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Main Result: “There exists j : Lλ++ω+1(Vλ+1) ≺ Lλ++ω+1(Vλ+1)” strongly

implies “There exists k : Lλ+(Vλ+1) ≺ Lλ+(Vλ+1)”.

The proof that I0 strongly implies I1 is more or less the same of Σ1
n+2

strongly implies Σ1
n. In fact it is possible to prove even more:

Theorem 0.1 (Laver, [1]). The smallest λ such that there exists j : L1(Vλ+1) ≺
L1(Vλ+1) is bigger than the smallest λ such that there exists j : Vλ+1 ≺ Vλ+1.

Looking back at the proof in Chapter Two, the first step to prove is
reflection:

Lemma 0.2 (Laver, [1]). Let j : L1(Vλ+1) ≺ L1(Vλ+1). For every A,B ⊆ Vλ,
β < crt(j) there exists k : Vλ+1 ≺ Vλ+1, with β < crt(k) < crt(j), such that
k(B) = j(B) and there exists A′ ⊆ Vλ such that k(A′) = A.

Proof. The only detail we should care of is the fact that “j : Vλ+1 ≺ Vλ+1”
must be definable in L1(Vλ+1). But this is true, because the satisfaction
relation in Vλ+1 is definable in L1(Vλ+1), so the proof is, mutatis mutandis,
the same as Lemma 0.25 in Chapter Two.

Proof of Theorem 0.1. The proof follows the same method of Theorem 0.35
in Chapter Two.

Using Lemma 0.2, we build a sequence 〈k0, . . . , kn, . . . 〉 such that ki is Σ1
n

for every n, i.e., ki : Vλ+1 ≺ Vλ+1, and crt(k0) < crt(k1) < · · · < crt(j), such
that there exist li, k0(l0) = j � Vλ and ki+1(li+1) = li. Then K = k0 ◦ k1 ◦ . . .
is a Σ1

ω elementary embedding. Call α = supi∈ω crt(ki), then α < crt(j)
and K : Vα+1 ≺ Vλ+1. Then there exists jα such that K(jα) = j � Vλ, so
jα : Vα+1 ≺ Vα+1.
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Note that in this case there is a fundamental difference between being Σ1
n

for every n and being an elementary embedding from Vλ+1 to itself. Suppose
that we have ji : Vλ+1 ≺ Vλ+1. Then the inverse limit J is not an elementary
embedding from Vλ′+1 to Vλ+1, because the domain of J is just not Vλ′+1.
Consider again the definition of the domain of J : H = {x ∈ Lλ+ : ∃n ∈
ω∀m ≥ n km(x) = x}. Following this definition, for example, λ′ /∈ H,
because it is moved by all ji, while on the other hand λ ∈ H, because it is
never moved. What we can prove with the methods provided, is that the
unique extension of the inverse limits of the ji � Vλ to Vλ′ is an elementary
embedding.

Now that we know there is a gap between I0 and I1, and that we localized
that gap in L1(Vλ+1), we can ask whether this is the only gap, i.e., if there are
other gaps between I0 and L1(Vλ+1. The answer is positive, and the method
is still a generalization of the one in Chapter Two, but first we need to learn
more aboute the sets like Lα(Vλ+1).

Definition 0.3.

ODa = {x : x is definable with parameters from Ord∪a}.

Lemma 0.4. L(Vλ+1) =
⋃
a∈Vλ+1

ODa.

Proof. This is immediate after Lemma 0.37 in Chapter Three

Lemma 0.5. Define HLα(Vλ+1)(X) as the closure of X under partial Skolem
functions. Then

HLα(Vλ+1)(X) = {z ∈ Lα(Vλ+1) : z is definable in Lα(Vλ+1)

with parameters in X ∪ Vλ+1}.

Proof. Since the partial Skolem functions are definable, the lemma is true.

Definition 0.6. We say that α is good if every element of Lα(Vλ+1) is de-
finable in Lα(Vλ+1) from parameters in Vλ+1.

Some remarks to give an idea about which ordinals are good.

Remark 0.7. If α is good, then α + 1 is good.

Proof. Let x ∈ Lα+1(Vλ+1). Then there exists a formula ϕ and some a1, . . . , an ∈
Lα(Vλ+1) such that

x = {y ∈ Lα(Vλ+1) : Lα(Vλ+1) � ϕ(a1, . . . , an)}.
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Therefore x is definable in Lα+1(Vλ+1) with parameters Lα(Vλ+1), a1, . . . , an.
First note that since α is good, the ai’s are definable in Lα(Vλ+1) with param-
eters in Vλ+1, then α is definable in Lα+1(Vλ+1) (it is the largest ordinal minus
an initial λ + 1 segment) with λ as parameter, and therefore also Lα(Vλ+1)
is definable in Lα+1(Vλ+1) with λ as parameter. This proves the remark.

