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Abstract

The *-Prikry condition is a property that is similar to the Prikry
condition, and states that for every p ∈ P and for every open dense
D ⊆ P, there are n ∈ ω and q ≤∗ p such that for any r ≤ q with
l(r) = l(q) + n, r ∈ D. We prove this for the tree Prikry forcing and
the long extender Prikry forcing. The exposition is didactic-minded,
and not research-minded.
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1 Introduction

Well, it happened to everybody. One spends weeks to prove, write and check
all the details of a new theorem, and then the referee answers, with all the
possible tact: “I’m sorry, this has already been proven by something else”.
It is hard to accept it, and the first stage of grief is denial. But sometimes
(only sometimes), after all the five stages are passed, one realizes that maybe
all those weeks were not a waste of time, and such an effort can be recycled
in another way. This is what happened to us, and this paper is the fruit of
such recycling.

To understand why we are doing this, let us add more details. The key
notion in this paper is Prikry forcing and its generalizations. Pikry forcing
adds a cofinal ω sequence to a measurable cardinal, and its generalizations
usually add more of such ω-sequences, in different settings. What all this
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forcings have in common is the “Prikry condition”, a property that is funda-
mental in proving the typical characteristics of Prikry forcings (for example
the fact that they do not add bounded sets). For our paper [1], though, we
needed a slight modification of that, sometimes used but never named, and
we called it “*-Prikry condition”. The proof of the *-Prikry condition for
the original Prikry forcing is classic, but the more sophisticated the forcing
is, the more difficult it is to find a proof of the *-Prikry condition for it (and
we are not alone in this, see for example [6] and [7], where they incur in the
same problem). Therefore it was natural for us to write such proofs for the
Gitik-Magidor extender Prikry forcing, Gitik-Sharon diagonal supercompact
Prikry forcing and Neeman diagonal supercompact Prikry forcing.

The referee contested it, and rightly so: the proof for the *-Prikry condi-
tion is in fact very similar to the one for the Prikry condition, therefore the
ten pages of proof had no actual new content, too many pages for a research
paper. And by the way, this is why proofs for the *-Prikry condition are so
elusive: for someone that is well-versed in Prikry forcing, it is very easy to
mentally reconstruct a proof of the *-Prikry condition.

But not everybody is well-versed in Prikry forcing. Moreover, sometimes
even the proof of the Prikry condition is obscure to the uninitiated reader.
This is a problem that often happens in mathematical research: the proof
for the extender Prikry forcing is a more complex form of the proof for the
tree Prikry forcing, that in turn is a more complex form of the proof for the
original Prikry forcing. The expert, in reading the first proof, has clearly in
mind in an intuitive way the ideas used in the second and third proof, and
therefore will not need a pedantic retread of them. But the beginner that
tries to read such a proof will probably get completely confused.

And this is a problem that is here to stay. While mathematical practice
has a well-proven way to indicate to the reader the theorems on which a paper
is based, it has not a way to indicate the techniques and ideas, so papers are
more and more full of “gaps” that are not inteligible to the young student
that just started to research, and that is pushed by the “publish or perish”
environment to go straight to the more recent papers, therefore sometimes
not building the ideas that are necessary to understand them.

So while publishing a research paper on the *-Prikry-condition would be
redundant, we believe there is a space for it as divulgative/educational notes.
We publish here the proof of the *-Prikry condition for tree Prikry forcing
and Gitik-Magidor extender Prikry forcing. In short, we do this for:

• the reader who read our paper [1] and want to know more details;

• the reader who stumbled in a proof of the Prikry condition for the
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Gitik-Magidor extender Prikry forcing, and did not understand some
details;

• the curious reader that wants to know more about Prikry forcing for
no particular reason.

The first author would like to to thank the FWF (Austrian Science Fund)
for its generous support through project M 1514-N25, and the kind hospital-
ity of the Kurt Gödel Research Center, Beijing Normal University and the
Chinese Academy of Sciences. The second author would like to acknowledge
the support through the funding projects NCSF 11321101 and 11401567.

2 Preliminaries

Trees are a typical structure that is investigated in combinatorics. Let α
be an ordinal. For any s ∈ [α]n, lh(s) = n. A tree on α is a subset of
[α]<ω closed under initial segments. If T is a tree, for any s ∈ T , denote
Ts = {t ∈ T : t ⊆ s ∧ s ⊆ t}, SucT (s) = {β ∈ α : ta〈β〉 ∈ T} and finally for
any n ∈ ω, Levn(T ) = {s ∈ T : lh(s) = n}.

3 Prikry and tree Prikry forcing

Prikry forcing is useful because it is a very ”‘delicate”’ forcing [2]: it does not
add bounded subsets of κ, and is κ+-cc, so it does not change the cardinal
structure above κ. In other words, it makes κ singular while changing the
universe at least as possible.

The following is instead the tree Prikry forcing:

Definition 3.1. Let κ be a measurable cardinal. Fix U an ultrafilter on κ.
The tree Prikry forcing P is the set of conditions p = (sp, T

p), where sp is a
finite sequence of ordinals in κ, and T p is a tree of increasing sequences in
κ with stem sp, such that for any t ∈ T p, SucT p(t) ∈ U . We say that p ≤ q
if sp ⊇ sq and T p ⊆ T q. We say that p ≤∗ q if p ≤ q and sp = sq. For any
p ∈ P and t ∈ T p, we write p⊕ t for (t, (T p)t).

