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ABSTRACT. We investigate families of subsets ofωwith almost disjoint refine-
ments in the classical case as well as with respect to given ideals on ω.

We prove the following generalization of a result due to J. Brendle: If
V ⊆ W are transitive models, ωW

1 ⊆ V , P(ω) ∩ V 6= P(ω) ∩ W , and I is
an analytic or coanalytic ideal coded in V , then there is an I-almost disjoint
refinement of I+ ∩ V in W .

We study the existence of perfect I-almost disjoint families, and the exis-
tence of I-almost disjoint refinements in which every two distinct sets have
finite intersection.

We introduce the notion of mixing real (motivated by the construction of
an almost disjoint refinement of [ω]ω∩V after adding a Cohen real to V ) and
discuss logical implications between the existence of mixing reals in forcing
extensions and classical properties of forcing notions.

1. INTRODUCTION

Let us begin with our motivations which led us to work on almost disjoint
refinements and their generalizations. First of all, the following easy fact seems
to be somewhat surprising (see also Proposition 1.9):

Fact 1.1. If H ⊆ [ω]ω(= {X ⊆ ω : |X | = ω}) is of size < c, then H has an
almost-disjoint refinement {AH : H ∈H}, that is, (i) AH ∈ [H]ω for every H ∈H

and (ii) |AH ∩ AK |<ω for every H 6= K from H.

The following theorem due to B. Balcar and P. Vojtáš is probably the most
well-know general result on the existence of almost-disjoint refinements.

Theorem 1.2. (see [BaV80]) Every ultrafilter onω has an almost-disjoint refine-
ment.

B. Balcar and T. Pazák, and independently J. Brendle proved the following
theorem:

Theorem 1.3. (see [BaP10], [LS08]) Assume that V ⊆ W are transitive models
and P(ω) ∩ V 6= P(ω) ∩W. Then [ω]ω ∩ V has an almost-disjoint refinement
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in W (where by transitive model we mean a transitive model of a “large enough”
finite fragment of ZFC).

One of our main results is a generalization of this theorem in the context
of “nice” ideals on ω, that is, we change the notion of smallness in the setting
above by replacing finite with element of an ideal I.

In order to formulate our generalization and to give a setting to our other re-
lated results, we have to introduce some notations and the appropriate versions
of the classical notions.

Let I be an ideal on a countably infinite set X . We always assume that
[X ]<ω = {Y ⊆ X : |Y | < ω} ⊆ I and X /∈ I. Let us denote by I+ = P(X ) \ I
the family of I-positive sets, and by I∗ = {X \ A : A ∈ I} the dual filter of I. If
Y ∈ I+ then let I � Y = {A∈ I : A⊆ Y }= {B∩Y : B ∈ I} be the restriction of I to
Y (an ideal on Y ). If X is clear from the contex, then the ideal of finite subsets
of X will be denoted by Fin.

Definition 1.4. We say that a non-empty family A ⊆ I+ is I-almost-disjoint (I-
AD) if A∩ B ∈ I for every distinct A, B ∈ A. A family A ⊆ I+ is (I, Fin)-AD if
|A∩ B|<ω for every distinct A, B ∈A.

Definition 1.5. Let H ⊆ I+. We say that a family A = {AH : H ∈ H} is an
I-AD refinement (I-ADR) of H if (i) AH ⊆ H, AH ∈ I+ for every H, and (ii)
AH0
∩ AH1

∈ I for every distinct H0, H1 ∈H (in paticular, A is an I-AD family).
If I= Fin we simply say AD-refinement (ADR).

We say that a family A = {AH : H ∈H} is an (I, Fin)-AD refinement ((I, Fin)-
ADR) of H if (i) holds and (ii)’ |AH0

∩ AH1
|<ω for every distinct H0, H1 ∈H.

Notice that an ideal on a countably infinite X can be regarded as a subset of
the Polish space 2X ' 2ω using a bijection between X and ω. Thus, it makes
sense to talk about Borel, analytic, etc ideals and about certain descriptive prop-
erties of ideals, such as the Baire property or meagerness (it is easy to see that
these properties do not depend on the choice of the bijection). In the past two
decades the study of certain definable (e.g. Borel, analytic, coanalytic, etc.)
ideals has become a central topic in set theory. It turned out that they play an
important role in combinatorial set theory, and in the theory of cardinal invari-
ants of the continuum as well as the theory of forcing (see e.g. [Ma91], [So99],
[F], [Hr11] and many other publications).

Now we can formulate our generalization of Theorem 1.3:

Theorem 1.6. Assume that V ⊆W are transitive models, ωW
1 ⊆ V , P(ω)∩ V 6=

P(ω) ∩W, and I is an analytic or coanalytic ideal coded in V . Then there is an
I-ADR of I+ ∩ V in W.

We say that an ideal I on X (where |X | =ω) is everywhere meager if I � Y is
meager inP(Y ) for every Y ∈ I+. In particular, analytic and coanalytic ideals are
everywhere meager because their restrictions are also analytic and coanalytic,
respectively, hence have the Baire property, and we can apply the following well-
known characterisation theorem (due to Sierpiński (1)↔(2), and Talagrand
(2)↔(3), for the proofs see e.g. [BrJ, Thm 4.1.1-2]).
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Theorem 1.7. Let I be an ideal on ω. Then the following are equivalent: (1) I

has the Baire property, (2) I is meager, and (3) there is a partition {Pn : n ∈ ω}
of ω into finite sets such that {n ∈ω : Pn ⊆ A} is finite for each A∈ I.

From now on, when working with partitions of a set, we always assume that
every element of the partition is nonempty. From this theorem we can also
deduce the following important corollary:

Corollary 1.8. If I is a meager ideal, then there is a perfect (I, Fin)-AD family. In
particular, if I is everywhere meager, then there are perfect (I, Fin)-AD families on
every X ∈ I+.

Proof. It is easy to define a perfect AD family A onω (e.g. consider the branches
of 2<ω in P(2<ω)). Fix a partition (Pn)n∈ω of ω into finite sets such that {n ∈
ω : Pn ⊆ A} is finite for every A∈ I. For each A∈A let A′ =

⋃

{Pn : n ∈ A} ∈ I+,
and let A′ = {A′ : A ∈ A}. Then |A′ ∩ B′| < ω for every distinct A, B ∈ A hence
A′ is an (I, Fin)-AD family. The function P(ω)→ P(ω), A 7→ A′ is injective and
continuous hence A′ is perfect. �

Concerning the reverse implications in Corollary 1.8, in Section 5 we prove
the following:

(a) The existence of a perfect (I, Fin)-AD family does not imply that I is
meager (see Example 5.1). Moreover, if b = c then there is an non-
meager ideal I such that there are perfect (I, Fin)-AD families on every
X ∈ I+ (see Theorem 5.2). Here c stands for the continuum and b for
the bounding number, that is, b = min{|F | : F ⊆ ωω is ≤∗-unbounded}
where f ≤∗ g iff the set {n ∈ω : f (n)> g(n)} is finite.

