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I1. When n is odd, than a Σ1
n rank-into-rank elementary embedding is also

Σ1
n+1, but when n is even, the existence of a Σ1

n+1 rank-into-rank elementary
embedding is stricly stronger than the existence of a Σ1

n one.

Remember that I3 is the existence of an elementary embedding j : Vλ ≺
Vλ and I1 of j : Vλ+1 ≺ Vλ+1. Is there a correlation between these two (other
than the trivial implication of I3 from I1)? Are they really two different
axioms, or maybe also I3 implies I1? The question with an affirmative answer
is the first, and in this section will be presented an infinity of axioms between
I3 and I1, all strictly implying one another.

Definition 0.1. Let j : Vλ ≺ Vλ. Define j+ : Vλ+1 → Vλ+1 as

∀A ⊂ Vλ j+(A) =
⋃
β<λ

j(A ∩ Vβ).

While it is not clear whether j+ is an elementary embedding, every ele-
mentary embedding from Vλ+1 to itself is the ‘plus’ of its restriction to Vλ:

Lemma 0.2. If j : Vλ+1 ≺ Vλ+1, then (j � Vλ)+ = j. Thus every j : Vλ+1 ≺
Vλ+1 is defined by its behaviour on Vλ, i.e., for every j, k : Vλ+1 ≺ Vλ+1,

j = k iff j � Vλ = k � Vλ.

Proof. The critical sequence 〈κn : n ∈ ω〉 is a subset of Vλ, so it belongs to
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Vλ+1. But then for every A ⊆ Vλ, {A ∩ Vκn : n ∈ ω} ∈ Vλ+1, so

(j � Vλ)
+(A) =

⋃
n∈ω

(j � Vλ)(A ∩ Vκn)

=
⋃
n∈ω

j(A ∩ Vκn)

= j(
⋃
n∈ω

(A ∩ Vκn))

= j(A).

It is worth noting that there is a strong connection between first-order
formulas in Vλ+1 and second-order formulas in Vλ. In fact, all the elements of
Vλ+1 are subsets of Vλ, so they can be replaced with relation symbols. First
of all, note that since Vλ is closed by finite sequences, all the λ-sequences in
Vλ+1 can be codified as members of Vλ+1.

Lemma 0.3. Let A ∈ Vλ+1 \ Vλ and ϕ(v0, v1, . . . , vn) be a formula. Fix Â a
relation symbol, and define ϕ∗(v1, . . . , vn) in the language of LST expanded
with Â as following:

• for every occurrence of v0, substitute Â;

• for every non-bounded quantified variable x, substitute every occurrence
of x with X, a second-order variable.

Then for every a1, . . . , an ∈ Vλ

Vλ+1 � ϕ(A, a1, . . . , an) iff (Vλ, A) � ϕ∗(a1, . . . , an).

Proof. The proof is by induction on the complexity of ϕ.
If ϕ is atomic, or a conjunction of atomic formulas, the Lemma it’s obvi-

ous.
If ϕ is ∃x ∈ vi ψ(v0, x, v1, . . . , vn), whether i is 0 or not, then Vλ+1 �

ϕ(A, a1, . . . , an) iff there exists c ∈ Vλ+1, c ∈ ai or c ∈ A, such that Vλ+1 �
ψ(A, c, a1, . . . , an) But then c must be in Vλ, and by induction we have that
this happens iff (Vλ, A) � ψ∗(c, a1, . . . , an), that is (Vλ, A) � ϕ∗(a1, . . . , an).

If ϕ is ∀x ∈ vi ψ(v0, x, v1, . . . , vn), then suppose that (Vλ, A) � ϕ∗(a1, . . . , an)
and fix b ∈ ai or b ∈ A (depending on whether i is 0 or not). Therefore
(Vλ, A) � ψ∗(b, a1, . . . , an) and by induction Vλ+1 � ψ(A, b, a1, . . . , an). Since
this it’s true for every b ∈ ai, Vλ+1 � ϕ(A, a1, . . . , an).
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If ϕ is ∃x ψ(v0, x, v1, . . . , vn), then suppose that Vλ+1 � ϕ(A, a1, . . . , an,
i.e. let C ∈ Vλ+1 such that Vλ+1 � ψ(A,C, a1, . . . , an). By induction
(Vλ, A) � ψ∗(C, a1, . . . , an) (with ψ∗ a second-order formula), so (Vλ, A) �
∃Xϕ∗(X, a1, . . . , an).

The ∀x case is the same as the previous one.

The previous Lemma is a key to clarify the relationship between ele-
mentary embeddings in Vλ and Vλ+1, and to finally prove that j+ is a Σ0

elementary embedding from Vλ+1 to itself (or, alternatively that j is a Σ1
0

elementary embedding from Vλ to itself).

Theorem 0.4. Let j : Vλ ≺ Vλ. Then j+ : Vλ+1 → Vλ+1 is a ∆0-elementary
embedding.

