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elementary embedding. A weakly proper elementary embedding depends
only on its behaviour on Vλ.

The next phase in the analysis of the rank-into-rank axioms involves
the scanning of the territory between I1 and I0. This will take the next
chapter, before that we will fix some notion and spend some efforts for a
better understanding for I0.

Definition 0.1. I0 There exists j : L(Vλ+1) ≺ L(Vλ+1) with critical point
less then λ.

The added assumption for the critical point is necessary to put I0 in the
same branch of the other rank-into-rank axioms. If j witness I0, in fact,
j � Vλ+1 witness I1, and so λ is the supremum of the critical sequence.

Note that if I0 is true, then L(Vλ+1) 2 AC, because otherwise we could
use Kunen’s Theroem to prove that there is no elementary embedding.

One of the big peculiarities of I0 is its affinity with AD in L(R) (we’ll se
these in Chapter Five). In fact, this similarities are grounded on some basic
ones between L(Vλ+1) and L(R) themselves.

Lemma 0.2. There exists a definable surjection Φ : Ord× Vλ+1 � L(Vλ+1).

Proof. This is immediate from the theory of relative constructibility.

The first application of this Lemma comes in form of partial Skolem
functions. Since L(Vλ+1) 2 AC, we possibly cannot have Skolem function.
But since by the previous Lemma L(Vλ+1) � V = HODVλ+1

we can define for
every formula ϕ(x, x1, . . . , xn), a ∈ Vλ+1, a1, . . . , an ∈ L(Vλ+1):

hϕ,a(a1, . . . , an) = y where y is the minimum in (ODa)
L(Vλ+1)

such that L(Vλ+1) � ϕ(y, a1, . . . , an).
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These are partial Skolem functions, and the Skolem Hull of a set is its closure
under all the Skolem functions.

Definition 0.3.

Θ
L(Vλ+1)
Vλ+1

= sup{γ : ∃f : Vλ+1 � γ, f ∈ L(Vλ+1)}

In the following, we will call Θ
L(Vλ+1)
Vλ+1

= Θ, because it is a lighter notation
and there is no possibility of misinterpretation.

The role of Θ in L(Vλ+1) is exactly the same of its correspondent in
L(R). In the usual setting, under AC, to measure the largeness of a set we fix
a bijection from this set to a cardinal or, equivalently, the ordertype of a well-
ordering of the set. Since there is no Axiom of Choice in L(Vλ+1), it is not
always possible to define cardinality for sets that are not in Vλ+1 in the usual
way, so to quantify the “largeness” of a subset of Vλ+1 we will not use bijec-
tions, but surjections, or, equivalently, not well-orders, but prewellorderings
(pwo for short).

An order is a pwo if it satisfies antireflexivity, transitivity, and every
subset has a least element; in other words, it is a well-order without the
antisymmetric property. It is easy to see that the counterimage of a surjective
function is a pwo. One can image a pwo as an order whose equivalence classes
are well-ordered, or a well-ordered partition. This creates a strong connection
between subsets of Vλ+1 and ordinals in Θ:

Lemma 0.4. 1. For every α < Θ, there exists in L(Vλ+1) a pwo in Vλ+1

with ordertype α, that is codeable as a subset of Vλ+1;

2. for every Z ⊆ Vλ+1, Z ∈ L(Vλ+1) there exists α < Θ such that Z ∈
Lα(Vλ+1).

Proof. 1. Let ρ : Vλ+1 � α. Then

Rα = {(a, b) ∈ Vλ+1 × Vλ+1 : ρ(a) ≤ ρ(b)}

is a pwo in Vλ+1. Moreover, Vλ+1 × Vλ+1 can be codified as a subset of
Vλ+1, so also Rα can.

2. Let γ be such that Z ∈ Lγ(Vλ+1) and consider HLγ(Vλ+1)(Vλ+1, Z) the
Skolem Hull in Lγ(Vλ+1) of Vλ+1 and Z. Then, sinceHLγ(Vλ+1)(Vλ+1, Z) ∼=
Lγ(Vλ+1), by condensation its collapse X = Lα(Vλ+1) for some α. But
HLγ(Vλ+1)(Vλ+1, Z) is the closure under the Skolem functions, and since
there is a surjection from Vλ+1 to the Skolem functions, this surjection
transfers to HLγ(Vλ+1)(Vλ+1, Z) and to Lα(Vλ+1), so α < Θ. Since Z
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and all its elements are in HLγ(Vλ+1)(Vλ+1, Z), Z is not collapsed and
then Z ∈ Lα(Vλ+1).

Definition 0.5.

DCλ : ∀X ∀F : (X)<λ → P(X) \ ∅ ∃g : λ→ X ∀γ < λ g(γ) ∈ F (g � γ).