(b) There is an ideal I such that every I-AD family is countable but I is
nowhere maximal, that is, I � X is not a prime ideal for any X ∈ I+ (in
particular, there are infinite I-AD families); and it is independent from
ZFC whether such an ideal can be chosen as Σ∼

1
2 (see Proposition 5.3).

Corollary 1.8 has an easy but important application. Clearly, if I is an ideal
on ω then there is a family (e.g. I+) of size c which does not have any I-ADR’s.
Conversely, we have the following very special case of results from [BgHM84]
and [BaSV81]:

Proposition 1.9. If I is an everywhere meager ideal and H ∈ [I+]<c, then H has
an I-ADR.

Proof. Let H = {Hα : α < κ}. Applying Corollary 1.8, we can fix an I-AD family
A= {Aξ : ξ < κ+} on H0 and for every β < κ let Tβ = {ξ < κ+ : Hβ ∩Aξ ∈ I+},
furthermore let R = {β < κ : |Tβ | ≤ κ} (we know that 0 /∈ R). By induction on
α ∈ κ \ R we can pick a

ξα ∈ Tα \
� ⋃

β∈R

Tβ ∪
�

ξα′ : α′ ∈ α \ R
	

�

because |Tα| = κ+ and |
⋃

{Tβ : β ∈ R}| ≤ κ, and let Eα = Hα ∩ Aξα ∈ I+. Then
the family {Eα : α ∈ κ \ R} is an I-ADR of {Hα : α ∈ κ \ R}. We can continue
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the procedure on {Hβ : β ∈ R} because Eα ∩ Hβ ∈ I for every α ∈ κ \ R and
β ∈ R. �

This proposition motivates the following:

Question 1.10. Let I be an everywhere meager ideal and H ∈ [I+]<c. Does H
have an (I, Fin)-ADR?

In Section 6, we answer this question (at least consistently): Assume MAκ
and let I be an everywhere meager ideal, then every H ∈ [I+]≤κ has an (I, Fin)-
ADR (see Theorem 6.1).

We also define new notions of mixing and injective mixing reals, and inves-
tigate connections between adding (injective) mixing reals and classical prop-
erties of forcing notions (such as adding Cohen/random/splitting/dominating
reals and the Laver/Sacks-properties).

Definition 1.11. Let P be a forcing notion. We say that an f ∈ ωω ∩ VP is a
mixing real over V if | f [X ]∩Y |=ω for every X , Y ∈ [ω]ω∩V . If f is one-to-one,
then we call it an injective mixing real or mixing injection.

Mixing reals can be seen as “infinite splitting parititions” (see Proposition
7.1): There is a mixing real in VP (over V ) iff there is a partition (Yn)n∈ω ∈ VP

of ω into infinite sets such that ∀ X ∈ [ω]ω ∩ V ∀ n |X ∩ Yn|=ω. Recall that a
set S ⊆ω is a splitting real over V if |X ∩S|= |X \S|=ω for every X ∈ [ω]ω∩V ,
in other words, P = {S,ω \ S} is a partition of ω such that ∀ X ∈ [ω]ω ∩ V ∀
Y ∈ P |X ∩Y |=ω. Therefore, mixing reals are strong variants of splitting reals.

Why are mixing reals relevant to almost-disjoint refinements? Fix an AD
family A = {Aα : α < c} in V , and let {Xα : α < c} be an enumeration of [ω]ω

in V . If f ∈ωω∩VP is a mixing injection over V , then the family { f [Aα]∩ Xα :
α < c} ∈ VP is an ADR of [ω]ω ∩ V .

In Proposition 7.2 we prove the following: Let P be a forcing notion.
(i) If P adds random reals, then it adds mixing reals.

(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals, then it adds mixing injections.
(iv) If P adds mixing injections, then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Our paper is organized as follows. In Section 2 we recall some notations and
classical results of descriptive set theory we will need later.

The next two sections are focused on descriptive aspects of nice ideals and
almost disjoint refinements. In Section 3 we present a plethora of examples
of Borel and projective ideals on ω. In Section 4 we prove Theorem 1.6 by
modifying Brendle’s proof of Theorem 1.3.

The next two sections contain rather combinatorial results. In Section 5 we
study the reverse implications in Corollary 1.8. In Section 6 we answer (consis-
tently) Question 1.10.

In Section 7 we study the notions of mixing and injective mixing reals. In this
section we will heavily use standard facts about forcing notions, for the details
see [BrJ].
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Finally, in Section 8, we list some open questions concerning our results.

2. DESCRIPTIVE SET THEORY AND IDEALS

As usual, Σ∼
0
α,Π∼

0
α will stand for the αth level of the Borel hierarchy while we

denote by Σ∼
1
n,Π∼

1
n the levels of the projective hierarchy. If r is a real, the appro-

priate relativised versions are denoted by Σ0
α(r),Π

0
α(r), etc. For the ambiguous

classes we write ∆∼
i
α and ∆i

α(r).
Suppose that I is an ideal on the set X . As mentioned before, if X is countable

then we can talk about complexity of ideals: I is Fσ,Σ∼
0
α,Π∼

1
n, etc if I ⊆ P(X )' 2X

is an Fσ, Σ∼
0
α, Π∼

1
n, etc set in the usual compact Polish topology on 2X . If we fix a

bijection betweenω and X we can define the collection ofΣ0
α(r),Π

0
α(r), etc sub-

sets of 2X as well. If X = ωn,∆ = {(n, m) ∈ ω2 : m ≤ n}, [ω]n, 2<ω,ω<ω,Q(=
{rational numbers}) then the we will always assume that the bijection is the
usual, recursive one.

For example, Fin= [ω]<ω is an Fσ ideal, Z= {A⊆ω : |A∩ n|/n→ 0} is Fσδ,
and Conv = {A ⊆ Q ∩ [0,1] : A has only finitely many accumulation points} is
Fσδσ, etc (see more examples in Section 3). Similarly, we can associate descrip-
tive complexity to any X ⊆ P(ω), and we can also talk about the Baire property
and measurability of subsets of P(ω). Clearly, if Y ∈ I+ then I � Y belongs to
the same Borel or projective class in P(Y ) as I in P(ω) (simply because I � Y is
a continuous preimage of I).