Proof. Let Â be a symbol for an 1-ary relation, â1, . . . , ân symbols for con-
stants and let ϕ be a formula in LST∗, the language of LST expanded with
Â and â1, . . . , ân. We want to prove that

(Vλ, A, a1, . . . , an) � ϕ iff (Vλ, j
+(A), j(a1), . . . , j(an)) � ϕ.

Actually we will prove only one direction for every ϕ, the other one following
by considering ¬ϕ.

First of all, we skolemize ϕ, so we find f1, . . . , fm functions, fi : (Vλ)
mi →

Vλ, such that ϕ is equivalent to a formula ϕ∗ in LST∗ expanded with f̂1, . . . , f̂m,
where ϕ∗ is ∀x1∀x2 . . . ∀xm ϕ′, with ϕ′ a ∆0 formula.

Let t0(x1, . . . , xm), . . . , tp(x1, . . . , xm) be all the terms that are in ϕ′. We
can express as a logical formula the phrase “ti(x1, . . . , xm) exists“: we work
by induction on the tree of the term, writing a conjuction of formulas in this
way

• every time that there is an occurence of a function, i.e. f̂i(t
′), we add

to the formula ∃y fi(t′) = y;

• every time that there is an occurence of a constant, i.e. âi, we add to
the formula âi 6= ∅, if ai 6= ∅; otherwise we don’t write anything.

Then we have that

(Vλ, A, a1, . . . , an, f1, . . . , fm) � ϕ∗ iff

∀δ < λ (Vδ, A ∩ Vδ, a′1, . . . , a′n, f1 ∩ Vδ, . . . , fm ∩ Vδ) �

∀x1, . . . ,∀xm(
∧
i<p

ti(x1, . . . , xm) exists → ϕ′),
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where a′i is ai if ai ∈ Vδ, otherwise is ∅. This is true because, with δ fixed, if
only one term doesn’t exist the formula is satisfied, and if all the terms exist,
then they are a witness for the satisfaction (or not) of ϕ′.

So

(Vλ, A, a1, . . . , an) � ϕ

→ (Vλ, A, a1, . . . , an, f1, . . . , fm) � ϕ∗

→ ∀δ < λ (Vδ, A ∩ Vδ, a′1, . . . , a′n, f1 ∩ Vδ, . . . , fm ∩ Vδ) �

∀x1, . . . ,∀xm (
∧
i<p

ti(x1, . . . , xm) exists → ϕ′)

→ ∀δ < λ (Vδ, j(A ∩ Vδ), j(a′1), . . . , j(a′n), j(f1 ∩ Vδ), . . . , j(fm ∩ Vδ)) �

∀x1, . . . ,∀xm (
∧
i<p

ti(x1, . . . , xm) exists → ϕ′)

→ (Vλ, j
+(A), j(a1), . . . , j(an), j+(f1), . . . , j

+(fm)) � ϕ∗

→ (Vλ, j
+(A), j(a1), . . . , j(an)) � ϕ.

Therefore every j : Vλ ≺ Vλ can be extended to a unique j+ : Vλ+1 → Vλ+1

that is at least a ∆0-elementary embedding. Moreover it is possible to prove

• I3 holds iff for some λ there exists a j : Vλ+1 → Vλ+1 that is a ∆0-
elementary embedding;

• I1 holds iff for some λ there exists a j : Vλ+1 ≺ Vλ+1 that is a Σn-
elementary embedding for every n

Theorem 0.4 implies that if j, k : Vλ ≺ Vλ, then j+(k) : Vλ ≺ Vλ. This
operation between elementary embeddings is called application, and we write
j+(k) = j ·k. Coupled with composition (not to be mistaken to!) they create
an interesting algebra.

Theorem 0.5 (Laver, 1992 [7]). Fix λ and let Eλ = {j : Vλ ≺ Vλ}. For all
j ∈ Eλ:

• The closure of {j} in (Eλ, ·) is the free algebra generated by the law

(Left Distributive Law) i · (j · k) = (i · j) · (i · k).
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• The closure of {j} in (Eλ, ·, ◦) is the free algebra generated by the left
distributive law and the following laws:

i ◦ (j ◦ k) = (i ◦ j) ◦ k
(i ◦ j) · k = i · (j · k)

i · (j ◦ k) = (i · j) ◦ (i · k)

i ◦ j = (i · k) ◦ i.

Moreover Laver proved that the free algebra generated by the laws above
satisfies the word problem. His proof used extensively I3, but later Dehornoy
([1]) managed to prove the same thing in ZFC. A proof of this can be found
in the Handbook of Set Theory [3], Chapter 11.

Another interesting result in I3 regards a function on the integers. Con-
sider j : Vλ ≺ Vλ with critical point κ and let Aj be the closure of j in (Ej, ·).
Then define

f(n) = |{crt(k) : k ∈ Aj, jn(κ) < crt(k) < jn+1(κ)}|.