Note that this is a generalization of DC, since DC = DCω: we use directly
a function on < λ-sequences instead of considering a binary relation because
binary relations cannot handle the limit stages.

Lemma 0.6. In L(Vλ+1) the following hold:

1. Θ is regular;

2. DCλ.

Proof. 1. We fix a definable surjection Φ : Ord × Vλ+1 � L(Vλ+1). For
every ξ < Θ there is a surjection h : Vλ+1 � ξ. First of all, we choose
one surjection for each ξ: we define t : Θ \ ∅ → Ord, where for every
ξ < Θ, t(ξ) is the least γ such that there exists x ∈ Vλ+1 such that
Φ(γ, x) is a surjection from Vλ+1 to ξ. Then we define

hξ(〈x, y〉) =

{
Φ(t(ξ), x)(y) if Φ(t(ξ), x) is a map in ξ;

∅ else.

We have that hξ : Vλ+1 → ξ is well defined, because 〈x, y〉 is codeable
in Vλ+1, and it is indeed a surjection: by definition there exists x ∈
Vλ+1 such that Φ(t(ξ), x) is a surjection from Vλ+1 to ξ, so for every
β < ξ there exists y ∈ Vλ+1 such that Φ(t(ξ), x)(y) = hξ(〈x, y〉) = β.
Moreover hξ is definable in L(Vλ+1).

Now, suppose that Θ is not regular, i.e., there exists π : α→ Θ cofinal
in Θ with α < Θ. Then we claim that H(〈x, y〉) = hπ◦hα(x)(y) is a
surjection from Vλ+1 to Θ: let β < Θ; then there exists γ < α such
that π(γ) > β and there must exist x ∈ Vλ+1 such that hα(x) = γ;
so π(hα(x)) > β, and there exists y ∈ Vλ+1 such that H(〈x, y〉) =
hπ◦hα(x)(y) = β. Contradiction.

2. We have to prove that

∀X ∀F : (X)<λ → P(X) \ ∅ ∃g : λ→ X ∀γ < λ g(γ) ∈ F (g � γ).
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The proof is through several steps. First of all, DCλ(Vλ+1), that is DCλ
only for X = Vλ+1, is quite obvious, because for every F as above by AC
there exists a g as above in V , but since g is a λ-sequence of elements
in Vλ+1 we have that g is codeable in Vλ+1, so g ∈ L(Vλ+1).

Then we prove DCλ(α× Vλ+1) for every ordinal α. The idea is roughly
to divide F in two parts, and to define g using the minimum operator
for the ordinal part, and DCλ(Vλ+1) for the other part. For every s ∈
(α× Vλ+1)<λ, we define m(s) as the minimum γ such that there exists
x ∈ Vλ+1 such that (γ, x) ∈ F (s). We call π2 : (α×Vλ+1)<λ → (Vλ+1)<λ

the projection. For every t ∈ (Vλ+1)<λ, say t = 〈xξ : ξ < ν〉, we define
c(t) by induction as a sequence in (α× Vλ+1)<λ such that π2(c(t)) ⊆ t:
c(t) = 〈(γξ, xξ) : ξ < ν̄〉, where

γξ = min{γ : (γ, xξ) ∈ F (c(t � ξ))},

so that ν̄ is the smallest one such that there is no γ such that (γ, xν̄) ∈
F (c(t) � ν̄). Let G : (Vλ+1)<λ → P(Vλ+1) \ ∅ defined as

G(t) = {x ∈ Vλ+1 : (m(c(t)), x) ∈ F (c(t))},

then by DCλ(Vλ+1) there exists g : λ→ Vλ+1 such that for every β < λ
g(β) ∈ G(g � β). Now let f : λ→ (α × Vλ+1) be defined by induction,
f(β) = (m(f � β), g(β)). We want to prove that f(β) ∈ F (f � β) for
every β < λ.

We prove by induction that f � β = c(g � β). Suppose that for every
ξ < β, f � ξ = c(g � ξ). By definition c(g � β) = 〈(γξ, g(ξ)) : ξ < β̄〉,
with

γξ = min{γ : (γ, g(ξ)) ∈ F (c(g � ξ))},

so (γξ, g(ξ)) ∈ F (c(g � ξ)). But g(ξ) ∈ G(g � ξ), so by definition of G,

(m(c(g � ξ)), g(ξ)) ∈ F (c(g � ξ)),

therefore γξ = m(c(g � ξ)) and

f(ξ) = (m(f � ξ), g(ξ)) = (m(c(g � ξ)), g(ξ)) = (γξ, g(ξ)) = c(g � β)(ξ).

So f � β = c(g � β) and, since for every ξ, (γξ, g(ξ)) ∈ F (c(g � ξ)),
f(β) ∈ F (f � β).