The difference between the two forcings is minimal: the only difference is
that standard Prikry forcing uses a normal ultrafilter, while for tree Prikry
forcing normality is not needed. As for the majority of times the ultrafilters
are normal, the two forcing notions are interchangeable, and using one or the
other is a matter of better clarity of the proof.
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At first glance, Prikry forcing does not seem delicate at all, as it is not
even ω-closed. But ≤∗ is actually κ-closed, and the crucial notion that makes
everything work is the Prikry Condition:

Lemma 3.2 (Prikry condition). Let P be a Prikry forcing or a tree Prikry
forcing on κ, and let σ be a statement of the forcing language. Then for any
p ∈ P there exists a q ≤∗ such that q � σ or q 2 σ.

In many cases (obviously in [1], but also in [6], for example), the Prikry
condition is not that useful, but a slight variation actually it is.

Definition 3.3. Let (P,≤,≤∗) be a forcing notion. We say that P satisfies
the *-Prikry condition if:

• there exists a length measure of the conditions of P, i.e. l : P → ω
such that l(1P) = 0 and for any p, q ∈ P, if p ≤ q then l(p) ≥ l(q), and
p ≤∗ q iff l(p) = l(q);

• for every p ∈ P and for every open dense D ⊆ P, there are n ∈ ω and
q ≤∗ p such that for any r ≤ q with l(r) = l(q) + n, r ∈ D.

Such condition is usually satisfied by forcings that satisfy the Prikry con-
dition, and the proof tends to be very similar.

Lemma 3.4. Prikry forcing on κ has the *-Prikry condition.

Proof. It is actually a very well known fact, see for example Lemma 1.13 in
[2]. For completeness, we write the proof here.

Let U be the ultrafilter that generates the Prikry forcing P. For any
p = 〈s, A〉 ∈ P, lh(p) = lh(s). Let p = 〈s, A〉 and D ⊆ P open dense. Let
h : [A]<ω → 2 the partition such that h(t) = 1 iff there exists a C such that
〈sat, C〉 ∈ D. By the Rowbottom Theorem, there exists an B ∈ U that
is homogeneous, i.e., for every n ∈ ω there exist s1, s2 ∈ [B]<ω such that
h(s1) = h(s2). Then, as D is open dense, there must exist an n such that for
any m ≥ n and any t ∈ [B]m h(t) = 1. That is because, by openness of D, if
t ∈ [B]n and h(t) = 1, then for all t′ ∈ [B]<ω h(tat′) = 1, and by homogeneity
this means that if the length of t′ is bigger than n, then h(t′) = 1. Since by
density there exists at least one t such that h(t) = 1, we’re done.

For any t ∈ [B]m, with m > n, let Ct such that 〈sat, Ct〉 ∈ D. Let
C be the diagonal interesection of all the t ∈ [B]m, with m > n, and let
B′ = B ∩ C. Then 〈s, B′〉 witnesses the *-Prikry condition:

The following is the most basic non-immediate example, and the method
used in the proof is also the base for the more sophisticated methods in the
next sections:
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Lemma 3.5. Let κ be a measurable cardinal. Then the tree Prikry forcing
P on κ has the *-Prikry condition.

Proof. Fix U a measure on κ. For any p ∈ P, we define l(p) = lh(sp). The
proof is in three steps:

• in the first claim, we modify the tree T p so that if some condition r ≤ p
is in D, then all the conditions t ≤ p such that sr = st are in D;

• in the second claim, we modify the previous tree, so that if some con-
dition r ≤ p with T s = (T p)s is in D, then all the conditions t ≤ p with
T t = (T p)t and lh(sr) = lh(st) are in D;

• in the third claim, we put the two claims together, and prove the lemma.

Claim 3.6 (First claim). For any D open dense set and for any p ∈ P, there
exists q ≤∗ p such that if there exists r = (sr, T

r) ≤ q (i.e. r ≤∗ q ⊕ sr) such
that r ∈ D, then q ⊕ sr ∈ D.

Proof of claim. We can suppose p = 1P. It is done by induction. Informally,
we consider T 1P , and we restrict it asking at each level whether there is a
possible way to shrink it to reach D: if there is, then we just shrink it;
otherwise we do nothing. More formally:

• if there exists a r ≤∗ 1P such that r ∈ D, then let S0 be T r; otherwise
S0 = T 1P (note that in the first case (〈〉, S0) = r ∈ D);

• if there exists a r ≤ (〈〉, Sn) such that l(sr) = n + 1 and r ∈ D,
then let (Sn+1)sr = (T r)sr ; otherwise (Sn+1)sr = (Sn)sr (note that in
the first case (sr, (Sn+1)sr) = r ∈ D); to complete the definition, let
Sn+1 � [κ]n+1 = Sn � [κ]n+1.

Let S = ∩n∈ωSn and q = (〈〉, S). Then q is as desired: since the n-th level
is changed just in the first n steps, we have that for any s ∈ S of length
n ∈ ω, SucS(s) = ∩m<n SucSm(s) ∈ U , therefore q ∈ P. Let t ≤∗ q ⊕ st, i.e.
st ∈ S and T t ⊆ S, with t ∈ D. Suppose lh(st) = n. Then also st ∈ Sn, as
Sn+1 � [κ]n = Sn � [κ]n, so t ≤ (〈〉, Sn). This means that in the construction
the first case was true, therefore q ⊕ st = (st, Sst) ≤ (st, (Sn+1)st) ∈ D.

