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Two possible motivations:

• model-theoretic / combinatorial on the first ω cardinals, or

• ¬AC combinatorics of P(ℵω).

The first is a motivation for the hypothesis.
The second is a motivation for the thesis.
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Definition (Chang’s Conjecture, 1963)

Every model of type (ℵ2,ℵ1) (i.e., the universe has cardinality ℵ2
and there is a predicate of cardinality ℵ1) for a countable language
has an elementary submodel of type (ℵ1,ℵ0).

Notation: (ℵ2,ℵ1) � (ℵ1,ℵ0).

Pretty much, the relationship between ℵ2 and ℵ1 is not that
different from the one between ℵ1 and ℵ0.

Proposition

Chang’s Conjecture → the non-existence of a Kurepa tree.
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What is the consistency strength of Chang’s Conjecture?

Theorem (Silver, 1967)

Con(Ramsey) → Con(Chang’s Conjecture).

Theorem (Rowbottom, 1971)

Chang’s Conjecture → ℵ1 is inaccessible in L.

Theorem (Kunen)

Chang’s Conjecture → 0] (in fact, x ] for all reals x).

Theorem (Silver)

Con(ω1-Erdös) → Con(Chang’s Conjecture).

Theorem (Donder, 1979)

Chang’s Conjecture → ℵ1 is ω1-Erdös in the core model.
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What about (ℵ3,ℵ2) � (ℵ2,ℵ1)?

Theorem (Laver)

Con(huge cardinal)→Con((ℵ3,ℵ2) � (ℵ2,ℵ1)).

Theorem (Schindler)

Con((ℵ3,ℵ2) � (ℵ2,ℵ1))→Con(o(κ) = κ+ω).
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Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ

. This
implies <κM ⊆ M.

Definition (late 60’s)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M

.

Definition (late 60’s)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

Definition (late 60’s)

Let κ and γ be cardinals

. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

Definition (late 60’s)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M

. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

Definition (late 60’s)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact

.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Theorem (Keisler, 1962)

κ is measurable iff there exists j : V ≺ M with crt(j) = κ. This
implies <κM ⊆ M.

Definition (late 60’s)

Let κ and γ be cardinals. Then κ is γ-supercompact iff there is
a j : V ≺ M with crt(j) = κ, γ < j(κ) and γM ⊆ M. If κ is
γ-supercompact for any γ, then κ is supercompact.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is huge iff there is a j : V ≺ M with
crt(j) = κ, j(κ)M ⊆ M.

6 / 24



Introduction Hypothesis Motivation Generic I0 Thesis Motivation

Definition

Let j : V ≺ M with crt(j) = κ. We define the critical sequence
〈κ0, κ1, . . . 〉 as κ0 = κ and j(κn) = κn+1.

Definition (Kunen, 1972)

Let κ be a cardinal. Then κ is n-huge iff there is a j : V ≺ M with
crt(j) = κ, κnM ⊆ M.

Definition (Reinhardt, 1970)

Let κ be a cardinal. Then κ is ω-huge or Reinhardt iff there is
a j : V ≺ M with crt(j) = κ0, λM ⊆ M, with λ = supn∈ω κn.
Equivalently, if there is a j : V ≺ V , with κ = crt(j).
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Theorem (Kunen, 1971)

There is no Reinhardt cardinal

.

Proof

Let Eωλ+ = {α < λ+ : cof(α) = ω}. By Solovay there exists
〈Sξ : ξ < κ〉 a partition of Sω in ω-stationary sets. It’s a quick
calculation that j(λ) = λ and j(λ+) = λ+. Let j(〈Sξ : ξ < κ〉) =
〈Tξ : ξ < κ1〉. C = {α < λ+ : j(α) = α} is an ω-club, therefore
there exists α ∈ C ∩Tκ. Let α ∈ Sξ. Then j(α) = α ∈ Tj(ξ)∩Tκ.
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Large cardinals are really large, but there is a trick to apply their
properties to small cardinals

.
Generic large cardinals are a “virtual” version of large cardinals.

Definition (Jech, Prikry, 1976)

Let κ be a cardinal, I an ideal on P(κ). Then P(κ)/I is a forcing
notion. If G is generic for P(κ)/I , then G is a V -ultrafilter on P(κ)
and there exists j : V ≺ Ult(V ,G ).
I is precipitous iff Ult(V ,G ) is well-founded, and in that case there
exists j : V ≺ M ⊆ V [G ].
We say that κ is a generically measurable cardinal.
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One can extend the definition to all the large cardinals above:
generic γ-supercompact, generic huge, generic n-huge

.
In fact, the Theorem above by Laver is in fact divided in two:

Theorem (Laver)

Con(huge cardinal)→Con(ℵ1 is generic huge cardinal and j(ℵ2) =
ℵ3).

Proposition

If j : V ≺ M ⊆ V [G ], M closed under ℵ3-sequences, crt(j) = ℵ2
and j(ℵ2) = ℵ3, then (ℵ3,ℵ2) � (ℵ2,ℵ1).
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Proof

Suppose not. Let U of type (ℵ3,ℵ2) be a counterexample

. Then
j(U) is of tpye (ℵM3 ,ℵM2 ). But by hugeness j“U is in M, and j ′′U ≺
j(U). Finally, j“U is of type (ℵ3,ℵ2) = (ℵM2 ,ℵM1 ).