Remark 0.8. If β ≤ λ, then β is good.

Proof. We prove it by induction. The successor step is proved in the previous
remark. Suppose β < λ is limit and every ordinal less then β is good. For
every x ∈ Lβ(Vλ+1) there exists α < β such that x ∈ Lα(Vλ+1). As α is
good, x is definable in Lα(Vλ+1) with parameters from Vλ+1, and therefore is
definable in Lβ(Vλ+1) with parameters from Vλ+1 and Lα(Vλ+1) (i.e., α and
λ). Since α is in Vλ+1, the remark is proven.

Remark 0.9. If β ≤ λ+, then β is good.

Proof. The proof is the same as the previous remark, with the added consid-
eration that every ordinal less than λ+ can be coded by a well-ordering of λ,
that is in turn in Vλ+1. Therefore any α < λ+ is definable with parameters
from Vλ+1.

Remark 0.10. There exists an ordinal < Θ that is not good.

Proof. Clearly Θ is not good: define π(〈dϕe, a1, . . . , an〉) as the set definable
in LΘ(Vλ+1) with the formula ϕ using parameters a1, . . . , an ∈ Vλ+1. If Θ
were good, that π would be a surjection from Vλ+1 to LΘ(Vλ+1), and this is
impossible by definition of Θ.

Consider HLΘ(Vλ+1(Vλ+1). Its collapse is a set of the form Lγ(Vλ+1) ≺
LΘ(Vλ+1). As LΘ(Vλ+1) satisfies “there exists x not definable with parameters
from Vλ+1”, Lγ(Vλ+1) satisfies the same, therefore γ is not good.

Note that if α is good, we can say that every element of Lα(Vλ+1) is
definable in Lα(Vλ+1) from one parameter in Vλ+1, because a finite sequence
in Vλ+1 can be coded as an element of Vλ+1. Moreover, α < Θ, because
α good means that Lα(Vλ+1) = HLα(Vλ+1)(Vλ+1) ⊆ HL(Vλ+1)(Vλ+1), and in
L(Vλ+1) there is a surjection from Vλ+1 to HL(Vλ+1)(Vλ+1) itself. Finally, note
that if j : Lα(Vλ+1) ≺ Lα(Vλ+1), then j is univocally induced by j � Vλ.
This recalls the situation in Chapter Three, where it was proved that if
j : L(Vλ+1) ≺ L(Vλ+1) is weakly proper, then it is univocally induced by
j � Vλ. If it is not weakly proper, at least j � LΘ(Vλ+1) is univocally induced
by j � Vλ.

Lemma 0.11. Good ordinals are unbounded in Θ.
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Proof. Note that if there exists a surjection h : Vλ+1 � Lβ(Vλ+1) and h is
definable, then β is good.

Let β0 < Θ. Then there exists a surjection h : Vλ+1 � Lβ0(Vλ+1). Now,
HL(Vλ+1)(Lβ0(Vλ+1)) ≡ L(Vλ+1), so by condensation there exists γ < Θ such
that HL(Vλ+1)(Lβ0(Vλ+1)) = Lγ(Vλ+1). Since Lγ(Vλ+1) ≺ L(Vλ+1), by elemen-
tarity there exists a surjection h : Vλ+1 � Lβ0(Vλ+1), with h ∈ Lγ(Vλ+1).

This proves that

β1 = min{γ : ∃h : Vλ+1 � Lβ0(Vλ+1), h ∈ Lγ(Vλ+1)} < Θ.

Define

A1 = {a ∈ Vλ+1 : ∃h : Vλ+1 � Lβ0(Vλ+1), h ∈ Lβ1(Vλ+1) ∩ODa},

and continue by induction defining

βn+1 = min{γ : ∃h : Vλ+1 � Lβn(Vλ+1), h ∈ Lγ(Vλ+1)}.
An+1 = {a ∈ Vλ+1 : ∃h : Vλ+1 � Lβn(Vλ+1), h ∈ Lβn+1(Vλ+1) ∩ODa},

By DC we choose 〈a1, a2, . . . 〉 such that an ∈ An. Finally, we define hn as
the smallest surjection from Vλ+1 into Lβn(Vλ+1) that is in ODan , with ODan

well-ordered in the standard way.
Let βω =

⋃
n∈ω βn, Since Θ is regular, βω < Θ. Now let h̃ : ω × Vλ+1 �

Lβω(Vλ+1) be defined as h̃(n, x) = hn(x). Then h̃ is definable, so βω is
good.