Claim 3.7 (Second claim). For any D open dense set and for any p ∈ P,
there exists q ≤∗ p and n ∈ ω such that for any s1, s2 ∈ T q such that
l(s1) = l(s2) = n, (s1, (T

q)s1) ∈ D iff (s2, (T
q)s2) ∈ D.
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Proof. We can still assume p = 1P. Let R = {s ∈ T 1P : p⊕ s ∈ D}.
Informally, we are climbing up level by level, deleting at each level either

the branches that are in R or the ones that are not, so that the sets of
successors are still in U . The first step, then, will be simple: let B0

〈〉 = {δ ∈
SucT 1P (〈〉) : 〈δ〉 ∈ R}. Then either B0

〈〉 or SucT 1P (〈〉) \B0
〈〉 are in U . Call such

A0
〈〉. Then let 〈µ0, . . . , µl〉 ∈ S0 iff µ0 ∈ A0

〈〉.

T 1P

S0

∈ R
/∈ R

Note that in S0, SucS0(〈〉) = SucT 1P (〈〉) ∩ A0
〈〉, while for all s ∈ S0 of

length ≥ 1, SucS0(s) = SucT 1P (s), and the sequences in S0 of length 1 are
either all in R or all outside.

The second step shows more complexity. First, for any 〈µ〉 ∈ S0 we re-
strict its successors so that they are either all in R or all outside R. Therefore
let

B1
〈µ〉 = {δ ∈ SucS0(〈µ〉) : 〈µ, δ〉 ∈ R}

for any 〈µ〉 ∈ SucS0(〈〉). Then either B1
〈µ〉 or SucS0(〈µ〉)\B1

〈µ〉 is in U . Call it

A1
〈µ〉. Now define S1,0 so that 〈µ0, . . . , µl〉 ∈ S1,0 iff µ0 ∈ A0

〈〉 and µ1 ∈ A1
〈µ0〉.

Note that for all s ∈ S1,0 with lh(s) = 1, SucS1
0
(s) = SucS0(s)∩A1

〈s(0)〉, while

if lh(s) 6= 1 then SucS1
0
(s) = SucS0(t).

This is not enough. Singularly, all the 2-sequences that share the same
root are either all in R or all outside, but it can be that all the 2-sequences
that start with µ1 are in R, and all the 2-sequences that start with µ2 ar not
in R. Therefore we must choose only the µ’s that give a consistent result.
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S1,0

S1

Let
B1
〈〉 = {µ ∈ SucS0(〈〉) : SucS1,0(〈µ〉) = B1

〈µ〉},

i.e. the set of µ’s such that for any δ ∈ SucS1,0(〈µ〉), 〈µ, δ〉 ∈ R. Then
either B1

〈〉 or SucS0(〈〉) \ B1
〈〉 is in U . Let A1

〈〉 be it. Now define S1,1 = S1 as

〈µ0, . . . , µl〉 ∈ S1 iff 〈µ0, . . . , µl〉 ∈ S1,0 and µ0 ∈ A1
〈〉. Note that for all s ∈ S1,

if lh(s) = 0 then SucS1(s) = SucS1,0(s)∩A1
〈〉, otherwise SucS1(s) = SucS1,0(s).

The sequences in S1 of length 2 are either all in R or all outside it.
By induction the construction continues level-by-level, each time starting

with Sn+1,0 ⊆ Sn, and then going down to Sn, a tree such that all the n+ 1-
branches are either all in R or all outside it. More technically, suppose Sn is
defined. For all t ∈ Sn, lh(t) = n+ 1, define Bn+1

t = {δ ∈ SucSn(t) : ta〈δ〉 ∈
R}. Then either Bn+1

t or SucSn(t) \ Bn+1
t is in U . Let An+1

t be it. Define
〈µ0, . . . , µl〉 ∈ Sn+1,0 iff 〈µ0, . . . , µl〉 ∈ Sn and µn+1 ∈ An+1

〈µ0,...,µn〉. Note that

for all s ∈ Sn+1,0, lh(s) = n+ 1,

SucSn+1,0(s) = SucSn(s) ∩ An+1
s ,

otherwise SucSn+1,0(s) = SucSn(s).
Let t ∈ Levm S

n+1 and suppose that Sn+1,n−m, Bn+1
s and An+1

s are defined
for all s ∈ Sn+1 with lh(s) = m+ 1. Let

Bn+1
t = {δ ∈ SucSn+1(t) : SucSn+1,n−m(ta〈δ〉) = Bn+1

ta〈δ〉}.

Then either Bn+1
t or SucSn+1(t) \Bn+1

t is in U . Let An+1
t be it.
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Suppose An+1
t is defined for all t ∈ Sn+1 of length m. Then 〈µ0, . . . , µl〉 ∈

Sn+1,n+1−m iff 〈µ0, . . . , µl〉 ∈ Sn+1,n−m and µi ∈ An+1
〈µ0,...,µm〉. Note that for all

s ∈ Sn+1,n+1−m of length n+ 1−m,

SucSn+1,n+1−m(s) = SucSn+1,n−m(s) ∩ An+1
s ,

otherwise SucSn+1,n+1−m(s) = SucSn+1,n−m(s). Call Sn+1,n+1 = Sn+1. Then all
the sequences in Sn+1 of length n+ 1 either are all in R or all outside it.