Finally, let X ∈ L(Vλ+1). Let α be such that Φ′′(α×Vλ+1) ⊇ X, and let
F : (X)<λ → P(X) \ ∅. For every t = 〈(γξ, xξ) : ξ < ν〉 ∈ (α×Vλ+1)<λ,
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we call c(t) = 〈Φ(γξ, xξ) : ξ < ν̄〉 ∈ X<λ, where ν̄ is the minimum such
that Φ(γν̄ , xν̄) /∈ X. Then we define G : (α×Vλ+1)<λ → P(α×Vλ+1)\∅,

G(t) = {(γ, x) : Φ(γ, x) ∈ F (c(t))},

and by DCλ(α × Vλ+1) we find g : λ → (α × Vλ+1) such that g(β) ∈
G(g � β) for every β < λ. Then f = Φ ◦ g is as we wanted, because for
every β < λ, Φ(g(β)) ∈ F (c(g � β)), and as above we can prove that
c(g � β) = f � β.

So we have DCλ(X) for every X ∈ L(Vλ+1), that is exactly DCλ.

Now we have a sufficient understanding of the structure of L(Vλ+1) for
starting a study on its elementary embeddings, that is essential for an analysis
of the hypothesis between I1 and I0.

Fix until the end of the chapter a j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ.
Define

Uj = {X ⊆ Vλ+1 : X ∈ L(Vλ+1), j � Vλ ∈ j(X)}.
Then Uj is a normal non-principal L(Vλ+1)-ultrafilter in Vλ+1, and we can con-
struct the ultraproduct Ult(L(Vλ+1), Uj). Note that for every f, g : Vλ+1 →
L(Vλ+1)

[f ] = [g] iff {x ∈ Vλ+1 : f(x) = g(x)} ∈ Uj
iff j � Vλ ∈ j({x ∈ Vλ+1 : f(x) = g(x)}) =

= {x ∈ Vλ+1 : j(f)(x) = j(g)(x)}
iff j(f)(j � Vλ) = j(g)(j � Vλ),

and in the same way [f ] ∈ [g] iff j(f)(j � Vλ) ∈ j(g)(j � Vλ), so

Ult(L(Vλ+1), Uj) ∼= {j(f)(j � Vλ) : dom f = Vλ+1}.

Let i : L(Vλ+1) → Ult(L(Vλ+1), Uj) be the natural embedding of the ultra-
product, then for every a ∈ L(Vλ+1), i(a) = [ca] corresponds in the equiva-
lence to j(ca)(j � Vλ) = j(a), so we can suppose i = j. Is j an elementary
embedding from L(Vλ+1) to Ult(L(Vλ+1), Uj)? Since we don’t have AC, the
answer is not immediate because we possibly don’t have  Los’ Theorem.

We will prove  Los’ Theorem for this case, and this will imply that j is an
elementary embedding. It is clear that the only real obstacle is to prove that
for every formula ϕ and f1, . . . , fn ∈ L(Vλ+1) such that dom fi = Vλ+1

Ult(L(Vλ+1), Uj) � ∃x ϕ([f1], . . . , [fn])

iff {x ∈ Vλ+1 : L(Vλ+1) � ∃y ϕ(f1(x), . . . , fn(x))} ∈ Uj.
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The direction from left to right is immediate: if [g] witness the left side, then
g(x) witness the right side. For the opposite direction, we need a sort of
Uj-choice, i.e. we need to find a function g such that

{x ∈ Vλ+1 : L(Vλ+1) � ϕ(g(x), f1(x), . . . , fn(x))} ∈ Uj.

We re-formulate this considering f : Vλ+1 → L(Vλ+1) \ ∅,

f(x) = {y ∈ L(Vλ+1) : L(Vλ+1) � ϕ(y, f1(x), . . . , fn(x))}.

Lemma 0.7. Let j : L(Vλ+1) ≺ L(Vλ+1) and Uj as above. Then for every
F : Vλ+1 → L(Vλ+1) \ ∅ there exists H : Vλ+1 → L(Vλ+1) \ ∅ such that
{x ∈ Vλ+1 : H(x) ∈ F (x)} ∈ Uj.