To implement the method of Chapter Two to this setting, we need to
be able to define j(k), when j, k : Lβ(Vλ+1) ≺ Lβ(Vλ+1). This is less easy
then expected: the most natural definition would be j(k) =

⋃
γ<β j(k �

Lγ(Vλ+1)), but this creates problems. First of all, such definition doesn’t
take in consideration the case when β is a successor ordinal, and moreover
there is the possibility that k � Lγ(Vλ+1) is not an element of Lβ(Vλ+1), and
so it is not in the domain of j.

Definition 0.12. Let j, k : Lβ(Vλ+1) ≺ Lβ(Vλ+1) and suppose that k �
Lγ(Vλ+1) ∈ Lβ(Vλ+1) for cofinallyy γ < β.

• Suppose β = γ + 1. Then j(γ) = k(γ) = γ) and

j(k � Lγ(Vλ+1)) : Lγ(Vλ+1) ≺ Lγ(Vλ+1).

For every x ∈ Lγ+1(Vλ+1), there exist ϕ formula and y1, . . . , yn ∈
Lγ(Vλ+1) such that

x = {y ∈ Lγ(Vλ+1) : Lγ(Vλ+1) � ϕ(y, y1, . . . , yn)}.
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Then define

j(k)(x) = {y ∈ Lγ(Vλ+1) :

Lγ(Vλ+1) � ϕ(y, j(k � Lγ(Vλ+1))(y1), . . . , j(k � Lγ(Vλ+1))(yn)}.

• Suppose β is limit. Then define j(k) =
⋃
γ<β j(k � Lγ(Vλ+1)).

Lemma 0.13. When it is defined, j(k) : Lβ(Vλ+1) ≺ Lβ(Vλ+1).

Proof. • Suppose β = γ+1. Notice that k uniquely extends k � Lγ(Vλ+1),
so we can consider k as a class in Lβ(Vλ+1) defined from the parameter
Lγ(Vλ+1). Then Lβ(Vλ+1) � ∀x ϕ(x)↔ ϕ(k(x)), so

Lβ(Vλ+1) ` ∀ψ∀y1, . . . , yn ∈ Lγ(Vλ+1)

(∀x “x is defined with ψ, y1, . . . , yn”)→ ϕ(x)↔ ϕ(k(x)).

Then

Lβ(Vλ+1) � ∀ψ∀y1, . . . , yn ∈ Lγ(Vλ+1)

(∀x “x is defined with ψ, y1, . . . , yn”∧
∀z “z is defined with ψ, k(y1), . . . , k(yn)”)→ ϕ(x)↔ ϕ(z),

therefore

Lβ(Vλ+1) � ∀ψ∀y1, . . . , yn ∈ Lγ(Vλ+1)

(∀x “x is defined with ψ, y1, . . . , yn”∧
∀z “z is defined with ψ, j(k)(y1), . . . , j(k)(yn)”)→ ϕ(x)↔ ϕ(z),

but z is in fact j(k)(x), so the lemma is proved.

• Suppose β is limit. Let Ak = {γ < β : K � Lγ(Vλ+1) ∈ Lβ(Vλ+1)}.
Then

∀γ ∈ Ak Lβ(Vλ+1) � ∀x ∈ Lγ(Vλ+1) ϕ(x)↔ ϕ(k � Lγ(Vλ+1)(x)),

therefore

∀γ ∈ Ak Lβ(Vλ+1) � ∀γ < β ∀x ∈ Lγ(Vλ+1) ϕ(x)↔ ϕ(j(k � Lγ(Vλ+1))(x))

that, again, is j(k)(x). Since Ak is cofinal in β for every x ∈ Lβ(Vλ+1)
there exists a γ ∈ Ak such that x ∈ Lγ(Vλ+1), so the lemma is proved.
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Note that if β ≤ Θ, the conditions for the definition of j(k) are not
really bounding. If, for example, β is good, then the conditions are satisfied:
consider that

k � Lγ(Vλ+1) = {(x, y) : x ∈ Lγ(Vλ+1),∀ψ∀y ∈ Vλ+1

“x is defined by ψ, y′′ → “y is defined by ψ, k(y)′′},

and as Lγ(Vλ+1) ∈ Lβ(Vλ+1), k � Lγ(Vλ+1) is definable with elements from
Vλ+1, so k � Lγ(Vλ+1) ∈ Lβ(Vλ+1).