Now, let S =
⋂
n∈ω S

n. The last remark is sufficient to prove the claim.
We prove that (〈〉, S) ∈ P. It suffices to prove that for any t ∈ S, SucS(t) ∈ U .
So let t ∈ S, lh(t) = n. Then SucS(t) will be modified in the construction of
S only in the stages Sn+1,n with i ∈ ω, therefore

SucS(t) = SucT 1P (t) ∩
⋂
i∈ω

An+it ,

that is a countable intersection of elements of U , and therefore in U .

Claim 3.8 (Third claim). For any p ∈ P and for any D open dense there
exists a p ≤∗ q and an n ∈ ω such that for any t ≤ q with lh(t) = n, t ∈ D.

Proof of claim. Putting the first and second claims together, we have that
for any D dense set in P and for any p ∈ P there exists a q ≤∗ p and a n ∈ ω
such that for all s ∈ T q with lh(s) = n, q ⊕ s ∈ D. Pick a q ≤∗ p as the first
claim and a q′ ≤∗ q as the second claim. By density, there exists a r ≤ q,
r ∈ D. Let n = lh(r). Then by the first claim q⊕ sr ∈ D, and by the second
claim we proved that all the extensions of q of the same length of r are in
D.

4 Extender-based Prikry forcing

Even more problematic to prove is the *-Prikry condition for the extender-
based Prikry forcing, if only for the complexity of the forcing. It was intro-
duced by Gitik and Magidor, and the reader can find an exhaustive descrip-
tion in [2]. The aim of the forcing is to add many Prikry sequences to a strong
enough cardinal, blowing up its power while not changing the power function
below it. This is more difficult than just having λ singular and 2λ > λ+: the
proof for this is to take λ measurable, forcing 2λ > λ+ and then adding a
Prikry sequence to λ. But Dana Scott [5] proved that if λ is measurable and
2λ > λ+, then for a measure one set below λ, 2κ > κ+, therefore this method
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would not give the first failure of GCH on λ. The solution is to exploit the
extender structure of the cardinal to add many Prikry sequences, at the same
time blowing up the power and changing the cofinality.

Definition 4.1. Let κ and γ be cardinal. Then κ is γ-strong iff there is a
j : V ≺M such that crt(j) = κ, γ < j(κ) and Vκ+γ ⊆M .

We write the definition as it is in [2].
Suppose GCH, and let λ be a 2-strong cardinal.
For any α < λ++, define a λ-complete normal ultrafilter on λ as X ∈ Uα iff

α ∈ j(X). For any α, β < λ++, define α ≤E β iff α ≤ β and for some f ∈λ λ,
j(f)(β) = α. Then by a result in [2], 〈λ++,≤〉 is a λ++-directed order, and
there exists 〈παβ : α, β ∈ λ++, α ≤E β〉 such that 〈λ++, 〈Uα : α < λ++〉,≤E〉
is a nice system. There is no need to define a nice system here, the term is
introduced only because the extender-based Prikry forcing is built on a nice
system, the full definition can be found in [2].

Fix a nice system 〈λ++, 〈Uα : α < λ++〉,≤E〉. For any ν < λ and λ < α <
λ++, let us denote πα,0(ν) by να,0. We will write just ν0 when α is obvious.
By a ◦-increasing sequence of ordinals we mean a sequence 〈ν0, . . . , νn〉 of
ordinals below λ such that ν00 < · · · < ν0n. We say that µ is permitted for
〈ν0, . . . , νn〉 iff µ0 > ν0i for all i = 0 . . . n.

Also, choose the system so that if A ∈ Uα, µ0, µ1 ∈ A and µ0
0 < µ0

1, then
|{µ ∈ A : µ0 = µ0

0}| < µ0
1.

Definition 4.2. The set of forcing conditions P consists of all the elements
p of the form

{〈γ, pγ〉|γ ∈ g \ {max(g)}} ∪ {〈max(g), pmax(g), T 〉},

where

1. g ⊆ λ++ of cardinality ≤ λ which has a maximal element according to
≤E and 0 ∈ g.

2. for γ ∈ g, pγ is a finite ◦-increasing sequence of ordinals < λ.

3. T is a tree, with a trunk pmax(g), consisting of ◦-increasing sequences.
All the splittings in T are required to be on sets in Umax(g), i.e., for
every η ∈ T , if η ≥ pmax(g) then the set

SucT (η) = {µ < λ : ηa〈µ〉 ∈ T} ∈ Umax(g).

Also require that for η1 ≥T η2 ≥T pmc, SucT (η1) ⊆ SucT (η2).
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4. For every µ ∈ SucT (pmax(g)), |{γ ∈ g : µ is permitted for pγ}| ≤ µ0.

5. For every γ ∈ g, πmax(g),γ(max(pmax(g))) is not permitted for pγ.

6. πmax(g),0 projects pmax(g) onto p0 (so pmax(g) and p0 are of the same
length).