For a family H ⊂ 2X we will denote by id(H) the ideal generated by the sets
in H. We say that an ideal I on a countably infinite set X is

• tall if every infinite subset of X contains an infinite element of I;
• a P-ideal if for every sequence An ∈ I (n ∈ ω), there is an A ∈ I such

that An ⊆∗ A, that is, |An \ A|<ω for every n.
We will need the following two fundamental results of descriptive set theory

(see e.g. in [J]):

Theorem 2.1. (Shoenfield Absoluteness Theorem) If V ⊆W are transitive mod-
els, ωW

1 ⊆ V , and r ∈ ωω ∩ V , then Σ1
2(r) formulas are absolute between V and

W.

Corollary 2.2. If X ⊆ P(ω) is an analytic or coanalytic set in the parameter
r ∈ωω, then the statement “X is an ideal” is absolute for transitive models V ⊆W
with ωW

1 ⊆ V and r ∈ V .

Proof. Let ϕ(x , r) be a Σ1
1(r) or Π1

1(r) definition of X (r ∈ ωω). Then the
statement “X is an ideal” is the conjunction of the following formulas (i) ∀
a ∈ Fin ϕ(a, r), (ii) ∀ x , y (x * y or ¬ϕ(y, r) or ϕ(x , r)), and (iii) ∀ x , y
(¬ϕ(x , r) or ¬ϕ(y, r) or ϕ(x ∪ y, r)). In particular, “X is an ideal” is Π1

2(r) and
hence we can apply the Shoenfield Absoluteness Theorem. �

Theorem 2.3. (Mansfield-Solovay Theorem) If A * L[r] is a Σ1
2(r) set, then A

contains a perfect subset.
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Other than these notions and results above, we will use descriptive set the-
oretic tools such as Γ -completeness, Γ -hardness, etc which can all be found in
[K].

Let Tree= {T ⊆ω<ω : T is a tree} be the usual Polish space of all trees on ω
(a closed subset on P(ω<ω)) and as usual, we denote by [T] = {x ∈ ωω : ∀ n
x � n ∈ T} the body of T , i.e. the set of all branches of T .

3. EXAMPLES OF BOREL AND PROJECTIVE IDEALS

There are many classical examples of Borel ideals. Here we present some
of those that have easily understandable definitions, and the reader can see
that these examples are motivated by a wide variety of backgrounds. For the
important role of these ideals, especially in characterisation results, see [Hr11].

Some Fσ ideals:

Summable ideals. Let h : ω→ [0,∞) be a function such that
∑

n∈ω h(n) =
∞. The summable ideal associated to h is

Ih =
§

A⊆ω :
∑

n∈A

h(n)<∞
ª

.

It is easy to see that a summable ideal Ih is tall iff limn→∞ h(n) = 0, and
that summable ideals are Fσ P-ideals. The classical summable ideal is I1/n = Ih
where h(n) = 1/(n+ 1), or h(0) = 1 and h(n) = 1/n if n > 0. We know that
there are tall Fσ P-ideals which are not summable ideals: Farah’s example (see
[F, Example 1.11.1]) is the following ideal:

IF =
§

A⊆ω :
∑

n<ω

min
�

n, |A∩ [2n, 2n+1)|
	

n2
<∞

ª

.

The eventually different ideals.

ED=
¦

A⊆ω×ω : lim sup
n→∞

|(A)n|<∞
©

where (A)n = {k ∈ ω : (n, k) ∈ A}, and EDfin = ED � ∆ where ∆ = {(n, m) ∈
ω×ω : m≤ n}. ED and EDfin are not P-ideals.

The van der Waerden ideal:

W=
�

A⊆ω : A does not contain arbitrary long arithmetic progressions
	

.

Van der Waerden’s well-known theorem says that W is a proper ideal. W is not
a P-ideal. For some set-theoretic results about this ideal see e.g. [Fl09] and
[Fl10].

The random graph ideal:

Ran= id
��

homogeneous subsets of the random graph
	�

where the random graph (ω, E), E ⊆ [ω]2 is up to isomorphism uniquely de-
termined by the following property: If A, B ∈ [ω]<ω are nonempty and dis-
joint, then there is an n ∈ ω \ (A ∪ B) such that {{n, a} : a ∈ A} ⊆ E and
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{{n, b} : b ∈ B} ∩ E = ;. A set H ⊆ ω is (E-)homogeneous iff [H]2 ⊆ E or
[H]2 ∩ E = ;. Ran is not a P-ideal.

The ideal of graphs with finite chromatic number:

Gfc =
�

E ⊆ [ω]2 : χ(ω, E)<ω
	

.

It is not a P-ideal.
Solecki’s ideal: Let CO(2ω) be the family of clopen subsets of 2ω (it is easy to

see that |CO(2ω)| =ω), and let Ω = {A∈ CO(2ω) : λ(A) = 1/2} where λ is the
usual product measure on 2ω. The ideal S on Ω is generated by {Ix : x ∈ 2ω}
where Ix = {A∈ Ω : x ∈ A}. S is not a P-ideal.

Some Fσδ ideals:
Density ideals. Let (Pn)n∈ω be a sequence of pairwise disjoint finite subsets

of ω and let ~µ= (µn)n∈ω be a sequences of measures, µn is concentrated on Pn
such that limsupn→∞µn(ω)> 0. The density ideal generated by ~µ is

Z~µ =
¦

A⊆ω : lim
n→∞

µn(A) = 0
©

.

A density ideal Z~µ is tall iff max{µn({i}) : i ∈ Pn}
n→∞
−−−→ 0, and density ideals

are Fσδ P-ideals. The density zero ideal Z=
�

A⊆ω : limn→∞ |A∩n|/n= 0
	

is a
tall density ideal because let Pn = [2n, 2n+1) and µn(A) = |A∩ Pn|/2n. It is easy
to see that I1/n ( Z, and Szemerédi’s famous theorem implies that W ⊆ Z (see
[Sz75]). The stronger statement W ⊆ I1/n is a still open Erdős prize problem.

The ideal of nowhere dense subsets of the rationals:

Nwd=
�

A⊆Q : int(A) = ;
	

where int(·) stands for the interior operation on subsets of the reals, and A is
the closure of A in R. Nwd is not a P-ideal.