Then f(0) = f(1) = 0 and f(2) = 1, because the simplest element of Aj
that has a critical point not in the critical sequence of j is ((j · j) · j) · (j · j).
However f(3) is very large. Laver ([8]) proved that for any n, f(n) is finite,
but f dominates the Ackermann function, so f cannot be primitive recursive
([2]).

At last, the possibility of applying an elementary embedding to itself leads
to interesting reflection properties of Vλ:

Lemma 0.6. Suppose j : Vλ ≺ Vλ and let 〈κn : n ∈ ω〉 be its critical sequence.
Then for every n ∈ ω, Vκn ≺ Vλ.

Proof. Since j is the identity on Vκ0 , it is easy to see that Vκ0 ≺ Vκ1 . Consid-
ering j(j), since crt(j(j)) = κ1 and j(j)(κ1) = j(j)(j(κ0)) = j(j(κ0)) = κ2,
we have also that Vκ1 ≺ Vκ2 . We can generalize this to prove that for every
n ∈ ω, Vκn ≺ Vκn+1 . But then 〈(Vκn , idVκn ), n ∈ ω〉 forms a direct system,
whose direct limit is Vλ.

Let’s go back to j and j+. Theorem 0.4 proves that j+ is a ∆0-elementary
embedding, and j+ is a full elementary embedding iff it is a Σn-elementary
embedding for every n. So between I3 and I1 there are many intermediate
steps:
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Definition 0.7 (Σ1
n Elementary Embedding). Let j : Vλ ≺ Vλ. Then j is Σ1

n

iff j+ is a Σn-elementary embedding, i.e., iff for every Σ1
n-formula ϕ(X), for

every A ⊆ Vλ,
Vλ � ϕ(A)↔ ϕ(j+(A)).

It is not clear, however, if these hypothesis are really different. In fact,
this is not true. The following theorems will prove that if n is odd, then j is
Σ1
n iff it is Σ1

n+1.
To prove this we need what is often called the ‘descriptive set theory’ on

Vλ. The fact that λ has cofinality ω and is a strong limit, makes possible to
develop a description of the closed subsets of Vλ as projection of trees similar
to the classic one in descriptive set theory. Fix λ and a critical sequence
〈κ0, κ1, . . . 〉.

Let ϕ(X, Y ) a Σ1
0-formula, namely

∀x0∃y0∀x1∃y1 · · · ·n ψ(X, Y, x0, y0, . . . ).

We define the tree Tϕ(X,Y ). The m-th level of Tϕ(X,Y ) is the set of (a, b, F, P )
such that:

• a, b ⊆ Vκm ;

• F is a partial function : (Vκm)≤n+1 → Vκm such that for all d0, . . . , dn
where F is defined then

ψ(a, b, d0, F (d0), d1, F (d0, d1), . . . );

• P : ((Vκm)≤n+1 \ dom(F ))→ (ω \ (m+ 1)).

We say that (a, b, F, P ) < (a′, b′, F ′, P ′), with the first term in the m-th level
and the second in the m′-th level, when a ⊆ a′, b ⊆ b′, a′∩Vκm = a, b′∩Vκm =

b, F ⊆ F ′, and if P (~d) < m then ~d ∈ dom(F ), otherwise P ′(~d) = P (~d).
Informally, a and b are just the attempts to construct X and Y , F is an

approximation of the Skolem function that would witness the first order part
of ϕ, and P is booking the level in which the elements of Vκm that are not
yet in the dominion of F will be in its extension.

It is clear that if Tϕ(X,Y ) has an infinite branch, the union of the a’s and
b’s will give suitable X and Y , and the F ’s will construct a total Skolem
function (thanks to the P ’s).

Lemma 0.8. Let ϕ(X, Y ) a Σ1
0-formula and B ⊆ Vλ. Then Vλ � ∃X ϕ(X,B)

iff Tϕ(X,B) has an infinite branch.
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The Σ1
2 case is a bit more complex. Fix a B ⊆ Vλ. For every a ⊆ Vκm let

Gm(a) = {(c, F, P ) : (a, c, F, P ) ∈ m-th level of T¬ϕ(X,B,Y )}.

Then the m-th level of Tϕ(X,B) is

{(a,H) : a ⊆ Vκm , H : Gm(a)→ λ+}.

We say that (a,H) < (a′, H ′) when a′∩Vκm and if (a, c, F, P ) < (a′, c′, F ′, P ′),
then H(c, F, P ) > H ′(c′, F ′, P ′).

Lemma 0.9. Let ϕ(X, Y ) a Σ1
0-formula and B ⊆ Vλ. Then Vλ � ∃X∀Y ϕ(X,B)

iff Tϕ(X,B) has an infinite branch.

If Tϕ(X,B) has an infinite branch, with A the union of the a’s in the branch,
then the H’s assure that there are no possible infinite branches in T¬ϕ(A,B,Y )

for every Y ⊂ Vλ, because otherwise it would be possible to build a descend-
ing chain in λ+.