In the same way,

Proposition

If j : V ≺ M ⊆ V [G ], M closed under ℵn+1-sequences, crt(j) =
ℵ1 and j(ℵ1) = ℵ2, j(ℵ2) = ℵ3, . . . , then (ℵn+1, . . . ,ℵ2,ℵ1) �
(ℵn, . . . ,ℵ1,ℵ0).
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Definition

κ is Jónsson iff every structure for a countable language with domain
of cardinality κ has a proper elementary substructure with domain
of the same cardinality

.

Then ℵω is Jónsson is (. . . ,ℵ2,ℵ1)→ (. . . ,ℵ1,ℵ0).

Open Problem

What about Con(ℵω is Jónsson)?

There is no ω-huge (and Shelah proved there is no generic
ω-huge)! What can we do?
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Kunen proved in fact ¬∃j : Vλ+2 ≺ Vλ+2

. This leaves space for
the following definitions:

Definition

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : Vλ+1 ≺1 Vλ+1;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1;

I0 For some λ there exists a
j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ.

With the ”right“ forcing, generic I* implies ℵω is Jónsson.
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Disclaimer: it is still not clear how strong this is

:

Theorem (Foreman,1982)

Con(2-huge cardinal)→Con(ℵ1 is generic 2-huge cardinal and . . . ).

Open Problem

What about Con(ℵ1 is generic 3-huge cardinal and . . . )?
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Definition (GCH)

Generic I0 at ℵω is true

if there exists a forcing notion P such that
for any generic G there exists j : L(P(ℵω)) ≺ L(P(ℵω))V [G ] and P
is reasonable.

Examples: P = Coll(ℵ3,ℵ2), P = product of Pn, where
Pn = Coll(ℵn+3,ℵn + 2).
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Definition

Θ = sup{α : ∃π : P(ℵω) � α, π ∈ L(P(ℵω))

.

Theorem

Suppose generic I0 at ℵω. Then in L(P(ℵω)):

1. ℵω+1 is measurable;

2. Θ is weakly inaccessible;

3. Θ is limit of measurable cardinals.

Confront this with:
Theorem (Shelah)

If ℵω is strong limit, then 2ℵ0 < ℵω4 .

(From now on, let’s suppose crt(j) = ℵ2 and j(ℵ2) = ℵ3).
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Proof of (1)

It is practically the same proof as Kunen’s Theorem

. Suppose
〈Sξ : ξ < ℵ2〉 is an ω-stationary partition. Now, j � Lα(P) ∈
L(P(ℵω))[G ], so C = {α < ℵω+1 : j(α) = α} ∈ L(P(ℵω))[G ]. As
before, then there exists α ∈ Tξ ∩ Tℵ2 .
In L(P(ℵω)) we have some choice, namely DCℵω ...
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For points (2) and (3) we need more choice than DCℵω

:

Coding Lemma

∀η < Θ∀ρ : P(ℵω) � η ∃γ < Θ ∀A ⊆ P(ℵω) ∃B ⊆ P(ℵω) B ∈
Lγ(P(ℵω)) B ⊆ A and {ρ(a) : a ∈ B} = {ρ(a) : a ∈ A}.
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Proof of (2)

One has to prove that if there exists ρ : P(ℵω) � α, then there
exists π : P(ℵω) � P(α)

. Let A ⊆ α, and consider {a : ρ(a) ∈ A}.
Apply the Coding Lemma to this, to find B ∈ Lγ(P(ℵω)) such that
{ρ(a) : a ∈ B} = A. Therefore P(α) ⊆ Lγ(P(ℵω)).

Proof of (3)

The measurable cardinals will be the first γ’s such that
Lγ(P(ℵω)) ≺1 L(P(ℵω)) above a fixed point. Prove the Coding
Lemma inside Lγ(P(ℵω)). One can prove, as before, that the ω-club
filter on γ is ℵω+1-complete. Change the filter with the ω-club filter
generated by the fixed points of k : N ≺ P(ℵω). Pick 〈Aξ : ξ < γ〉
and choose inside each one the sets of fixed points that witness the
non-empty intersection.
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Having just ℵω+1 measurable is nothing new

:

Theorem (Apter, 1985)

Suppose κ is 2λ-supercompact, with λ measurable. Then there is a
model of ZF+ ℵω+1 is measurable.

It’s the rest that it is interesting:

Definition

Define D(λ) as the following: in L(P(λ)):

1. λ+ is measurable;

2. Θ is a weakly inaccessible limit of measurable cardinals.

Therefore, the Theorem proves that if we have generic I0 at ℵω,
then D(ℵω).
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Notice that if D(λ) is true, then L(P(λ)) 2 AC

. Therefore the
search for D(λ) is a refinement of the the search for L(P(λ)) 2 AC.

Theorem

With enough large cardinals, L(R) � AD, therefore L(P(ω)) 2 AC.
Moreover, D(ω) holds.

For regular cardinals, with forcing one can kill AC, so it is not
interesting.

Theorem (Shelah, 1996)

If λ has uncountable cofinality, then L(P(λ)) � AC, therefore
¬D(λ).

Theorem

In the Mitchell-Steel core model, if λ is singular, then L(P(λ)) � AC.
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Theorem (Woodin)

I0(λ)→ D(λ)

.

Conjecture

In Ultimate L, I0(λ) iff D(λ).

Open Problem

How ”small“ can be λ (uncountable) if D(λ)?

Open Problem

What is the consistency strength of D(λ) with λ uncountable?
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Thanks for your attention.
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