The trace ideal of the null ideal: Let N be the σ-ideal of subsets of 2ω with
measure zero (with respect to the usual product measure). The Gδ-closure of a
set A⊆ 2<ω is [A]δ =

�

x ∈ 2ω : ∃∞ n x � n ∈ A
	

, a Gδ subset of 2ω. The trace
of N is defined by

tr(N) =
�

A⊆ 2<ω : [A]δ ∈N
	

.
It is a tall Fσδ P-ideal.

Some tall Fσδσ (non P-)ideals:
The ideal Conv is generated by those infinite subsets of Q∩ [0,1] which are

convergent in [0,1], in other words

Conv=
�

A⊆Q∩ [0,1] : |accumulation points of A (in R)|<ω
	

.

The Fubini product of Fin by itself:

Fin⊗ Fin=
�

A⊆ω×ω : ∀∞ n ∈ω |(A)n|<ω
	

.

Some non-tall ideals:
An important Fσ ideal:

Fin⊗ {;}=
�

A⊆ω×ω : ∀∞ n ∈ω (A)n = ;
	

,
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and its Fσδ brother (a density ideal):

{;} ⊗ Fin=
�

A⊆ω×ω : ∀ n ∈ω |(A)n|<ω
	

.

Applying the Baire Category Theorem, it is easy to see that there are no Gδ
(i.e. Π∼

0
2) ideals and we already presented many Fσ (i.e. Σ∼

0
2) ideals. In general,

we have Borel ideals at arbitrary high levels of the Borel hierarchy:

Theorem 3.1. (see [C85] and [C88]) There are Σ∼
0
α- and Π∼

0
α-complete ideals for

every α≥ 3.

About ideals on the ambiguous levels of the Borel hierarchy see [E94].

We also present some (co)analytic examples.

Theorem 3.2. (see [Z90, page 321]) For every x ∈ ωω let Ix = {s ∈ ω<ω : x �
|s| � s} where ≤ is the coordinatewise ordering on every ωn. Then the ideal on
ω<ω generated by {Ix : x ∈ωω} is Σ∼

1
1-complete.

Theorem 3.3. The ideal of graphs without infinite complete subgraphs,

Gc =
�

E ⊆ [ω]2 : ∀ X ∈ [ω]ω [X ]2 * E
	

is a Π∼
1
1-complete (in P([ω]2)), tall, non P-ideal.

Proof. Tallness is trivial. If for every n ∈ω, we define En = {{k, m} : k ≤ n, m 6=
k} ∈ Gc and En ⊆∗ E ⊆ [ω]2 for every n, then E contains a complete subgraph
(see also in [Me09]), hence Gc is not a P-ideal.

Let WF= {T ∈ Tree : [T] = ;} be the Π∼
1
1-complete set of well-founded trees.

Furthermore, let Tree′ be the family of those trees T such that (i) every t ∈ T
is strictly increasing and (ii) if {t ∈ T : n ∈ ran(t)} 6= ; then it has a ⊆-minimal
element (n ∈ω). Then it is not hard to see that Tree′ is also closed in P(ω<ω)
hence Polish. Finally, let WF′ = {T ∈ Tree′ : [T] = ;}, clearly, it is also Π1

1.
We will construct Wadge-reductions WF≤W WF′ ≤W Gc.

WF ≤W WF′: Fix an order preserving isomorphism j between ω<ω and
a T0 ∈ Tree′. More precisely, for a t = (k0, k1, . . . , km−1) ∈ ω<ω let j(t) =
(p1

k0
, p1

k0
p2

k1
, . . . , p1

k0
p2

k1
. . . pm

km−1
) where pi denotes the ith prime number. Then

j is one-to-one, order preserving, and T0 = j[ω<ω] is a tree containing strictly
increasing sequences. To show that T0 satisfies (ii), assume that n ∈ ran( j(t))
for some n ∈ ω and t ∈ ω<ω. Then, by the definition of j, n = p1

k0
p2

k1
. . . pm

km−1

where s = (k0, k1, . . . , km−1) ≤ t, and if n ∈ ran( j(t ′)) for some t ′ ∈ ω<ω then
s ≤ t ′, hence j(s) is ⊆-minimal in {h ∈ T0 : n ∈ ran(h)}.

The map Tree → Tree′, T 7→ j[T] is a continuous reduction of WF to WF′.
Continuity is trivial, and also that [T] = ; iff [ j[T]] 6= ;, in other words, T ∈WF
iff j[T] ∈WF′.

WF′ ≤W Gc: For every T ∈ Tree′ let ET =
⋃

{[ran(t)]2 : t ∈ T}. We show
that the function T 7→ ET is continuous. If u, v ∈

�

[ω]2
�<ω

are disjoint then it
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is easy to see that the preimage of the basic clopen set [u, v] = {E ⊆ [ω]2 : u ⊆
E, v ∩ E = ;} ⊆ P([ω]2) is
�

T ∈ Tree′ :
�

∀ {x , y} ∈ u ∃ t ∈ T x , y ∈ ran(t)
�

and
�

∀ t ∈ T v∩[ran(t)]2 = ;
�	

.

Although, as the collection of the sets satisfying the second part of the condition
is a countable intersection of clopen sets, this set seems to be closed (and it
is enough to prove that Gc is Π∼

1
1-complete), actually, it is open in Tree′: Let

m = max(∪v) + 1. Then the set {T ∈ Tree′ : ∀ t ∈ T v ∩ [ran(t)]2 = ;} is the
intersection of Tree′ and the clopen set (in P(ω<ω))

�

;,
�

t ∈ m≤m : t is strictly increasing and v ∩ [ran(t)]2 6= ;
	�

.

The function T 7→ ET is a reduction of WF′ to Gc: Clearly, if T ∈ Tree′ and x ∈
[T] then X = ran(x) ∈ [ω]ω shows that ET /∈ Gc (i.e. [X ]2 ⊆ E). Conversely, if
[X ]2 ⊆ ET and X = {k0 < k1 < . . . }, then for every n there is a tn ∈ T such that
kn, kn+1 ∈ ran(tn), we can assume that tn is minimal in {s ∈ T : kn+1 ∈ ran(s)}.
It yields that t0 ⊆ t1 ⊆ t2 ⊆ . . . is an infinite chain in T . �

In the following example, we show that a seemingly “very” Π1
2 definition can

also give us a Π∼
1
1-complete ideal.

