*} and G is generic for a definable, directed closed, λ -small, reverse Easton iteration of length λ , then j lifts.

Sketch of proof for I1, I0.

We construct a condition q such that $q \Vdash p \in \dot{G} \rightarrow j(p) \in \dot{G}$. This can be done because the conditions are few $(\lambda$ -smallness), so the images of the conditions are few and therefore one can find a condition below all of them (directed closure). By the lifting lemma j lifts to $V_{\lambda+1}[G]$, $L(V_{\lambda+1})[G]$. Now $V_{\lambda+1}[G] = V[G]_{\lambda+1}$ and $L(V[G]_{\lambda+1}) \subseteq L(V_{\lambda+1})[G]$.

> Vincenzo Dimonte

We are focused on the power function, but the same key result can be used to prove other consistencies, like \Diamond_{κ} for all κ regulars, V = HOD, etc...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> Vincenzo Dimonte

We are focused on the power function, but the same key result can be used to prove other consistencies, like \Diamond_{κ} for all κ regulars, V = HOD, etc... What about singular cardinals?

> Vincenzo Dimonte

We are focused on the power function, but the same key result can be used to prove other consistencies, like \Diamond_{κ} for all κ regulars, V = HOD, etc... What about singular cardinals? Solovay restricts us

> Vincenzo Dimonte

We are focused on the power function, but the same key result can be used to prove other consistencies, like \Diamond_{κ} for all κ regulars, V = HOD, etc... What about singular cardinals?

Solovay restricts us: κ_0 is strongly compact in V_{λ} , so the strong limit singulars satisfy GCH co-boundedly in κ_0 (and κ_1 , κ_2 , ...).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

> Vincenzo Dimonte

> > So we will talk about λ .

> Vincenzo Dimonte

> > So we will talk about λ .

The problem is that when we add, by forcing, many subsets of V_{λ} , (more than $|V_{\lambda+1}|$), we cannot possibly have $V_{\lambda+1}[G] = V[G]_{\lambda+1}$.

> Vincenzo Dimonte

> > So we will talk about λ .

The problem is that when we add, by forcing, many subsets of V_{λ} , (more than $|V_{\lambda+1}|$), we cannot possibly have $V_{\lambda+1}[G] = V[G]_{\lambda+1}$.

Therefore we change strategy, and we will use deep work by Woodin on I0.

> Vincenzo Dimonte

Generic Absoluteness

Let $j : L(V_{\lambda+1}) \prec L(V_{\lambda+1})$ with $\operatorname{crt}(j) < \lambda$ be a proper elementary embedding. Let (M_{ω}, j_{ω}) be the ω -th iterate of j. Then for all $\alpha < \lambda^+$ there exists an elementary embedding

$$\pi: L_{\alpha}(M_{\omega}[\langle \kappa_i : i \in \omega \rangle] \cap V_{\lambda+1}) \prec L_{\alpha}(V_{\lambda+1})$$

such that $\pi \upharpoonright \lambda$ is the identity.

> Vincenzo Dimonte

What does that mean?
> Vincenzo Dimonte

What does that mean? Woodin

If j witnesses I0, then j is iterable.

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

$$ullet$$
 $j_{0,\omega}(\kappa_0)=\lambda$, so λ is regular and measurable;

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

• $j_{0,\omega}(\kappa_0) = \lambda$, so λ is regular and measurable;

•
$$V_{\lambda} \vDash \mathsf{ZFC}$$
, so $V_{j_{0,\omega}(\lambda)} \cap M_{\omega} \vDash \mathsf{ZFC}$;

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

• $j_{0,\omega}(\kappa_0) = \lambda$, so λ is regular and measurable;

•
$$V_{\lambda} \vDash \mathsf{ZFC}$$
, so $V_{j_{0,\omega}(\lambda)} \cap M_{\omega} \vDash \mathsf{ZFC}$;

• $\langle \kappa_i : i \in \omega \rangle$ is M_{ω} -generic for the Prikry forcing at λ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

• $j_{0,\omega}(\kappa_0) = \lambda$, so λ is regular and measurable;

•
$$V_{\lambda} \vDash \mathsf{ZFC}$$
, so $V_{j_{0,\omega}(\lambda)} \cap M_{\omega} \vDash \mathsf{ZFC}$;

• $\langle \kappa_i : i \in \omega \rangle$ is M_{ω} -generic for the Prikry forcing at λ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Instancies of generic absoluteness:

Let $M_{\omega}[\langle \kappa_i : i \in \omega \rangle] = N$.

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

• $j_{0,\omega}(\kappa_0) = \lambda$, so λ is regular and measurable;

•
$$V_{\lambda} \vDash \mathsf{ZFC}$$
, so $V_{j_{0,\omega}(\lambda)} \cap M_{\omega} \vDash \mathsf{ZFC}$;

• $\langle \kappa_i : i \in \omega \rangle$ is M_{ω} -generic for the Prikry forcing at λ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Instancies of generic absoluteness:

Let $M_{\omega}[\langle \kappa_i : i \in \omega \rangle] = N$. Then

$$N \cap V_{\lambda+1} = (V_{\lambda+1})^N \prec V_{\lambda+1};$$

> Vincenzo Dimonte

What does that mean?

Woodin

If j witnesses I0, then j is iterable.