This is also true for β that is limit of good ordinals, such as Θ.
Observe that if j : LΘ(Vλ+1) ≺ LΘ(Vλ+1), then for every α < Θ, j �

Lα(Vλ+1) ∈ L(Vλ+1). In fact if β is good, j � Lβ(Vλ+1) ∈ Lj(β)+1(Vλ+1),
because it is definable in Lj(β)(Vλ+1) with parameters β, j � Vλ. If β is
not good, then there exists a β < α < Θ such that α is good, and so
j � Lα(Vλ+1) ∈ L(Vλ+1), but then also j � Lβ(Vλ+1) ∈ L(Vλ+1).

This is in sharp contrast with the fact, noted in Chapter Three, that if
j : L(Vλ+1) ≺ L(Vλ+1) then j � LΘ(Vλ+1) /∈ L(Vλ+1). This is one of the many
indicators of the special role that Θ has in the analysis of I0.

Note also that if j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ , then for every
α < Θ there exists α < β < Θ and k : Lβ(Vλ+1) ≺ Lβ(Vλ+1) such that
k � Lα(Vλ+1) = j � Lα(Vλ+1), but k � Lβ(Vλ+1) 6= j � Lβ(Vλ+1), because
otherwise it would be possible to define j � LΘ(Vλ+1) in L(Vλ+1). Of course,
by the considerations made after Definition 0.6, it is not possible to extend
k to L(Vλ+1).

Let’s go back to the method of inverse limits now. We can summarize it
in five steps:

• fix an elementary embedding j, with the property you want to be
stronger, in this case j : Lβ(Vλ+1) ≺ Lβ(Vλ+1), and also with the prop-
erty that you want to be weaker, in this case being an elementary
embedding from Lα(Vλ+1) to itself, with α < β;

• with some kind of reflection, find another elementary embedding k,
even weaker, such that there exists j1 with k(j1) = j;

• by induction, find ki such that ki(ji+1) = ji;

• prove that the inverse limit of the ki’s, K, is an elementary embedding
enough strong to “recognize” the weaker property;

• then pick j′ such that K(j′) = j as a witness.
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Unfortunately, this method as it is does not work for our case. The prob-
lem is in the fourth point: it is not always the case that K is an elementary
embedding. Pick for example k0, k1, . . . such that ki : Lλ+(Vλ+1) ≺ Lλ+(Vλ+1)
such that λ′ = supi<ω crt(ki) < λ, and let K be their inverse limit. The do-
main of K is

H = {x ∈ Lλ+(Vλ+1) : ∃n ∈ ω∀m ≥ n km(x) = x}.

Note that H is not a Vα anymore, because being a member of H does not
depend exclusively from the rank. But Vλ′ ⊆ H. Now, since λ+ is reg-
ular, for every i ∈ ω the set of fixed points of ki is an ω-club Ci ⊂ λ+.
Then C =

⋂
i∈ω Ci is an ω-club and for every α ∈ C, K(α) = α. Suppose

now that K : H ≺ Lλ+(Vλ+1). Then for every α ∈ C, since Lλ+(Vλ+1) �
“α is a well-order in V ′′λ , we have that H � “α is a well-order in V ′′λ′ , but this
is impossible, because λ′ has less many well-orders respect to λ.

Anyway, not everything is lost. The second point still works in this
setting.

Lemma 0.14 (Woodin [3]). If there exists j : LΘ(Vλ+1) ≺ LΘ(Vλ+1), then
for every β0 < β1 < · · · < βn < Θ and for every x ∈ Lβn(Vλ+1) there exists
an elementary embedding k : Lβn(Vλ+1) ≺ Lβn(Vλ+1) such that for every i
k(βi) = βi and there exists y ∈ Lβn(Vλ+1) such that k(y) = x.

Proof. Let j : LΘ(Vλ+1) ≺ LΘ(Vλ+1) and suppose the lemma is false for n.
Then there are least β0 < · · · < βn such that the lemma is false, i.e.,

∃x ∈ Lβn(Vλ+1) ∀k : Lβn(Vλ+1) ≺ Lβn(Vλ+1)

(∃ik (βi) 6= βi) ∨ (∀y ∈ Lβn(Vλ+1) k(y) 6= x).