Theorem 3.4. The ideal

I0 =
�

A⊆ω×ω : ∀ X , Y ∈ [ω]ω ∃ X ′ ∈ [X ]ω ∃ Y ′ ∈ [Y ]ω A∩ (X ′ × Y ′) = ;
	

is a Π∼
1
1-complete (in P(ω×ω)), tall, non P-ideal.

Proof. Tallness is trivial because injective partial functions from ω to ω belong
to I0. The failure of the P property is also easy: Consider the sets n ×ω ∈ I0.
If for some A we have n×ω ⊆∗ A for every n then every vertical section of A is
co-finite, and such a set is clearly I0-positive.

First we show that this ideal isΠ∼
1
1, for which the next claim is clearly enough.

For X , Y ∈ [ω]ω define T ↑(X , Y ) = {(n, k) ∈ X × Y : n < k} and T ↓(X , Y ) =
{(n, k) ∈ X × Y : n> k}.

Claim. A∈ I0 iff for every infinite X and Y the set A does not contain T ↑(X , Y ) or
T ↓(X , Y ).

Proof of the Claim. The “only if” part is trivial. Conversely, assume that A /∈ I0,
i.e. there exist X , Y ∈ [ω]ω such that A∩ (X ′ × Y ′) 6= ; for every X ′ ∈ [X ]ω
and Y ′ ∈ [Y ]ω. Fix increasing enumerations X = {x0 < x1 < x2 < . . . } and
Y = {y0 < y1 < y2 < . . . }. By shrinking the sets X and Y , we can assume
that x0 < y0 < x1 < y1 < . . . , in particular X ∩ Y = ;. Consider the following
coloring c : [ω]2 → 2 × 2: for m < n let c(m, n) = (χA(xm, yn),χA(xn, ym))
where χA(x , y) = 1 iff (x , y) ∈ A.

Applying Ramsey’s theorem, there exists an infinite homogeneous subset S ⊆
ω. Let S = Z∪W be a partition into infinite subsets such that the elements of Z
and W follow alternatingly in S. Then the elements of the sets X ′ = {xm : m ∈
Z} and Y ′ = {yn : n ∈W} follow alternatingly in ω as well.
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S cannot be homogeneous in color (0, 0), otherwise A∩ (X ′ × Y ′) = ; would
hold. Similarly, if S is homogeneous in color (1,1) then X ′ × Y ′ ⊂ A and we
are done. Now suppose that S is homogeneous in color (1, 0) (for (0,1) the
same argument works). If xm ∈ X ′, yn ∈ Y ′ and xm < yn then m < n because
Z ∩W = ;. Hence by the homogeneity of S we can conclude (xm, yn) ∈ A, so
T ↑(X ′, Y ′) ⊆ A. �

Now we show that I0 is Π∼
1
1-complete. We will use (see [K, 27.B]) that the set

S =
�

C ∈K(2ω) : ∀ x ∈ C ∀∞ n ∈ω x(n) = 0
	

is Π∼
1
1-complete where K(2ω) stands for the family of compact subsets of 2ω

equipped with the Hausdorff metric, i.e. with the Vietoris topology, we know
that K(2ω) is a compact Polish space.

To finish the proof, we will define a Borel map K(2ω)→ P(ω×ω), C 7→ AC
such that C ∈ S iff AC ∈ I0. Fix an enumeration {sm : m ∈ω} of 2<ω, for every
s ∈ 2<ω define [s] = {x ∈ 2ω : s ⊆ x} (a basic clopen subset of 2ω), and let

AC =
�

(m, n) : |sm|> n, sm(n) = 1, and [sm]∩ C 6= ;
	

.

For C ∈ S we show that AC ∈ I0. Let X , Y ∈ [ω]ω be arbitrary. If the set
{m ∈ X : [sm]∩ C = ;} is infinite then we are done, since

AC ∩
��

m ∈ X : [sm]∩ C = ;
	

× Y
�

= ;.

Otherwise, using the compactness of C we can choose an {m0 < m1 < . . . } =
X ′ ∈ [X ]ω and a convergent sequence (x i)i∈ω such that x i ∈ [smi

]∩C for every i.
If x i → x then x ∈ C ∈ S so x(n) = 0 for every n≥ n0 for some n0. If n ∈ Y \n0
then for every large enough i we have n< |smi

| and smi
(n) = x(n) = 0, hence the

section {m : (m, n) ∈ (AC∩(X ′×Y ))} is finite. On the other hand, for a fixed m if
|sm| ≤ n then (m, n) /∈ AC , therefore the section {n : (m, n) ∈ (AC ∩ (X ′× Y ))} is
also finite. By an easy induction, one can define an X ′′ ∈ [X ′]ω and a Y ′′ ∈ [Y ]ω
such that AC ∩ (X ′′ × Y ′′) = ;.

Now we show that if C 6∈ S then AC 6∈ I0. Let x ∈ C be so that Y = {n :
x(n) = 1} is infinite and let X = {m : x ∈ [sm]}. Now clearly, if (m, n) ∈ X × Y
then (m, n) ∈ AC if and only if n < |sm|. In particular, for every n ∈ Y the set
{m ∈ X : (m, n) 6∈ AC} is finite, and it clearly implies that the rectangle X × Y
witnesses that AC /∈ I0. �

Remark 3.5. One can give an alternate proof of Theorem 3.3 constructing a
Borel reduction of the set C to Gc.

Theorem 3.6. There exist Σ∼
1
n- and Π∼

1
n-complete tall ideals for every n≥ 1.

Proof. First we will construct Σ∼
1
n-complete ideals. Let J be a tall Borel ideal, A

be a perfect J-AD family, and let An be a Σ∼
1
n-complete subset of the Polish space

A. Define In = id(J∪An), i.e. In is the ideal generated by J∪An. Then In is a
tall proper (because An is infinite) ideal. In is Σ∼

1
n because

In =
�

X ⊆ω : ∃ k ∈ω ∃ (Ai)i<k ∈Ak
n X \

�

A0 ∪ A1 ∪ · · · ∪ Ak−1

�

∈ J
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In order to see that In is Σ∼
1
n-complete, we know that if B is a Σ∼

1
n set in a Polish

space X, then it can be reduced to An with a continuous map f : X→A ⊆ P(ω),
furthermore applying the trivial observation that An = In ∩A, we obtain that
this map is in fact a reduction of B to In as well.