Lemma 0.10. Let j : Vλ ≺ Vλ. Then j is Σ1
1 iff j+ preserves the well-founded

relations.

Proof. ‘Being well-founded’ is a ∆1
1 relation, so if j is Σ1

1 it preserves well-
founded relations. Vice versa, let ϕ(X, Y ) a Σ1

0 formula, B ⊆ Vλ and suppose
that Vλ � ∃Xϕ(X,B). Fix an X ⊆ Vλ such that Vλ � ϕ(X,B). There-
fore by Theorem 0.4 Vλ � ϕ(j+(X), j+(B)) and Vλ � ∃X ϕ(X, j+(B)). If
Vλ � ∀Xϕ(X,B), then T¬ϕ(X,B) is without infinite branches. Fix a well-
ordering R of Vλ, and define the relative Kleene-Brouwer order. There-
fore the Kleene-Brouwer order of T¬ϕ(X,B) is well-founded. But then the
Kleene-Brouwer order relative to j+(R) on T¬ϕ(X,j+(B)) is well-founded. So
Vλ � ∀Xϕ(X, j+(B)).

Definition 0.11 (λ-Ultrafilters Tower). Fix λ and 〈κn : n ∈ ω〉 a cofinal

sequence of regular cardinals in λ. Then ~U = 〈Un : n ∈ ω〉 is a λ-ultrafilters
tower iff for every n ∈ ω, Un is a normal, fine, κ-complete ultrafilter on
[κn+1]

κn, and if m < n then for every A ∈ Um

{x ∈ [κn+1]
κn : x ∩ κm+1 ∈ A} ∈ Un.

A λ-ultrafilters tower is complete if for every sequence 〈Ai ∈ i ∈ ω〉 with
Ai ∈ Ui there exists X ⊆ λ such that for every i ∈ ω, X ∩ κi+1 ∈ Ai.

Lemma 0.12 (Gaifman ([4]), Powell ([11]), 1974). If ~U is a complete λ-
tower, then the direct limit of the ultrapowers Ult(V,Un) is well-founded.
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When j : Vλ ≺ Vλ, it is natural to consider the sequence ~Uj = 〈Un : n ∈ ω〉
defined as

Un = {A ⊆ [κn+1]
κn : j”κn+1 ∈ j(A)}.

Lemma 0.13. If j is Σ1
1, then ~Uj is a complete λ-tower.

Proof. Let 〈Ai : i ∈ ω〉 such that Ai ∈ Ui. Let X = j”λ. Then for every
i ∈ ω, X ∩ κi+2 = j”κi+1 ∈ j+(Ai), so

∃X ⊂ λ∀i ∈ ω X ∩ κi+2 ∈ j+(Ai).

This is a Σ1
1 statement, so by Σ1

1-elementarity ∃X ⊂ λ∀i ∈ ω X ∩ κi+1 ∈
Ai.

Definition 0.14. Let M be a transitive class, with Vλ ⊂ M . Then M is
Σ1
n-correct in λ if for every Σ1

n-formula ϕ(X), for every A ⊆ Vλ and A ∈M ,
(Vλ � ϕ(A))M iff Vλ � ϕ(A).

Theorem 0.15 (Martin ([10])). Let j : Vλ ≺ Vλ. If j is Σ1
1 then Ult(V, ~Uj)

is Σ1
2-correct, therefore j is Σ1

2.

Proof. Consider the direct limit Ult(V, ~Uj) of the ultrapowers Ult(V,Un). By

Lemma 0.12 and Lemma 0.13 Ult(V, ~Uj) is well founded, and it is possible to
collapse it on a model M .

V M0
∼= Ult(V,U0)

j0

M1
∼= Ult(V,U1)

j
1

j01

...

j12

Mn
∼= Ult(V,Un)

j
n

...

M ∼= Ult(V, ~Uj)
i0

i1

i n

By the usual theory of normal ultrafilters, it is possible to prove that the
above diagram commute, that crt(jn) = κ, crt(jn,n+1) = κn, so Vκn ⊂ Mn,
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crt(in) = κn and therefore Vλ ⊂ M . Let i = in ◦ jn for every n. Then
i � Vλ = j, i(λ) = λ and i((λ+)V ) = (λ+)V .

Observe that for every B ⊆ Vλ, B ∈ M we have that (Tϕ(B))
M = Tϕ(B),

so M is Σ1
1-correct in λ. Unfortunately, the same cannot be said to the Σ1

2

case, since it is possible that (Tϕ(X,B,Y ))
M 6= Tϕ(X,B,Y ). The reason for this is

that while it is true that (Gm(a))M = Gm(a) for every m ∈ ω and a ∈ Vκm ,
it is possible that there exists H : Gm(a)→ λ+ with H /∈M .

Claim 0.16. If c ∈ Vλ and F : c→ Ord, then i ◦ F ∈M .