Let us denote g by supp(p), max(g) by mc(p), T by T p, pmax(g) by pmc

and bas(p) = p � (supp(p) \mc(p)).
A schematization of a condition for the forcing can be drawn like this:

T p

bas(p) supp(p) mc(p)

pmc

Clearly, the picture ignores many elements (especially the π’s), but it’s a
good approximation.

Definition 4.3. Let p, q ∈ P. We say that p extends q and denote this by
p < q iff

1. supp(p) ⊇ supp(q).

2. For every γ ∈ supp(q), pγ is an end-extension of qγ.

3. pmc(q) ∈ T q.

4. For every γ ∈ supp(q),

pγ \ qγ = πmc(q),γ[(p
mc(q) \ qmc(q)) � (lh(pmc) \ (i+ 1))],

where i ∈ dom(pmc(q)) is the largest such that pmc(q)(i) is not permitted
for qγ.

5. πmc(p),mc(q) projects T ppmc into T qqmc.
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6. For every γ ∈ supp(q) and µ ∈ SucT p(p
mc), if µ is permitted for pγ,

then πmc(p),γ(µ) = πmc(q),γ(πmc(p),mc(q)(µ)).

It is something like this:

q p

Definition 4.4. Let p, q ∈ P. We say that p is a direct extension of q and
denot this by p <∗ q iff

1. p < q

2. for every γ ∈ supp(q), pγ = qγ.

It is something like this:

q p

Definition 4.5. Let p ∈ P and t ∈ T ppmc. Then p⊕ t is defined as follows:

1. supp(p⊕ t) = supp(p);

2. (p⊕ t)mc = pmcat;
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3. T p⊕t = {s ∈ T p : s ⊆ (p⊕ t)mc ∨ (p⊕ t)mc ⊆ s};

4. if γ ∈ supp(p),

(p⊕ t)γ = pγaπmc(p),γ[t � (lh(t) \ (iγ + 1))],

where iγ is the largest such that t(i) is not permitted by pγ.

If s = bas(p) for some p ∈ P, α ≥E γ for all γ ∈ supp(p) \ mc(p) and t is
a finite ◦-increasing sequence of ordinals < λ, then s ⊕ (α, t) is defined as
follows:

1. supp(s⊕ t) = supp(s);

2. if γ ∈ supp(s),

(s⊕ t)(γ) = pγaπα,γ[t � (lh(t) \ (iγ + 1))],

where iγ is the largest such that t(i) is not permitted by s(γ).

Note that the previous definition is independent from p, and bas(p ⊕ t) =
bas(p)⊕ (mc(p), pmcat).

A condition in P is therefore a set of finite sequences and T indicating
the possible extensions not only of the last one, but, via projection, of all of
them. Morally, p⊕ t is the largest extension of p that we can have choosing
t (and its projections) as extension:

p p⊕ t

t

Theorem 4.6 (Gitik, Magidor). Let P as above. Then

V P � 2λ = λ++ ∧ ∀κ < λ 2κ = κ+

Proposition 4.7. Let P as above. Then P has the *-Prikry condition.
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Proof. The proof goes through the same three claims as the proof for Lemma
3.5. Suppose that D is a dense open subset of P and p ∈ P. Without loss of
generality, we can assume p = {〈0, 〈〉, TC〉}, where TC is the complete tree
of the increasing finite sequences in λ. Note that in this case any q ∈ P with
qmc = 〈〉 is a direct extension of p. Fix an elementary submodel N of H(ν)
with ν sufficiently large to contain all the relevant information of cardinality
λ+ and closed under λ-sequences of its elements. Pick α < λ++ above all the
elements of N ∩ λ++.

Let T be a tree such that {〈0, 〈〉〉} ∪ {〈α, 〈〉, T 〉} is in P.

Claim 4.8 (First claim). There exists r∪{〈α, 〈〉, S〉}, with S ⊆ T , such that
for every t ∈ S, if for some q, R ∈ N , q ∪ {〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉})⊕ t
and q ∪ {〈α, t, R〉} ∈ D, then (r ∪ {〈α, 〈〉, S〉})⊕ t ∈ D;

It is a way to reduce the task to simpler conditions. If there exists an
extension of r∪{〈α, 〈〉, S〉} that satisfies certain properties and is in D, then
also the immediate estension of r ∪ {〈α, 〈〉, S〉} via t is in D.

In pictures, there exists something like this:

α

TS

r ∪ {〈α, 〈〉, S〉}

such that if there exists something like the blue condition in D

13



α

t

TSR

r ∪ {〈α, 〈〉, S〉} q ∪ {〈α, t, R〉}

then the red condition is also in D:

α

t

TSR

r ∪ {〈α, 〈〉, S〉} (r ∪ {〈α, 〈〉, S〉})⊕ t q ∪ {〈α, t, R〉}

Proof. If there is a r ∈ N and a T ′ ⊆ T such that r ∪ {〈α, 〈〉, T ′〉} ∈ D, then
this satisfies the Lemma.

If not, let A = SucT (〈〉). We shall define by recursion the sequences
〈rµ : µ ∈ A〉 and 〈T µ : µ ∈ A〉, the first one increasing.

Let µ = min(A). If there are an s ∈ N and a T ′ ⊆ T with trunk 〈µ〉
such that s∪ {〈α, 〈µ〉, T ′〉} ∈ D, then set rµ = s and T µ = T ′. Otherwise do
nothing, i.e., rµ = {〈0, 〈〉〉} and T µ = T .