If k : Lβn(Vλ+1) ≺ Lβn(Vλ+1) then k ∈ LΘ(Vλ+1), so the definition of the βi’s
is a formula in LΘ(Vλ+1) with λ as a parameter, so j(βi) = βi for all i and

j � Lβn(Vλ+1) : Lβn(Vλ+1) ≺ Lβn(Vλ+1).

Let x ∈ Lβn(Vλ+1) be the witness of the definition of the βi’s. Then by
elementarity

LΘ(Vλ+1) � ∀k : Lβn(Vλ+1) ≺ Lβn(Vλ+1)

(∃ik (βi) 6= βi) ∨ (∀y ∈ Lβn(Vλ+1) k(y) 6= j(x)),

but this is false because j � Lβn(Vλ+1) does not satisfy it.
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Lemma 0.15 (Laver, [2]). Let δ good, β > δ, j : Lβ(Vλ+1) ≺ Lβ(Vλ+1),
x, y ∈ Vλ+1, µ < crt(j). Then there exists a δ′ < δ good, an elementary
embedding k : Vλ+1 ≺ Vλ+1 extendible to a k̂ : Lδ′(Vλ+1) ≺ Lδ(Vλ+1) and a
y′ ∈ Vλ+1 such that k(x) = j(x), k(y′) = y and µ < crt(k) < crt(j).

Proof. Note that “δ is good” is definable in Lβ(Vλ+1), so surely

Lβ(Vλ+1) � δ is good, δ ≤ j(δ), j � Vλ+1 : Vλ+1 ≺ Vλ+1 and it extends to

j : Lδ(Vλ+1) ≺ Lj(δ)(Vλ+1), j(j(x)) = j(j(x)),

j(y) = j(y), µ < crt(j) < j(crt(j)).

With a smart quantification we get

Lβ(Vλ+1) � ∃δ′ δ′ is good, δ′ ≤ j(δ), ∃k k : Vλ+1 ≺ Vλ+1 and it extends to

k̂ : Lδ′(Vλ+1) ≺ Lj(δ)(Vλ+1), k(j(x)) = j(j(x)),

∃y′ ∈ Vλ+1 k(y′) = j(y), µ < crt(k) < j(crt(j)).

Then by elementarity

Lβ(Vλ+1) � ∃δ′ δ′ is good, δ′ ≤ δ, ∃k k : Vλ+1 ≺ Vλ+1 and it extends to

k̂ : Lδ′(Vλ+1) ≺ Lδ(Vλ+1), k(x) = j(x),

∃y′ ∈ Vλ+1 k(y′) = y, µ < crt(k) < crt(j).

Note that if δ is definable in Lβ(Vλ+1), then δ′ = δ. The goodness, here,
is a bonus, not a necessary condition. One can see immediately that the
Lemma works even without goodness (both in the hypotheses and thesis).

So, the only obstacle seems the fact that the inverse limit can be not an
elementary embedding. The trick used to get round this difficulty will be
defining the inverse limit respect to a pwo.

Definition 0.16. Let � be a pwo and a in its domain. Then ‖a‖ = ot ��
{b : b� a} is the norm of a.

Definition 0.17. A � pwo of Vλ+1 is J-projective if it is definable in Vλ+1

with parameters from J ′′Vλ′+1. A � pwo in Vλ+1 is λ-projective iff it is
definable in Vλ+1 with parameters.

From a J-projective pwo �, we construct now a sequence of pwos that
will be the backbone of the construction of the inverse limit.
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Let J = j0 ◦ j1 ◦ . . . , crt(j0) < crt(j1) < · · · < λ, limn∈ω crt(jn) = λ′ < λ,
with j0, j1, · · · : Lβ(Vλ+1) ≺ Lβ(Vλ+1). Call Jn = jn ◦ jn+1 ◦ . . . .

Let � be a J-projective pwo, and fix ϕ and E ∈ Vλ′+1 such that

�= {(x, y) ∈ Vλ+1 : Vλ+1 � ϕ(x, y, J(E))}.

Suppose that the ordertype of � is less then β.
Define

• �n= {(x, y) ∈ Vλ+1 : Vλ+1 � ϕ(x, y, Jn(E))} and let ‖ · ‖n be its
associated norm;

• �λ′= {(x, y) ∈ Vλ′+1 : Vλ′+1 � ϕ(x, y, E)} and let ‖·‖λ′ be its associated
norm.