Proof. Let c ∈ Vα, with α < λ, and pick n ∈ ω such that crt(in) > α. Then
i ◦ F = in ◦ jn ◦ F = in(jn ◦ F ) ◦ in � c = in(jn ◦ F ) ∈M .

By Σ1
1 correctness in λ,

(Vλ � ∃X∀Y ϕ(X,B, Y ))M → Vλ � ∃X∀Y ϕ(X,B, Y ),

so it suffices to prove the other direction.
Suppose that (Vλ � ∀X∃Y ¬ϕ(X,B, Y ))M . Then (Tϕ(X,B,Y ))

M is well-

founded. Let L : (Tϕ(X,B,Y ))
M → Ord that witnesses it. Define L̃ : Tϕ(X,B,Y ) →

Ord as L̃((a,H)) = L((a, i◦H)). By the previous claim i◦H ∈M , and more-
over i◦H is a function from Gm(a) to i(λ+) = λ+, so (a, i◦H) ∈ (Tϕ(X,B,Y ))

M

and L̃ is well-defined. It remains to prove that L̃ witnesses that Tϕ(X,B,Y ) is
well-founded. Suppose that (a,H) < (a′, H ′). If in Tϕ(X,B,Y ) we have that
(a, c, F, P ) < (a′, c′, F ′, P ′) then H(c, F, P ) > H ′(c′, F ′, P ′), so

i ◦H(c, F, P ) > i ◦H ′(c′, F ′, P ′),

therefore (a, i ◦H) < (a′, i ◦H ′). It follows that

L((a, i ◦H)) > L((a′, i ◦H ′)),

so L̃((a,H)) > L̃((a′, H ′).
Then Tϕ(X,B,Y ) cannot have an infinite branch and Vλ � ∀X∃Y ¬ϕ(X,B, Y ),

i.e., M is Σ1
2-correct in λ.

This proves that i � Vλ is Σ1
2: if ϕ is Σ1

2 in Vλ and V � ϕ(B), then

by elementarity Ult(V, ~Uj) � ϕ(i(B)), therefore by Σ1
2-correctness also V �

ϕ(i(B)). Since i � Vλ = j we’re done.

This theorem proves that Σ1
1 and Σ1

2 elementary embeddings in Vλ are
the same. It is possible, after a pair of technical lemmas, to generalize this
for Σ1

n and Σ1
n+1.

Lemma 0.17. Let n be odd. Then “j is Σ1
n“ is a Π1

n+1 formula in Vλ, with
j as parameter.
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Proof. By definition j is Σ1
n iff

∀B ⊆ Vλ ∀Σ1
0 formula ϕ(X1, . . . , Xn, Y )

∃A1 ∀A2 . . . ∃An Vλ � ϕ( ~A, j+(B))→ ∃A1 ∀A2 . . . ∃An Vλ � ϕ( ~A,B).

But for every D ⊂ Vλ, Vλ � ϕ( ~A,D) iff there exists a branch in Tϕ( ~A) whose
projection is D. Using this is easy to check the Lemma.

Lemma 0.18. Let n be odd, n > 1. Let j be Σ1
n, crt(j) = κ. Let β < κ,

A,B ⊆ Vλ. Then there exists a k : Vλ ≺ Vλ that is Σ1
n−1 such that k(B) =

j(B), k(A′) = A for some A′ ⊆ Vλ and β < crt(k) < κ.

Proof. The formula “∃k, Y, k is Σ1
n−2, k(B) = j(B), k(Y ) = A, β < crt(k) <

κ” is Σ1
n by Lemma 0.17. The following formula is clearly true:

j is Σ1
n−2, j(j(B)) = j(j(B)), j(A) = j(A), j(β) = β < crt(j) < j(κ)

but then, with a smart quantification of some of the parameters of the formula
above, we have

∃k, Y k is Σ1
n−2, k(j(B)) = j(j(B)), k(Y ) = j(A), j(β) < crt(k) < j(κ)

By elementarity the lemma is proved.

Note that the Lemma holds not only if n is odd, but also when n = 0.

Theorem 0.19 ([9]). Let n be odd. Then if j is Σ1
n, it is also Σ1

n+1.

Proof. Theorem 0.15 is the case n = 1. We proceed by induction on n.
Let B ⊆ Vλ. We have to prove that for every ψ Σn+1 formula and B ⊆

Vλ+1,
Vλ � ψ(B) iff Vλ � ψ(j+(B)).

By induction, the direction from left to right is immediate, so it suffices to
show the other direction. Suppose

Vλ � ∃X1 ∀X2 ∃X3 . . . ∀Xn+1 ϕ(X1, . . . , Xn+1, j
+(B)).

Let X0 = A a witness. By Lemma 0.18, we can pick a k that is Σ1
n−2 such

that k(B) = j(B) and there exists A′ ⊆ Vλ+1 such that k(A′) = A. By
induction, k is also Σ1

n−1, and since

Vλ � ∀X2 ∃X3 . . . ∀Xn+1 ϕ(k(A′), X2, . . . , Xn+1, k(B)),

then
Vλ � ∀X2 ∃X3 . . . ∀Xn+1 ϕ(A′, X2, . . . , Xn+1, B).