Suppose now that rξ and T ξ are defined for any ξ < µ in A. Let r′′µ =⋃
ξ∈µ∩A rξ and consider r′µ = r′′µ ⊕ (α, 〈µ〉). There are two cases:

1. If there are an s ∈ N and a T ′ ⊆ T such that

D 3 s ∪ {〈α, 〈µ〉, T ′〉} <∗ r′µ ∪ {〈α, 〈µ〉, T 〉},

14



then set rµ = r′′µ ∪ ((s⊕ (α, 〈µ〉)) \ r′µ) and T µ = T ′.

2. Otherwise do nothing, i.e., rµ = r′′µ and T µ = T .

α

µ

r′′µ r′µ
s

α

rµ

Subclaim 4.9. For any γ ∈ supp(r)\ supp(r′′µ), µ is not permitted for (rµ)γ.

Proof of Subclaim. By definition, as if γ is not in supp(r′′µ), it must be in
supp(s⊕ (α, 〈µ〉)), and µ is not permitted for s⊕ (α, 〈µ〉)(γ).

Let s1 =
⋃
µ∈A rµ. We need to trim T to some S1 so that s1∪{〈α, 〈〉, S1〉}

is an element of P.
For i < λ let

Ci =

{
A if there is no µ ∈ A such that µ0 = i;⋂
µ∈A,µ0=i SucTµ(〈µ〉) otherwise.

15



Note that A ∈ Uα, and therefore by our choice of the nice system we have
that for any i ∈ λ, if there is a µ1 ∈ A such that µ0

1 = i, for any µ1 < µ2 ∈ A,
|{µ ∈ A : µ0 = i}| < µ2, so by λ-completeness Ci ∈ Uα. Set A∗ = A∩∆∗i<λCi.
Then for every δ ∈ A∗ and for every µ ∈ A if δ0 < µ0 then µ ∈ SucTµ(〈δ〉).
S1 will be the tree obtained from T by eliminating all the branches that do
not start with µ ∈ A∗, replacing T〈µ〉 with T µ〈µ〉 and intersecting all the levels

with A∗, i.e., 〈δ0, . . . , δn〉 ∈ S1 iff 〈δ0, . . . , δn〉 ∈ T δ0 and ∀i ≤ n, δi ∈ A∗.

Subclaim 4.10. s1 ∪ {α, 〈〉, S1} ∈ P.

Proof of Subclaim. The only non-trivial point is to show condition (4) of the
definition of P, i.e., that for any δ ∈ SucS1(〈〉) = A∗,

|{γ ∈ supp(s1) : δ is permitted for rγ}| ≤ δ0.

Let
Bδ = {γ ∈ supp(s1) : δ is permitted for rγ}.

Since supp(s1) =
⋃
µ∈A supp(rµ), we can divide Bδ in

Bδ,µ = {γ ∈ supp(rµ) : δ is permitted for rγ}.

We can also suppose that µ is such that rµ 6= r′′µ, i.e., µ is a stage that follows
step (1). By Subclaim 4.9 if γ ∈ supp(rµ) \

⋃
ξ∈A supp(rξ), then µ is not

permitted for pγ, so we can restrict the division to Bδ =
⋃
µ∈A,µ0<δ0 Bδ,µ.

Again, by our choice of the nice system, if µ0 < δ0 then there are less then
δ0 other elements ξ ∈ A such that ξ0 = µ0, therefore the former is a union of
≤ δ0 elements.

Now fix a Bµ,δ. Since δ ∈ A∗, by definition of A∗ δ ∈ SucTµ(〈µ〉). Since
s ∪ {〈α, 〈µ〉, T µ〉} ∈ P, by point (4) of the definition of P we have

|{γ ∈ supp(s) : δ is permitted for sγ}| ≤ δ0.

But supp(s) = supp(rµ), and δ is permitted for sγ iff δ is permitted for (rµ)γ,
as either sγ = (rµ)γ, or sγ = (r′′µ⊕〈µ〉)γ, (rµ)γ = (r′′µ)γ and µ is permitted for
(r′′µ)γ, but in the second case δ is trivially permitted both for sγ and (rµ)γ.
Therefore |Bδ| ≤ δ0.

Subclaim 4.11. For every δ ∈ SucS1(〈〉), if for some q, R ∈ N ,

q ∪ {α, 〈δ〉, R} ≤∗ (s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉

and q ∪ {α, 〈δ〉, R} ∈ D, then (s1 ∪ {α, 〈〉, S1})⊕ 〈δ〉 ∈ D.
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Proof of Subclaim. Recall the construction of s1 at the δ-th stage. Since
s1 ⊕ 〈δ〉 � supp(s) = s, we have also that q ∪ {α, 〈δ〉, R} ≤∗ rδ ∪ {〈α, 〈〉, T 〉}
and q∪{α, 〈δ〉, R} ∈ D, therefore the construction at the δ-th stage followed
step (1).

α

(In the picture rδ is black, s1 is black+blue and q is black+blue+red.
This implies that there exists a s such that s ∪ {〈α, 〈δ〉, T δ〉} ∈ D, with

(rδ)
γ =

{
(rξ)

γ if there exists ξ ∈ δ ∩ A, γ ∈ supp(rξ);

sγ otherwise.