Proof. First we consider the case ∀a ∈ Vλ F (a) ⊆ Vλ+1. We have to define
H such that j(H)(j � Vλ) ∈ j(F )(j � Vλ). Fix a b ∈ j(F )(j � Vλ), and define

H(k) =

{
c if k : Vλ ≺ Vλ, k(k) = j and k(c) = b

0 otherwise

Note that

Kb := {k ∈ Vλ+1 | k : Vλ ≺ Vλ, k(k) = j,∃c k(c) = b} ∈ Uj,

because

j(Kb) = {k ∈ Vλ+1 | k : Vλ ≺ Vλ, k(k) = j(j), ∃c k(c) = j(b)}

and j � Vλ ∈ j(Kb) (with c = b), so {x ∈ Vλ+1 : H(x) 6= ∅} ∈ Uj. Then

j(H)(k) =

{
c if k : Vλ ≺ Vλ, k(k) = j(j) and k(c) = j(b)

0 otherwise

so j(H)(j � Vλ) = b ∈ j(F )(j � Vλ).
For the more general case ∀a ∈ Vλ F (a) ⊆ L(Vλ+1) fix Φ : Ord× Vλ+1 �

L(Vλ+1) definable and define

F̂ (a) = {x ∈ Vλ+1 : ∃γ Φ(γ, x) ∈ F (a)}.

Then there exists Ĥ such that {a ∈ Vλ+1 : Ĥ(a) ∈ F̂ (a)} ∈ Uj. Let γa =

min{γ : Φ(γ, Ĥ(a)) ∈ F (a)}. Therefore H(a) = Φ(γa, Ĥ(a)) is as desired.
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Therefore, calling Z = {j(f)(j � Vλ) : f ∈ L(Vλ+1), dom(F ) = Vλ+1},
j : L(Vλ+1) → Z is an elementary embedding, and Z ∼= L(Vλ+1). Let kU
be the inverse of the collapse of Z. We’ve seen in the proof of the previous
Lemma that for every b ∈ Vλ+1 there exists h such that j(h)(j � Vλ), so
Vλ+1 ⊆ Z and kU : L(Vλ+1) ≺ Z. Moreover, if R is a pwo in Vλ+1, then
R = {a ∈ Vλ+1 : j(a) ∈ j(R)}, and since j(a), j(R) ∈ Z and Vλ+1 ⊆ Z we
have that R is not collapsed, so Θ ⊆ Z and crt(kU) > Θ.

Theorem 0.8 (Woodin, [1]). For every j : L(Vλ+1) ≺ L(Vλ+1) there exist a
L(Vλ+1)-ultrafilter U in Vλ+1 and jU , kU : L(Vλ+1) ≺ L(Vλ+1) such that jU
is the elementary embedding from U , j = jU ◦ kU and j � LΘ(Vλ+1) = jU �
LΘ(Vλ+1).

Definition 0.9. Let j : L(Vλ+1) ≺ L(Vλ+1). We say that j is weakly proper
if j = jU .

Lemma 0.10 (Woodin, [1]). For every j1, j2 : L(Vλ+1) ≺ L(Vλ+1), if j1 �
Vλ = j2 � Vλ then j1 � LΘ(Vλ+1) = j2 � LΘ(Vλ+1).

Proof. We can suppose that j1 and j2 are weakly proper. By the usual
analysis of the ultraproduct, we have that every strong limit cardinal with
cofinality bigger than Θ is a fixed point for j1 and j2, so I = {η : j1(η) =
j2(η) = η} is a proper class. Let M = HL(Vλ+1)(I ∪ Vλ+1). Since Vλ+1 ⊆ M
we have that Θ ⊆M , so k∗, the inverse of the collapse, has domain L(Vλ+1).
If k∗ is not the identity, then crt(k∗) > Θ. But in that case crt(k∗) is a
strong limit cardinal with cofinality bigger than Θ, so crt(k∗) ∈ I, and this
is a contradiction, because I ⊆ ran(k∗) and crt(k∗) /∈ ran(k∗). So k∗ is the
identity and L(Vλ+1) = HL(Vλ+1)(I ∪ Vλ+1).

Therefore every element of LΘ(Vλ+1) is definable with parameters in I ∪
Vλ+1. Let A ∈ L(Vλ+1) ∩ Vλ+2, A = {x ∈ Vλ+1 : L(Vλ+1) � ϕ(η, a)} with
η ∈ I and a ∈ Vλ+1. Then j1(A) = {x ∈ Vλ+1 : L(Vλ+1) � ϕ(j1(η), j1(a))} =
{x ∈ Vλ+1 : L(Vλ+1) � ϕ(η, j2(a))} = j2(A). But every element of LΘ(Vλ+1)
is definable from an ordinal α < Θ and an element of Vλ+1, α is definable
from some pwo in L(Vλ+1) ∩ Vλ+2, so j1 � LΘ(Vλ+1) = j2 � LΘ(Vλ+1).

In other words, we can group together all the elementary embeddings
from L(Vλ+1) to itself depending on their behaviour on Vλ. Between all the
elementary embeddings that share the same j � Vλ, there is one (and only
one) that come from an ultraproduct, and it is the weakly proper one. All
the others are equal on LΘ(Vλ+1), but outside can differ, for example shifting
indiscernibles, if there are any.
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