Therefore A′ is a witness for ψ(B).
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Theorem 0.19 shows a peculiar asimmetry. What problems arise when
n is even? The key is in the proof of Lemma 0.17. When the number of
the quantifiers of a Σn formula is odd, then the last one is an existential
quantifier. Since by Lemma 0.9 the satisfaction relation for Σ1

1 formulae
is Σ1

1, this quantifier is absorbed by the satisfaction formula. When n is
even, however, the last quantifier is an universal one, and “being Σ1

n“ is still
Π1
n+2. This seems an ineffectual detail, but in fact Laver proved that it is an

essential one, since he showed that being a Σ1
n+1-embedding, for n even, is

strictly stronger than being a Σ1
n one.

Theorem 0.20 ([9]). Let h and k be Σ1
n embeddings. Then h · k is a Σ1

n-
embedding.

Proof. By Theorem 0.19 we can suppose n odd. Let ϕ be a Σ1
0 formula with

n+ 1 variables. Then

Vλ � ∀Y
(
∃X1 ∀X2 . . . ∃Xn ϕ(X1, . . . , Xn, k(Y ))

→ ∃X1 ∀X2 . . . ∃Xn ϕ(X1, . . . , Xn, Y )
)
.

This formula is Π1
n+1. Since by Theorem 0.19 h is Σ1

n+1, we have

Vλ � ∀Y
(
∃X1 ∀X2 . . . ∃Xn ϕ(X1, . . . , Xn, h(k)(Y ))

→ ∃X1 ∀X2 . . . ∃Xn ϕ(X1, . . . , Xn, Y )
)
.

so h(k) is Σ1
n.

Note that the converse is not true. Let k be Σ1
n. The formula ”∃h h(h) =

k, h is Σ1
n−2” is a Σ1

n-formula. Since k(k) = k(k), then ”∃h h(h) = k(k), h
is Σ1

n−2“ is true, so by elementarity ∃h h(h) = k, h is Σ1
n−2. Let h be the

one with minimal critical point. Then

κ = crt(h) = min{crt(h) : h is Σ1
n−2, h(h) = k}

is Σ1
n-definable, so h cannot be Σ1

n.
However, if we switch application with composition, then also the converse

is true.

Lemma 0.21. If h and k are Σ1
m and h ◦ k is Σ1

m+1, then k is Σ1
m+1.

Proof. Suppose that

Vλ � ∀X1 ∃X2 . . . ∀Xm+1 ϕ(X1, . . . , Xm+1, B)
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with B ⊆ Vλ. Then

Vλ � ∀X1 ∃X2 . . . ∀Xm+1 ϕ(X1, . . . , Xm+1, h ◦ k(B)).

Let A ⊆ Vλ. Then in particular

Vλ � ∃X2 . . . ∀Xm+1 ϕ(h(A), X2, . . . , Xm+1, h ◦ k(B)).

By elementarity

Vλ � ∃X2 . . . ∀Xm+1 ϕ(A,X2, . . . , Xm+1, k(B)).

Since this is true for every A ⊆ Vλ, we have

Vλ � ∀X1 ∃X2 . . . ∀Xm+1 ϕ(X1, . . . , Xm+1, k(B)).

Theorem 0.22 ([9]). Let h, k ∈ Eλ. Then h, k are Σ1
n iff h ◦ k is Σ1

n.

Proof. If h and k are Σ1
n, then obviously h ◦ k is Σ1

n. We prove by induction
on m ≤ n that h and k are Σ1

m.
The case m = 0 is by hypothesis. Suppose it is true for m. Then by

Theorem 0.20 h(k) is Σ1
m. It is easy to calculate that h ◦ k = h(k) ◦ h, and

this is Σ1
m+1 by hypothesis. By using Lemma 0.21 in the left side, we have

that k is Σ1
m+1, and using it on the right side we have that h is Σ1

m+1.

Theorem 0.22 is promising for our objective, that is proving that being
Σ1
n+2 is strictly stronger than being Σ1

n for an elementary embedding. The
most natural idea for doing this is using some sort of reflection, to prove that
if there is a j ∈ Eλ Σ1

n+2, then there is a k ∈ Eλ′ that is Σ1
n. A common

idea for similar proofs is to use a direct limit of elementary embeddings, but
unfortunately this is not possible in this setting:

Theorem 0.23. (Laver, [8]) There exists a j that is Σ1
n that has a stabilizing

direct limit of members of Aj that is not Σ1
1,

So we will consider inverse limits instead.
Let 〈j0, j1, . . . 〉 be a sequence of elements of Eλ, and let J = j0 ◦ j1 ◦ . . .

be the inverse limit of the sequence. By definition the dominion of J is
{x ∈ Vλ : ∃nx ∀i > nx ji(x) = x}. But we know that ji(x) = x iff x ∈ Vcrt(ji),
so this is {x ∈ Vλ : ∃nx ∀i > nx x ∈ Vcrt(ji)}. That is, x ∈ dom J depends
only on the rank of x, and this implies that dom J = Vα for some α. It is
also possible to calculate α, since β < α iff ∃n ∀m ≥ n β < crt(jm):

α = sup
n≥0

inf
m≥n

crt(jm) = lim inf
n∈ω

crt(jn).