Now we proceed with Π∼
1
n ideals. We can assume that n> 1 (see the last two

theorems above). Again, there exists a Π∼
1
n-complete set Bn ⊆ A. The previous

argument gives that the ideal I′n = id(J∪Bn) isΠ∼
1
n-hard, so it is enough to prove

that I′n is Π∼
1
n. In order to see this just notice that since A is an J-AD-family, if

I0 = id(J∪A) then we have

X ∈ I0 \ I′n iff X ∈ I0 and ∃ A∈A \Bn A∩ X ∈ J+.

This implies, as I0 is clearly Σ∼
1
1, that I0 \I′n is a Σ∼

1
n set, and hence I′n is Π∼

1
n (here

we used that I′n ⊆ I0 and that n> 1). �

The idea of the above proof can be used to construct Σ∼
0
α-complete ideals for

α≥ 3 as well.

4. PROOF OF THEOREM 1.6

Proof. Applying Corollary 1.8, we can fix perfect I-AD families AX on every
X ∈ I+. The statement “AX is an I-AD family” is (at most) Π∼

1
2 hence absolute

because if AX = [T] is coded by the perfect tree T ∈ Tree2 = {T ⊆ 2<ω : T is a
tree} then “AX is an I-AD family”≡

∀ x , y ∈ [T]
�

x ∈ I+ and (x = y or x ∩ y ∈ I)
�

where of course we are working on 2ω and (x ∩ y)(n) = x(n) · y(n) for every n.
For every X , Y ∈ I+ let B(X , Y ) = {A∈AX : A∩ Y ∈ I+}. Then it is a continu-

ous preimage of I+ (under AX → P(ω), A 7→ A∩ Y ), hence if I is analytic then
B(X , Y ) is coanalytic, and similarly, if I is coanalytic then B(X , Y ) is analytic.

Let κ = |cV |W and fix an enumeration {Xα : α < κ} of the set I+ ∩ V in W .
Working in W , we will construct the desired I-AD refinement {Aα : α < κ},
Aα ⊆ Xα by recursion on κ. During this process, we will also define a sequence
(Bα)α<κ in I+.

Assume that {Aξ : ξ < α} and (Bξ)ξ<α are done. Let γα be minimal such
that B(Xγα , Xα) contains a perfect set. This property, namely, that an analytic
or coanalytic set H ⊆ P(ω) contains a perfect set, is absolute because if it is
analytic then “H contains a perfect subset” iff “H is uncountable” is of the form
“∀ f ∈ P(ω)ω ∃ x (x ∈ H and x /∈ ran( f ))” hence it is Π∼

1
2; and if H is coanalytic

then “H contains a perfect set” is of the form “∃ T ∈ Tree2 (T is perfect and ∀
x ∈ [T] x ∈ H)” hence it is Σ∼

1
2. In particular, γα ≤ α. We also know that if C is

a perfect set coded in V , then in W it contains κmany new elements: We know
it holds for 2ω e.g. because of the group structure on it, and we can compute
new elements of C along a homeomorphism between C and 2ω fixed in V . Let

Bα ∈ B(Xγα , Xα) \
�

V ∪ {Bξ : ξ < α}
�

be arbitrary,
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and finally, let Aα = Xα ∩ Bα ∈ I+. We claim that {Aα : α < κ} is an I-AD family
(it is clearly a refinement of I+ ∩ V ). Let α,β < κ, α 6= β .

If γα = γβ = γ then Bα, Bβ ∈AXγ are distinct, and hence Aα∩Aβ ⊆ Bα∩Bβ ∈ I

(actually, we can assume that it is finite).
If γα < γβ , then because of the minimality of γβ , we know that B(Xγα , Xβ)

does not contain perfect subsets. It is enough to see that B(Xγα , Xβ) is the same
set in V and W , i.e. if ψ(x , r) is a Σ1

1(r) or Π1
1(r) definition of this set then ∀

x ∈W (ψ(x , r)→ x ∈ V ). Why? Because then Bα /∈ B(Xγα , Xβ) but Bα ∈AXγα
,

hence it yields that Aα ∩ Aβ ⊆ Bα ∩ Xβ ∈ I.
The set K := B(Xγα , Xβ) is analytic or coanalytic and does not contain perfect

subsets (neither in V nor in W ). Applying the Mansfield-Solovay theorem, we
know that K ⊆ L[r] (r ∈ V ). We also know that (L[r])V ∩ P(ω) = (L[r])W ∩
P(ω) holds because ωW

1 ⊆ V , hence KV = KW . �

Remark 4.1. It is natural to ask the following: Assume that V ⊆W are transitive
models, W contains new reals, and let C be a perfect set coded in W . Does C
contain at least |cV |W many new elements in W? In other words: Does |CW \
V |W ≥ |cV |W hold? Surprisingly, the answer is no! Moreover, it is possible that
there is a perfect set of groundmodel reals in the extension, see [VW98].

Remark 4.2. What can we say about possible generalizations of Theorem 1.6,
for example, can we weaken the condition on the complexity of the ideal? In
general, this statement is false. Let ϕ(x) be a Σ1

2 definition of a Σ1
2 (i.e. ∆1

2)
prime P-ideal I in L. (How to construct such an ideal? Using a ∆1

2-good well-
order ≤ on P(ω), by the most natural recursion, at every stage extending our
family with a ≤-minimal element which can be added without generating P(ω)
and also with a ≤-minimal pseudounion of the previous elements, avoiding
universal quantification by applying goodness, we obtain such an ideal.) We
cannot expect that ϕ(x) defines an ideal in general but we can talk about the
generated ideal: x ∈ J iff “∃ y ∈ I x ⊆ y” which is Σ1

2 too. If r is a Sacks real
over L, then J is still a prime P-ideal in L[r] (see [BrJ, Lemma 7.3.48]) hence
J+ ∩ L does not have any J-ADR’s in L[r].

5. ON THE EXISTENCE OF PERFECT (I, Fin)-AD FAMILIES

First of all, we show that the reverse implication in the first part of Corollary
1.8 does not hold.