Remarks:

• $j_{0,\omega}(\kappa_0) = \lambda$, so λ is regular and measurable;

•
$$V_{\lambda} \vDash \mathsf{ZFC}$$
, so $V_{j_{0,\omega}(\lambda)} \cap M_{\omega} \vDash \mathsf{ZFC}$;

• $\langle \kappa_i : i \in \omega \rangle$ is M_{ω} -generic for the Prikry forcing at λ .

Instancies of generic absoluteness:

Let $M_{\omega}[\langle \kappa_i : i \in \omega \rangle] = N$. Then

$$N \cap V_{\lambda+1} = (V_{\lambda+1})^N \prec V_{\lambda+1};$$

• exists $\pi: L_1(N \cap V_{\lambda+1}) = (L_1(V_{\lambda+1}))^N \prec L_1(V_{\lambda+1}).$

> Vincenzo Dimonte

<□ > < @ > < E > < E > E のQ @

> Vincenzo Dimonte

 $L(V_{\lambda+1})$ j $L(V_{\lambda+1})$

> Vincenzo Dimonte

 $L(V_{\lambda+1})$ j $L(V_{\lambda+1})$

÷

> Vincenzo Dimonte

Vincenzo Dimonte

> Vincenzo Dimonte

Vincenzo Dimonte

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Vincenzo Dimonte

> Vincenzo Dimonte

First path.

Fix a j that witnesses I0.

Vincenzo Dimonte

First path.

Fix a j that witnesses I0. If k witnesses I3, then $k \in V_{\lambda+1}$.

Vincenzo Dimonte

First path.

N ⊨ I3.

Fix a j that witnesses I0. If k witnesses I3, then $k \in V_{\lambda+1}$. But $j \upharpoonright V_{\lambda}$ witnesses I3, so

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Vincenzo Dimonte

First path.

```
Fix a j that witnesses IO.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so

N \models I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so

k \in L_1(V_{\lambda+1}).
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Vincenzo Dimonte

First path.

```
Fix a j that witnesses I0.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so N \vDash I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so k \in L_1(V_{\lambda+1}). But j \upharpoonright V_{\lambda+1} witnesses I1, so N \vDash I1.
```

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Vincenzo Dimonte

First path.

```
Fix a j that witnesses I0.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so

N \models I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so

k \in L_1(V_{\lambda+1}). But j \upharpoonright V_{\lambda+1} witnesses I1, so N \models I1.
```

Second path.

We can suppose that for all regulars $2^{\kappa} = \kappa^{++}$, so in particular for κ_0 .

Vincenzo Dimonte

First path.

```
Fix a j that witnesses I0.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so

N \vDash I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so

k \in L_1(V_{\lambda+1}). But j \upharpoonright V_{\lambda+1} witnesses I1, so N \vDash I1.
```

Second path.

We can suppose that for all regulars $2^{\kappa} = \kappa^{++}$, so in particular for κ_0 . Then in M_{ω} we have $2^{\lambda} = \lambda^{++}$.

Vincenzo Dimonte

First path.

```
Fix a j that witnesses I0.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so

N \models I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so

k \in L_1(V_{\lambda+1}). But j \upharpoonright V_{\lambda+1} witnesses I1, so N \models I1.
```

Second path.

We can suppose that for all regulars $2^{\kappa} = \kappa^{++}$, so in particular for κ_0 . Then in M_{ω} we have $2^{\lambda} = \lambda^{++}$. Prikry forcing is very nice: it doesn't add bounded subsets of λ and is λ^+ -cc.

Vincenzo Dimonte

First path.

```
Fix a j that witnesses I0.

If k witnesses I3, then k \in V_{\lambda+1}. But j \upharpoonright V_{\lambda} witnesses I3, so

N \models I3.

If k witnesses I1, then k is definable from k \upharpoonright V_{\lambda}, so

k \in L_1(V_{\lambda+1}). But j \upharpoonright V_{\lambda+1} witnesses I1, so N \models I1.
```

Second path.

We can suppose that for all regulars $2^{\kappa} = \kappa^{++}$, so in particular for κ_0 . Then in M_{ω} we have $2^{\lambda} = \lambda^{++}$. Prikry forcing is very nice: it doesn't add bounded subsets of λ and is λ^+ -cc. Therefore we have $2^{\lambda} = \lambda^{++}$ in N.

> Vincenzo Dimonte

We can use te full power of generic absouluteness and Easton construction to prove:

Complete Theorem

Suppose I0. Then for any $\alpha < \lambda^+$ it is consistent ZFC $+ \exists j : L_{\alpha}(V_{\lambda+1}) \prec L_{\alpha}(V_{\lambda+1}) + \text{everything goes below } \lambda$ (at regulars) and at λ .

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

> Vincenzo Dimonte

We can use te full power of generic absouluteness and Easton construction to prove:

Complete Theorem

Suppose I0. Then for any $\alpha < \lambda^+$ it is consistent ZFC $+ \exists j : L_{\alpha}(V_{\lambda+1}) \prec L_{\alpha}(V_{\lambda+1}) + \text{everything goes below } \lambda$ (at regulars) and at λ .

Example

For any $\delta < \lambda$, we can have $2^{\kappa} = \kappa^{+\delta+1}$.

> Vincenzo Dimonte

> > Is it possible to avoid IO?

Open Questions

Rank-to-rank hypotheses and the failure of GCH

> Vincenzo Dimonte

> > Is it possible to avoid IO?

Is it possible to prove the consistency of $\rm IO$ + everything goes, even using stronger hypotheses

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Open Questions

<□> <圖> < E> < E> E のQ@