12



With some cosmetic change, we can also suppose that α as the supremum
of the critical points, not only the limit inferior. This will also simplify the
following proofs and notations.

So let λn = infm≥n crt(jm). Then α = supn∈ω λn, and λn is increasing in
n. If the supremum is also a maximum, we incur in the trivial case, where
J is in fact just a finite composition of elementary embeddings: if n is the
first one such that λn = α, then all crt(jm) with m > n are bigger than α,
so they are constant in the domain of J and they don’t change anything.

Suppose then that α is a proper supremum of the λn sequence. We can
suppose crt(jn) = λn by aggregating multiple elementary embeddings in just
one: consider the largest n such that crt(jn) = λ0 (there will be a largest one
because α is a proper supremum of the λn sequence), define the new k0 as
the old j0 ◦ · · · ◦ jn, and repeat this for every λn. The following is a grafical
example:

k0 k1 k2 k3

The columns represent the behaviours of each jn on λ, where the column
on the left represent j0, and the horizontal lines indicate the critical point.

Definition 0.24. Let J = j0 ◦ j1 ◦ . . . . Then we define Jn = jn ◦ jn+1 ◦ . . .
and J0(n−1) = j0 ◦ j1 ◦ · · · ◦ jn−1.

Lemma 0.25. Let jm ∈ Eλ for every m ∈ ω, define αm = crt(jm) and
suppose that for every m ∈ ω, αm < αm+1. Let α = supm∈ω αm and J =
j0 ◦ j1 ◦ . . . . Then

• J ′′α is unbounded in λ;

• J : Vα ≺ Vλ is elementary.

Proof. • Let δm = sup Jm“α. We prove that when δm < λ, then δm 6=
δm+1. Obviously δm ≥ α, because otherwise Jm(δm) ∈ Jm“α and
Jm(δm) < δm. In particular δm is above αm, i.e., the critical point
of jm, so δm is moved by jm and there exists a µ < δm such that
jm(µ) > δm. By contradiction, suppose that δm = δm+1. Then µ is
also less than δm+1, so by definition there exists an i ∈ ω such that
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Jm+1(αi) ≥ µ. Therefore

Jm(αi) = jm ◦ Jm+1(αi) ≥ jm(µ) ≥ δm,

contradiction.

Suppose then that δ0 < λ. Therefore for any m ∈ ω δm+1 < δm, but
this creates a strictly descending sequence of ordinals, contradiction.

• Fix n ∈ ω and let k = j0(j1(. . . jn(jn) . . . )). Then

crt(k) = crt(j0(j1(. . . jn(jn) . . . ))) =

= j0(j1(. . . jn(crt(jn)) . . . )) = j0 ◦ j1 ◦ · · · ◦ jn(αn) = J(αn).

By Lemma 0.6, then, VJ(αn) ≺ Vλ. But J � Vαn : Vαn → VJ(αn) is
an elementary embedding, because J � Vαn = J0,n � Vαn , so for every
n ∈ ω, J � Vαn ≺ Vλ. With methods similar to those in the proof of
Theorem 0.4, it is possible to prove that this implies J : Vα ≺ Vλ.

Like in the Vλ case, we can extend J to Vα+1 in the expected way: when
A ⊆ Vα, J(A) =

⋃
β<α J(A ∩ Vβ). Now we want to prove an equivalent of

Lemma 0.18, but for inverse limits.

Lemma 0.26. Let J : Vα ≺ Vλ an inverse limit of Σ1
n+1 elementary embed-

dings. Then for all A,B ⊆ Vα there exist K : Vα ≺ Vλ inverse limit of Σ1
n

elementary embeddings and A′ ⊆ Vα such that k(A′) = A and k(B) = J(B).

Proof. We define km and Am by induction, with repeated uses of Lemma
0.18. At the end, K will be the inverse limit of the km’s, and the Am’s will
be the images of A′ through the inverse limit.

Let A0 = A, k0 and A1 such that k0 is a Σ1
n elementary embedding,

A1 ⊆ Vλ, k0(A1) = A = A0,

k0(J1(B)) = j0(J1(B)) = J(B)

and crt(k0) < crt(j0).
More generally, km+1 and Am+2 are such that km+1 is a Σ1

n elementary
embedding, Am+2 ⊆ Vλ, km+1(Am+2) = Am+1,

km+1(Jm+2(B)) = jm+1(Jm+2(B))

and crt(jm) < crt(km+1) < crt(jm+1).
So km and Am satisfy:

14



• km is Σ1
n;

• km(Am+1) = Am;

• km(Jm+1(B)) = Jm(B);

• crt(k0) < crt(j0) < crt(k1) < · · · < crt(jm) < crt(km) < crt(jm+1) <
. . .