By the fact that S1
〈δ〉 ⊆ T δ〈δ〉 and by Subclaim 4.9, this implies that

r ∪ {〈α, 〈〉, S1〉} ⊕ 〈δ〉 ≤∗ s ∪ {〈α, 〈δ〉, T δ〉},

and by density we proved the claim.

Now we climb up the tree, by induction. Suppose that the first n levels
are already defined.

We define rt and T t for any t ∈ Sn of length n + 1, by induction on the
lexicographical order.

Let r′′t = sn ∪
⋃
s<t rt and r′t = r′′t ⊕ (α, t). There are two cases:

1. If there are an s ∈ N and a T ′ ⊆ Sn such that

D 3 s ∪ {〈α, t, T ′〉} <∗ r′t ∪ {〈α, 〈〉, Sn〉} ⊕ t,

then set rt = r′′t ∪ ((s⊕ (α, t)) \ r′t) and T t = T ′.

2. Otherwise do nothing, i.e., rt = r′′t and T t = Sn.

Let sn+1 =
⋃
t∈Levn(Sn) rt.
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Subclaim 4.12. For any γ ∈ supp(sn+1) \ supp(r′′µ), µ is not permitted for
(rµ)γ.

Proof. As before.

For i < λ let

Ci =

{
{t(n) : t ∈ Levn(Sn)} if there is no t ∈ Levn(Sn) such that t(n)0 = i;⋂
t∈Levn(Sn),t(n)0=i SucT t(t) otherwise.

As before, Ci ∈ Uα, we define A∗ = SucSn(〈〉)∩∆∗i<λCi. Let 〈µ0, . . . , µi〉 ∈
Sn+1 iff 〈µ0, . . . , µi〉 ∈ Sn, ∀l ≤ i, µl ∈ A∗ and if i ≥ n, 〈µ0, . . . , µi〉 ∈
T 〈µ0,...,µn−1〉.

Subclaim 4.13. sn+1 ∪ {α, 〈〉, Sn+1} ∈ P.

Proof of Subclaim. The proof is similar to the previous one. In this case, we
split Bδ in the union of

{γ ∈ supp(sn) : δ is permitted for (sn+1)
γ = (sn)γ}

and
Bt,δ = {γ ∈ supp(rt) : δ is permitted for (sn+1)

γ = (rt)
γ},

with t(n)0 < δ0, thanks to Subclaim 4.12. By induction the first one has
≤ δ0 elements, and the rest is as Subclaim 4.10,

Subclaim 4.14. For every t ∈ Sn+1, if for some q, R ∈ N ,

q ∪ {α, t, R} ≤∗ (sn+1 ∪ {α, 〈〉, Sn+1})⊕ t

and q ∪ {α, t, R} ∈ D, then (sn+1 ∪ {α, 〈〉, Sn+1})⊕ t ∈ D.

Proof of Subclaim. As before.

Finally, let r =
⋃
n∈ω sn and S =

⋂
n∈ω S

n. It is in P and satisfies the first
claim.

Claim 4.15 (Second claim). There exists r ∪ {〈α, 〈〉, S∗〉}, with S∗ ⊆ S,
if t1, t2 ∈ S are of the same length, then (r ∪ {〈α, 〈〉, S∗〉}) ⊕ t1 ∈ D iff
(r ∪ {〈α, 〈〉, S∗〉})⊕ t2 ∈ D.
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Proof. The r will be the same of the first claim, so we work only on the
tree S. The proof follows closely the proof of the second claim in Lemma
3.5, but it needs more care because now we require for η1 ≥T η2 ≥T pmc,
SucT (η1) ⊆ SucT (η2). Therefore every time we reduce a level, we reduce also
all the levels above, via an intersection.

Let
R = {t ∈ S : r ∪ {〈α, 〈〉, S〉} ⊕ t ∈ D}.

Therefore we have to find S∗ ⊆ S such that for any t1, t2 ∈ S∗ fo the same
length, t1 ∈ R iff t2 ∈ R.

Let B0
〈〉 = {δ ∈ SucS(〈〉) : t ∈ R}. Then either B0

〈〉 or SucS(〈〉) \ B0
〈〉 are

in Uα. Call such A0
〈〉. Then let 〈µ0, . . . , µl〉 ∈ S0 iff ∀i µi ∈ A0

〈〉. We are

intersecting all the levels of S to A0
〈〉 so that for any η1 ≤S0 η2, SucS0(η2) ⊆

SucS0(η1), and we are going to this this repeatedly without further comment.
Note that for all s ∈ S0, SucS0(s) = SucS(t) ∩ A0

〈〉, and the sequences in S0

of length 1 are either all in R or all outside.
By induction the construction continues level-by-level, each time starting

with Sn+1,0 ⊆ Sn, and then going down to Sn+1, a tree such that all the
n+ 1-branches are either all in R or all outside it. More technically, Suppose
Sn is defined. For all t ∈ Sn, lh(t) = n + 1, define Bn+1

t = {δ ∈ SucSn(t) :
ta〈δ〉 ∈ R}. Then either Bn+1

t or SucSn(t) \ Bn+1
t is in Uα. Let An+1

t be it.
Define 〈µ0, . . . , µl〉 ∈ Sn+1,0 iff 〈µ0, . . . , µl〉 ∈ Sn and ∀i > n µi ∈ An+1

〈µ0,...,µn〉.