Lemma 0.18. 1. jn(�n+1) =�n and �n is a pwo of Vλ+1;

2. ∀a, b ∈ Vλ′+1 ∀n ∈ ω a�λ′ b iff Jn(a)�n Jn(b);

3. �λ′ is a pwo of Vλ′+1;

4. ∀a ∈ Vλ+1 ∀n ∈ ω ‖a‖�n+1 = γ iff ‖jn(a)‖n = jn(γ);

5. ‖J(F )‖� = α0 → ∀n ∈ ω ‖Jn(F )‖n = αn, where jn(αn+1) = αn.

Proof. Note that being a pwo is a ∆1
1 property, so if � is a pwo and j is

elementary, one cannot take for granted that j(�) is a pwo.

1. The pwo �n+1 is a member of Lβ(Vλ+1), so it is in the domain of j.
By definition

jn(�n+1) = jn({(x, y) ∈ Vλ+1 : Vλ+1 � ϕ(x, y, Jn+1(E))}) =

= {(x, y) ∈ Vλ+1 : Vλ+1 � ϕ(x, y, jn(Jn+1(E)))}.

But jn ◦ Jn+1 = Jn, so the first part is proved. To prove that �n is a
pwo, we just need to prove that is well-founded, since the rest comes
by elementarity. Suppose A ⊆�n+1 is ill-founded. By DC, we can
find a descending chain C. Naturally C can be coded as an element of
Vλ+1, therefore jn(C) is a descending chain in �n, and j0 ◦ . . . jn(C) is
a descending chain in �, contradiction.

2. Jn is an elementary embedding between Vλ′+1 and Vλ+1, so for all a, b ∈
Vλ′+1 Vλ′+1 � ϕ(a, b, E) iff Vλ+1 � ϕ(Jn(a), Jn(B), Jn(E)}.
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3. Suppose that A ⊆�λ′ is ill-founded, and fix a descending chain C. As
before, C is coded as an element of Vλ′+1, so by (2) J(C) is a descending
chain in �. Contradiction.

4. By elementarity

ot({b ∈ Vλ+1 : b�n+1 a}) = γ iff ot({b ∈ Vλ+1 : b�n jn(a)}) = jn(γ).

5. By the results above:

‖Jn(F )‖�n = ‖jn(Jn+1)(F )‖�n = jn(‖Jn+1(F )‖�n+1).

Let J : Vλ′+1 ≺ Vλ+1, and fix �λ′ and �, pwos respectively on Vλ′+1 and
Vλ+1, such that ∀a, b ∈ Vλ′+1 a �λ′ b iff J(a) � J(b). Suppose a ∈ Vλ′+1 is
such that ‖a‖λ′ = α′ and ‖J(a)‖ = α. We define Ĵ : Lα′(Vλ′+1) → Lα(Vλ+1)
in the following way:

fix an x ∈ Lα′(Vλ′+1). This will be definable with an ordinal γ′ < α′ and
a b ∈ Vλ′+1. Then define J(x) as the element defined by γ = ‖J(E)‖, where
γ′ = ‖E‖λ′ , and J(a). More specifically, if x = {y : ϕ(y, ‖E‖λ′ , a)}, then
Ĵ(x) = {y : ϕ(y, ‖J(E)‖, J(a))}.

It is easy to see that Ĵ ⊇ J and Ĵ � L1(Vλ′+1) is a ∆0-elementary em-
bedding, but beyond that it is difficult to see even if it is a well-defined
function.

Theorem 0.19 (Laver, [2]). Let ji : Lβ(Vλ+1) ≺ Lβ(Vλ+1), with crt(j0) <
crt(j1) < . . . ↑ λ′. Let J be the inverse limit of the elementary embeddings
ji � Vλ+1. Let � a J-projective pwo, with �λ′ the respective pwo in Vλ′+1.
Let a ∈ Vλ′+1 with ‖a‖λ′ = α′ and ‖J(a)‖ = α. If there exists a good ordinal
ρ ≥ α such that ρ + ω ≤ β, then Ĵ : Lα′(Vλ′+1) ≺ Lα(Vλ+1), with Ĵ induced
by J and �.

Proof. Let us fix the notations: �= {(x, y) : Vλ+1 � ϕ(x, y, J(E))}, �λ′=
{(x, y) : Vλ′+1 � ϕ(x, y, E)}, En = Jn(E) and an = Jn(a).