Let K be the inverse limit of the k’s. Then supm∈ω crt(km) = α, and by
Lemma 0.25 K : Vα ≺ Vλ is an elementary embedding. Note that

K(B ∩ Vcrt(km)) = k0 ◦ k1 ◦ · · · ◦ km(Km+1(B ∩ Vcrt(km)) =

= k0 ◦ · · · ◦ km(B ∩ Vcrt(km)) = k0 ◦ · · · ◦ km(Jm+1(B ∩ Vcrt(km)) =

= J(B ∩ Vcrt(km)).

So K(B) = J(B).
Finally, consider Am+1 ∩ Vcrt(km):

Am+2 ∩ Vcrt(km) = km+1(Am+2 ∩ Vcrt(km)) = Am+1 ∩ Vcrt(km),

so

K(Am+1 ∩ Vcrt(km)) = k0 ◦ · · · ◦ km(Am+1 ∩ Vcrt(km)) = A ∩ VK(crt(km)).

Define A′ =
⋃
m∈ω(Am+1 ∩ Vcrt(km)). Then K(A′) = A.

We use Lemma 0.26 to calculate the strength of an inverse limit:

Theorem 0.27 ([9]). If J : Vα ≺ Vλ is an inverse limit of Σ1
n elementary

embeddings, then J is Σ1
n.

Proof. The case n = 0 is Lemma 0.25 combined with an obvious generaliza-
tion of Theorem 0.4, so we proceed by induction on n.

Suppose that J is Σ1
n−1, we need to prove that for every ϕ Π1

n−1-formula,
and any B ⊆ Vλ,

Vλ � ∃Xϕ(X, J(B))→ Vα � ∃Xϕ(X,B).

Suppose Vλ � ∃Xϕ(X, J(B)), and fix A a witness. Using Lemma 0.26, we
find K inverse limit of Σ1

n−2 elementary embeddings such that K(A′) = A
and K(B) = J(B) for some A′ ⊆ Vα. So Vλ � ϕ(K(A′), K(B)), and by
elementarity Vα � ϕ(A′, B), that is Vα � ∃X ϕ(X,B).
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Finally, we can prove that the existence of a Σ1
n+2 elementary embedding

is strictly stronger than the existence of a Σ1
n elementary embedding.

Theorem 0.28 ([9]). Let j : Vλ ≺ Vλ be Σ1
n+2. Then

• for every B ⊆ Vλ, there exist an α < λ and a kα : Vα ≺ Vλ such that
kα(Bα) = B for some Bα ⊆ Vα. In fact, we can find an ω-club C ⊆ λ
of such α’s.

• there exist an α < λ and a jα : Vα ≺ Vα that is Σ1
n. Moreover, we can

find an ω-club C ⊆ λ of such α’s.

Proof. • Let

G = {〈l0, . . . , lm〉 : li : Vλ ≺ Vλ is Σ1
n, crt l0 < crt l1 < · · · < crt lm < κ0,

∃B0, . . . , Bm l0(B0) = B, ∀i li+1(Bi+1) = Bi}.

By Lemma 0.18 the set

{θ < κ0 : ∃l 〈l0, . . . , lm, l〉 ∈ G, crt(l) = θ}

is unbounded in κ0. Pick an infinite branch 〈l0, l1, . . . 〉 of G, and let
α = supi∈ω crt(li). Let kα the inverse limit of the li’s. Then by Theorem
0.27 kα is Σ1

n. Define B′ =
⋃
m∈ω(Bm+1 ∩ Vcrt(lm)) as before to have

kα(B′) = B. To prove the existence of the ω-club C, note that we
could have used any infinite branch of T , and the set of the ordinals that
are the supremum of the critical points of the elementary embeddings
appearing in an infinite branch of T (like α) contains an ω-club.

• Let the B above be j. Then there exists α (again, any α ∈ C works),
kα : Vα ≺ Vλ, and jα ⊆ Vα such that kα(jα) = j. Suppose, by Theorem
0.19, that n is odd. Then by Lemma 0.17 ”j is Σ1

n” is Π1
n+1. Again

by Theorem 0.19 and Lemma 0.27 kα is Σ1
n+1, so by elementarity jα :

Vα ≺ Vα is Σ1
n.

This ends the proof that “∃j j is Σ1
n+2“ is strictly stronger than ′′∃j j is Σ1

n“:
let λ minimum such that there exists j : Vλ ≺ Vλ that is Σ1

n+2, then there
exists a λ′ < λ and a k : Vλ′ ≺ Vλ′ that is Σ1

n. Since λ was the minimum, k
cannot be Σ1

n+2.
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