Example 5.1. The assumption that there is a perfect (I, Fin)-AD family does not
imply that I is meager: Fix a prime ideal J onω. For every partition P = (Pn)n∈ω
ofω into finite sets, fix an XP ∈ [ω]ω such that AP =

⋃

{Pn : n ∈ XP} ∈ J (notice
that J cannot be meager); and let the ideal I on 2<ω be generated by the sets
of the form A′P =

⋃

{2k : k ∈ AP}.
Clearly, the family {{ f � n : n ∈ ω} : f ∈ 2ω} of branches of 2<ω is a perfect

AD family. We show that { f � n : n ∈ ω} ∈ I+. Notice that {dom(s) : s ∈ A′P} =
AP ∈ J for every P. Thus, a set of the form B f = { f � n : n ∈ ω} cannot be an
element of the ideal because {dom(s) : s ∈ B f }=ω.
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I is not meager: Assume the contrary, then by Theorem 1.7 there exists a
partition Q = (Qn)n∈ω of 2<ω into finite sets such that {n ∈ω : Qn ⊆ A} is finite
for every A∈ I. Then there is a partition P = (Pn)n∈ω of ω into finite sets such
that for every n there is an m with Qm ⊆

⋃

{2k : k ∈ Pn}. We know that A′P ∈ I,
a contradiction because A′P contains infinitely many Qm’s.

What can we say if there are perfect (I, Fin)-AD families on every X ∈ I+? In
this case we have only consistent counterexamples.

Theorem 5.2. Assume that b = c. Then there is a non-meager ideal I on ω such
that there are perfect (I, Fin)-AD families on every X ∈ I+.

Proof. Let [ω]ω = {Xα : α < c} and {partitions of ω into finite sets} = {Pα =
(Pαn )n∈ω : α < c} be enumerations. We will construct the desired ideal I as an
increasing union

⋃

{Iα : α < c} of ideals by recursion on α < c. At the αth stage
we will make sure that

(i) Iα is generated by |α| many elements;
(ii) Pα cannot witness that Iα is meager;

(iii) either Xα belongs to Iα or there is a perfect (Iα, Fin)-AD family on Xα;
(iv) we do not destroy the (Iβ , Fin)-AD families we may have constructed

in previous stages.

Let I0 = Fin and fix a perfect AD family A0 on X0. At stage α > 0 we already
have the ideals Iβ for every β < α, let I<α =

⋃

{Iβ : β < α}. We also have
perfect (I<α, Fin)-AD families Aβ on Xβ ∈ I+<α for certain β ∈ Dα ⊆ α.

If we can add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) = ; for every β ∈ Dα,
then let I′α = id(I<α ∪ {Xα}) and D′α = Dα.

Suppose that we cannot add Xα to I<α, that is, Aβ ∩ id(I<α ∪ {Xα}) 6= ; for
some β ∈ Dα. Since I<α is generated by < b = c many sets, it is an everywhere
meager ideal (see [So77] or [Bl10, Thm. 9.10]). We can apply Corollary 1.8
to obtain a perfect (I<α, Fin)-AD family Aα on Xα, let I′α = I<α, and let D′α =
Dα ∪ {α}.

Fix a partition Q = (Qn)n∈ω of ω into finite sets such that {n ∈ω : Qn ⊆ A} is
finite for every A∈ I′α (we know that I′α is meager).

Claim. There exist partitions Qβ ,B = (Q
β ,B
n )n∈ω for every β ∈ D′α and B ∈ I′α such

that A∩Qβ ,B
n \ B 6= ; for every β ∈ D′α, A∈Aβ , B ∈ I′α, and n ∈ω.

Proof of the Claim. Let β ∈ D′α and B ∈ I′α. We know that Aβ is compact as a
subset of P(ω). Basic open sets in P(ω) are of the form [s, t] = {A⊆ω : s∩A= ;
and t ⊆ A} for disjoint, finite s, t ⊆ ω. Then Aβ ⊆

⋃

{[;, {n}] : n ∈ ω \ B}
because A\B is infinite for every A∈Aβ . ThereforeAβ ⊆

⋃

{[;, {n}] : n ∈ N0\B}
for an N0 ∈ω, in particular, A∩N0 \B 6= ; for every A∈Aβ . Let Qβ ,B

0 = [0, N0).
We can proceed by the same argument: Aβ ⊆

⋃

{[;, {n}] : n ∈ [N0,ω) \ B}
hence there is an N1 > N0 such that Aβ ⊆

⋃

{[;, {n}] : n ∈ [N0, N1) \ B}, in

other words, A∩ [N0, N1) \ B 6= ; for every A∈Aβ . Let Qβ ,B
1 = [N0, N1) etc. �
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Now we have the family Q= {Pα}∪{Q}∪{Qβ ,B : β ∈ D′α, B ∈ Cα} of partitions
where Cα ⊆ I′α is a cofinal family, |Cα| ≤ max{|α|,ω}. |Q| < c = b hence
there is a partition R = (Rm)m∈ω which dominates all of these partitions, that
is, ∀ P = (Pn)n∈ω ∈ Q ∀∞ m ∃ n Pn ⊆ Rm (see [Bl10, Thm. 2.10]). Let
Y =

⋃

{R2n : n ∈ω} and Iα = id(I′α ∪ {Y }).
Then (i) is clearly satisfied, in order to see (ii) notice that by the fact that the

partition Rm was dominating and Pα ∈ Q, for almost every m there exists an n
with Pαn ⊂ R2m. Condition (iii) is also clear if Xα ∈ I′α.

If Xα 6∈ I′α then by definition α ∈ D′α so to see (iii) and (iv) we have to show
that for every β ∈ D′α the family Aβ is not just an (I′α, Fin)-AD family, but also an
(Iα, Fin)-AD family. In other words, it is enough to check that for every A∈Aβ
and B ∈ I′α we have A \ (B ∪ Y ) 6= ;. Fix such A and B, we can assume that

B ∈ Cα. Then for almost every m, there is an nm such that Qβ ,B
nm
⊆ R2m+1, and

by the claim we know that A∩Qβ ,B
nm
\ B 6= ;. Therefore, A \ (B ∪ Y ) is infinite,

hence Aβ ∩ Iα = ; for every β ∈ D′α. �

What can we say about ideals on the second level of the projective hierarchy,
do there always exist perfect or at least uncountable (I, Fin)-AD families? If all
Σ∼

1
2 and Π∼

1
2 sets have the Baire property, then of course, yes because then Σ∼

1
2

and Π∼
1
2 ideals are meager and we can apply Corollary 1.8. On the other hand, if

I is a Σ1
2 (i.e. ∆1

2) prime ideal (e.g. in L) then every I-AD family is a singleton.
Similarly, we can construct a Σ1

2-ideal J in L such that there are infinite J-AD
families but all of them are countable: Copy the above ideal I to the elements
of a partition {Pn : n ∈ω} ⊆ [ω]ω of ω, and let J be the generated ideal.