The proof is by induction on α.
Suppose αn = ‖an‖�n . Since by Lemma 0.18 ji(αi+1) = αi, we have

αi ≥ αi+1, so ∃n ∀m ≥ n αn = αm. If αn < α, then by inductive hypothesis
Ĵn : Lα′(Vλ′+1) ≺ Lαn(Vλ+1). It is easy to see that j0 ◦ · · · ◦ jn+1 ◦ Ĵn = Ĵ ,
and so the theorem is proved.

Therefore we can suppose ji(α) = α for every i ∈ ω.
For every γ′ < α′, there exists G ∈ Vλ+1 such that ‖G‖λ′ = γ′. Then by

induction for every γ′ < α′ Ĵγ′ : Lγ′(Vλ′+1) ≺ Lγ(Vλ+1), all the Ĵγ′ agree and
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so is it possible to take the union. If α′ is a limit ordinal, then Ĵ =
⋃
γ′<α′ Ĵγ′ ,

so Ĵ is ∆0. If α′ is a successor, then Ĵ is naturally defined from Ĵγ′ with

γ′ + 1 = α′, and Ĵ is ∆0.
Now we prove by induction on n the following claim:

(*) Let ji : Lβ(Vλ+1) ≺ Lβ(Vλ+1), with crt(j0) < crt(j1) < . . . ↑ λ′. Let
J be the inverse limit of the elementary embeddings ji � Vλ+1. Let � a
J-projective pwo, with �λ′ the respective pwo in Vλ′+1. Let a ∈ Vλ′+1 with
‖a‖λ′ = α′ and ‖J(a)‖ = α. Suppose that ji(α) = α for every i ∈ ω and that
Ĵ : Lα′(Vλ′+1) ≺0 Lα(Vλ+1). If there exists ρ good such that ρ+ n ≤ β, then
Ĵ : Lα′(Vλ′+1) ≺n Lα(Vλ+1), with Ĵ induced by J and �.

Let ρ be the minimum good ordinal such that α ≤ ρ + n + 1 ≤ β. Then
j(ρ) = ρ. Suppose that Ĵ is a Σn-elementary embedding. Then we just need
to prove that if Lα(Vλ+1) � ∃x ϕ′(x, Ĵ(y)) then Lα′(Vλ′+1) � ∃x ϕ′(x, y), with
y ∈ Lα′(Vλ′+1) and ϕ′ a Πn formula. For any element of Lα′(Vλ′+1), there
exist C0, C1 ∈ Vλ′+1 and ϕ formula such that

y = {x : L‖C0‖λ′ (Vλ′+1) � ϕ(x,C1)},

with ‖C0‖λ′ < α′. So let x∗ be a witness for ϕ′, i.e., Lα(Vλ+1) � ϕ′(x∗, Ĵ(y)).
Then, as before, there exist D∗0, D

∗
1 ∈ Vλ+1 and a formula ψ such that

x∗ = {x : L‖D∗0‖(Vλ+1) � ψ(x,D∗1)}.

Using Lemma 0.15 we define ki, D
∗
r,i with r = 0, 1 such that:

• ki : Lρ+n(Vλ+1) ≺ Lρ+n(Vλ+1);

• crt(k0) < crt(j0) < crt(k1) < crt(j1) < . . .

• ki(Ji+1(Cr)) = ji(Ji+1(Cr)), ki(Ji+1(E)) = ji(Ji+1(E));

• ki(D∗r,i+1) = D∗r,i, D
∗
r,0 = D∗r .

The definition is, as always, by induction. Since we are supposing ρ+n+1 ≥
β, we have that ρ + n < β and it is definable in Lβ(Vλ+1), so by Lemma
0.15 there exist ki : Lρ+n(Vλ+1) ≺ Lρ+n(Vλ+1) and D∗r,i+1 ∈ Vλ+1 such
that ki(Ji+1(C0)) = ji(Ji+1(C0)), ki(Ji+1(C1)) = ji(Ji+1(C1)), ki(Ji+1(E)) =
ji(Ji+1(E)), ki(Ji+1(a)) = ji(Ji+1(a)), ki(D

∗
r,i+1) = D∗r,i and crt(ji−1) <

crt(ki) < crt(ji). Now let K be the inverse limit of ki � Vλ+1. Then
sup crt ki = λ′, K(Cr) = J(Cr), K(E) = J(E), K(a) = J(a) (and therefore
� is also K-projective and the respective �λ′ does not change), and there
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exist Dr such that K(Dr) = D∗r . By induction K̂ : Lα′(Vλ+1) ≺n Lα(Vλ+1).
If we define

x = {x : L‖D0‖λ′ (Vλ′+1) � ψ(x,D1)}

then by definition K̂(x) = x∗. Since K(Cr) = J(Cr), it is also true that
K̂(y) = Ĵ(y), so Lα(Vλ+1) � ϕ(K̂(x), K̂(y)). By elementarity we have
Lα′(Vλ′+1) � ϕ(x, y) so Lα′(Vλ′+1) � ∃x ϕ(x, y).