Note that for all s ∈ Sn+1,0, lh(s) ≥ n+ 1,

SucSn+1,0(s) = SucSn(s) = ∩An+1
〈s(0),...,s(n)〉.

Let t ∈ Levm S
n+1 and suppose that Sn+1,n−m, Bn+1

s and An+1
s are defined

for all s ∈ Sn+1 with lh(s) = m+ 1. Let

Bn+1
t = {δ ∈ SucSn+1(t) : SucSn+1,n−m(ta〈δ〉) = Bn+1

ta〈δ〉}.

Then either Bn+1
t or SucSn+1(t) \Bn+1

t is in Uα. Let An+1
t be it.

Suppose An+1
t is defined for all t ∈ Sn+1 of length m. Then 〈µ0, . . . , µl〉 ∈

Sn+1,n+1−m iff ∀i ≥ m µi ∈ An+1
〈µ0,...,µm〉. Call Sn+1 = Sn+1,n+1. Note that for

all s ∈ Sn+1,n+1−m of length bigger than m,

SucSn+1,n+1−m(s) = SucSn+1,n−m(s) ∩ An+1
〈s(0),...,s(m)〉

and all the sequences in Sn+1 of length n+ 1 either are all in R or all outside
it.

Now, let S∗ =
⋂
n∈ω S

n. The last remark is sufficent to prove the claim.
We prove that r ∪ {〈α, 〈〉, S∗〉} ∈ P. Since S∗ ⊆ S, and we were careful to
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build it so that SucS∗(t) ⊆ SucS∗(s) when t ⊇ s, it suffices to prove that for
any t ∈ S∗, SucS∗(t) ∈ Uα. So let t ∈ S∗, lh(t) = m. Then SucS(t) will
be modified in the construction of S only in the stages Sn,n−i where i < m,
therefore

SucS∗(t) = SucS(t) ∩
⋂

i≤m,n∈ω

An〈t(0),...,t(i)〉,

that is a countable intersection of elements of Uα, and therefore in Uα.

In the proof of Lemma 3.5, the first and second claims were enough to
prove that if D is a dense open subset of P and p ∈ P, then there is a q <∗ p
and k ∈ ω such that for any t ∈ T qqmc with lh(t) = k, q ⊕ t ∈ D. This needs
more work.

For ease of notation, let us call the previous condition of P, r∪{〈α, 〈〉, S〉}.
This is our q.

q
S

α

We just need to prove that there are s, t, R ∈ N such that

s ∪ {〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉})⊕ t = q ⊕ t

and s ∪ {〈α, t, R〉} ∈ D, and then by the two properties the Lemma is
proved.

Pick some β ∈ N ∩ λ which is ≤E above every element of supp(r). This
is possible since supp(r) ∈ N . Shrink S to a tree S∗ to insure that for every
µ ∈ SucS∗(〈〉) and γ ∈ supp(r), if µ is permitted for rγ, then πα,γ(µ) =
πβ,γ(πα,β(µ)).

Subclaim 4.16. The former is possible.

Proof. For any µ ∈ SucS(〈〉), let

Bµ = {γ ∈ supp(r) : µ is permitted for pγ}.

20



Then we have |Bµ| ≤ µ0. Let 〈ξi : i < λ〉 an enumeration of supp(r) such
that for any µ ∈ SucS(〈〉), Bµ ⊆ {ξi : i < µ0}. For any i < λ, let

Ci = {µ ∈ SucS(〈〉) : πα,ξi(µ) = πβ,ξi(πα,β(µ))}.

Let A∗ = ∆∗i<λCi and let S∗ be the intersection of S with A∗.

Let S∗∗ be the projection of S∗ to β via πα,β. Let r∗ = r ∪ {〈β, 〈〉, S∗∗〉}.

q
S

α

S∗∗

β

S∗

r∗

Then r∗ ∈ N , and since N is an elementary submodel there exists s ∈ N ,
s < r∗ and s ∈ D.

q
S

α

S∗∗

β

S∗

r∗ s

By definition of extension, s(β) ∈ S∗∗, therefore there exists a t ∈ S∗

such that πα,β(t) = s(β). Note also that mc(s) <E α by the choice of N .
Let R be the tree with stem t, derived intersecting S∗t with (π−1α,mc(s))

′′T s and
shrinking, if necessary, in order to insure the equality of projections πα,γ and
πmc(s),γ ◦ πα,mc(s) for the relevant γ’s in supp(s).
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q
S

α

S∗∗

β

S∗

r∗ s

t

R

Then bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉} < s, therefore it is in D. But
we also have

bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉} ≤∗ (r ∪ {〈α, 〈〉, S〉})⊕ t,

t

αr ∪ {〈α, 〈〉, S〉})⊕ t

t

α

R

bas(s) ∪ {〈mc(s), smc〉} ∪ {〈α, t, R〉}

and this proves that there is a q <∗ p and k ∈ ω such that for any t ∈ T qqmc

with lh(t) = k, q ⊕ t ∈ D.
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5 Exercises and open problems

Exercise 1. Prove that the Gitik-Sharon diagonal supercompact Prikry forc-
ing, as defined in [3], has the *-Prikry condition.

Exercise 2. Prove that the Neeman diagonal supercompact Prikry forcing,
as defined in [4], has the *-Prikry condition.

Question 1. Are *-Prikry condition and Prikry condition equivalent?
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