The previous Theorem gives a very precise idea on how much an inverse
limit can be extended, with the only limitation being the fact that α must
be “measured” by some J-projective pwo. How large can α be?

Theorem 0.20 (Woodin [3]). Under I0, the supremum of the lengths of
λ-projective pwos of Vλ+1 is ≥ λ+λ.

But thanks to Theorem 0.15, any λ-projective � can be J-projective,
and this leads to several results.

Theorem 0.21 (Laver, [2]). “There exists j : Lλ++ω+1(Vλ+1) ≺ Lλ++ω+1(Vλ+1)”
strongly implies “There exists k : Lλ+(Vλ+1) ≺ Lλ+(Vλ+1)”.

Proof. Let � be any λ-projective pwo longer than λ+. Let E∗ ∈ Vλ+1 be
the parameter used in its definition, and let a∗ ∈ Vλ+1 such that ‖a∗‖ = λ+.
We construct by Lemma 0.15 k0, k1, · · · : Lλ++ω(Vλ+1) ≺ Lλ++ω(Vλ+1) such
that the inverse limit K of their restrictions to Vλ+1 is such that there exist
E, a, j′ with K(E) = E∗, K(a) = a∗ and K(j′) = j � Vλ. As K(E) = E∗,
� is K-projective. Let ‖a‖λ′ = α′. Since ‖K(a)‖ = ‖a∗‖ = λ+, by Theorem
0.19 K induces a K̂ : Lα′(Vλ′+1) ≺ Lλ+(Vλ+1). But

Lλ+(Vλ+1) � ∀α ∈ Ord ∃ well-ordering of Vλ of order-type α ∧
∧ every well-ordering of Vλ is codified by some α ∈ Ord (1)

therefore Lα′(Vλ′+1) satisfies the same thing and α′ = (λ′)+, so K̂ : L(λ′)+(Vλ′+1) ≺
Lλ+(Vλ+1). Since j(λ+) = λ+, j � Lλ+(Vλ+1) is an elementary embedding in
Lλ+(Vλ+1), i.e.,

Lλ+(Vλ+1) � ∀x1, . . . , xn ∈ Vλ+1 ϕ(x1, . . . , xn)↔ ϕ(j(x1), . . . , j(xn)),

and by elementarity

L(λ′)+(Vλ′+1) � ∀x1, . . . , xn ∈ Vλ′+1 ϕ(x1, . . . , xn)↔ ϕ(j′(x1), . . . , j′(xn)).

Since (λ′)+ is good, this naturally translates as

L(λ′)+(Vλ′+1) � ∀x1, . . . , xn ϕ(x1, . . . , xn)↔ ϕ(j′(x1), . . . , j′(xn)),

i.e., j′ : L(λ′)+(Vλ′+1) ≺ L(λ′)+(Vλ′+1).
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It is worth to note that λ+ has a special role in the proof, but not a
unique one. It is possible to generalize the proof to any ordinal that has the
same properties of λ+ that are used: first, the ordinal must be good; second,
it must be definable enough. The key of the proof is display 1: there exists a
sentence σ such that if Lα(Vλ+1) � σ then α = λ+. We call all such ordinals
uniformly definable. Then:

Corollary 0.22. Let α be a good uniformly definable ordinal. Then “There
exists j : Lα+ω+1(Vλ+1) ≺ Lα+ω+1(Vλ+1)” strongly implies “There exists k :
Lα(Vλ+1) ≺ Lα(Vλ+1)”.

The smallest application of this is with α = n, so “There j : Lω+1(Vλ+1) ≺
Lω+1(Vλ+1)” strongly implies for every n ∈ ω “There exists k : Ln(Vλ+1) ≺
Ln(Vλ+1)”. It is easy to find many other examples of this kind.

Since by Lemma 0.14 also elementary embeddings from LΘ(Vλ+1) to it-
self can be reflected, “There exists j : LΘ(Vλ+1) ≺ LΘ(Vλ+1)” strongly im-
plies for any α good, uniformly definable and λ-projective “There exists
k : Lα(Vλ+1) ≺ Lα(Vλ+1)”

For further results on strong implications of hypothesis between I1 and
I0, see [2].
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