This last example is very artificial in the sense that, this ideal is constructed
from maximal ideals in a very “obvious” way, many of its restrictions are prime
ideals. However, we can construct even more peculiar ideals:

Proposition 5.3. Suppose that there exists a ∆∼
1
n prime ideal on ω for some n.

Then there exists a ∆∼
1
n ideal I such that I is nowhere maximal but every I-AD

family is countable. In particular, there exists such a ∆∼
1
2 ideal in L.

Proof. Let U be an ultrafilter and define µ : P(ω)→ [0, 1] as µ(A) = limU
|A∩n|

n
where limU stands for the U-limit operation on sequences in topological spaces,
that is, limU(an) = a iff {n ∈ ω : an ∈ V} ∈ U for every neighbourhood V of
a. It is easy to see that if {an : n ∈ω} is compact, then limU(an)n∈ω exists, in
particular, µ is defined on every A ∈ P(ω). It is also straightforward to show
that µ is a finitely additive non-atomic probability measure on P(ω), that is,
µ(;) = 0, µ(A∪ B) = µ(A) + µ(B) if A∩ B = ;, µ(ω) = 1, and if µ(X ) = ε > 0
then for every δ ∈ (0,ε) there is a Yδ ⊆ X with µ(Yδ) = δ.

Let I = {A ⊆ ω : µ(A) = 0}. Then I is an ideal. I is nowhere maximal
because of µ is non-atomic (in particular, there are infinite I-AD families). We
show that every I-AD family is countable. If there was an uncountable I-AD
family A, then An = {A ∈ A : µ(A) > 1/n} would be uncountable for some
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n ∈ ω and therefore among every n many element of An there would be two
with I-positive intersection.

Notice that if U is ∆∼
1
n (n ≥ 2) then I is also ∆∼

1
n because A ∈ I iff ∀ k ∈ ω

{n ∈ ω : |A∩ n|/n < 2−k} ∈ U, and the function A 7→ {n ∈ ω : |A∩ n|/n < 2−k}
is continuous (for every k). �

6. ON (I, Fin)-ADR’S

In this section, we study Question 1.10.

Theorem 6.1. Assume MAκ and let I be an everywhere meager ideal, then every
H ∈ [I+]≤κ has an (I, Fin)-ADR.

Proof. Let H = {Hα : α < κ} be an enumeration. Define p ∈ P = P(H) iff p is
a function, dom(p) ∈ [κ]<ω, and p(α) ∈ [Hα]<ω for every α ∈ dom(p); p ≤ q
iff dom(p) ⊇ dom(q), ∀ α ∈ dom(q) p(α) ⊇ q(α), and ∀ {α,β} ∈ [dom(q)]2

p(α)∩ p(β) = q(α)∩ q(β).

Then P is a poset. First of all, we show that P has the ccc. Let {pξ : ξ < ω1} ⊆
P. Then {dom(pξ) : ξ < ω1} ⊆ [κ]<ω. We can assume that this family forms
a ∆-system, dom(pξ) = Dξ ∪ R. There are at most ω many functions R→ Fin,
hence we can also assume that there is a q ∈ P such that pξ � R = q for every
ξ < ω1. Clearly, pξ ∪ pζ ∈ P and pξ ∪ pζ ≤ pξ for every ξ,ζ < ω1.

It is easy to see that for every α < κ the set Dα = {p ∈ P : α ∈ dom(p)}
is dense in P. If G is a {Dα : α < κ}-generic filter, then let FG : κ → P(ω),
FG(α) =

⋃

{p(α) : p ∈ G}. Clearly, FG(α) ⊆ Hα for every α.

We show that FG(α)∩FG(β) is finite for every distinctα,β < κ. Let p ∈ Dα∩G,
q ∈ Dβ ∩G, and r ∈ G be a common lower bound of them. It is easy to see that
FG(α)∩ FG(β) = r(α)∩ r(β).

If somehow we can make sure that FG(α) ∈ I+, then we are done because
{FG(α) : α < κ} will be an (I, Fin)-ADR of H. We show that if G is (V,P)-
generic then FG(α) is a Cohen-real in P(Hα) over V . It is enough because then
FG(α) /∈ I � Hα (we know that I � Hα is meager) and to show that V [FG(α)] |=
FG(α) /∈ I � Hα, it is enough to use countable many dense sets. Why? For every
α we can fix a countable family Cα = {Cαn : n ∈ ω} of closed nowhere dense
subsets of P(Hα) which covers I � Hα, and hence have countable many dense
subsets of the Cohen forcing such that if a filter is generic for this family then
the generic real is not covered by any element of Cα. More precisely, we have to
translate these dense subsets of the Cohen forcing to dense subsets in P, it can
be done by applying the (inverse of the) projection P→ C(Hα) defined below.

Fix an α < κ, let C(Hα) = {s : s is a finite partial function form Hα to 2}
where s ≤ t iff s ⊇ t (then C(Hα) adds a Cohen subset of Hα over V ), and
define the map e = eα : P→ C(Hα) as follows:

(i) dom(e(p)) =
⋃

{p(β)∩Hα : β ∈ dom(p)};
(ii) e(p)(n) = 1 iff n ∈ p(α).
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We show that e is a projection (see e.g. [A11, page 335]) , that is,

(1) e is order-preserving, onto, and e(;) = ;;

(2) ∀ p ∈ P ∀ s ∈ C(Hα)
�

s ≤ e(p)→∃ p′ ≤ p e(p′) = s
�

.

Clearly, e(;) = ;. Assume that p ≤ q. Then clearly dom(e(p)) ⊇ dom(e(q)).
If n ∈ dom(e(q)) and n ∈ q(α) ⊆ p(α) then e(q)(n) = e(p)(n) = 1; if n ∈
dom(e(p)) and n ∈ q(β) \ q(α) for some β 6= α then, as p(α) ∩ p(β) = q(α) ∩
q(β), n ∈ p(β) \ p(α) and hence e(q)(n) = e(p)(n) = 0. This yields that e is
indeed order preserving.

To show that e is onto, we have to assume that Hα ⊆
⋃

{Hβ : β 6= α} (and
w.l.o.g. we can do so by extending H to be a cover of ω and adding ω as an
element to H). For an s ∈ C(Hα) define p ∈ P as follows: Fix a finite D ⊆ κ
containing α such that dom(s) ⊆

⋃

{Hβ : β ∈ D}, let dom(p) = D, and define
p(α) = s−1(1) and p(β) = {n ∈ Hβ ∩Hα : s(n) = 0}. Then e(p) = s.

To show that e satisfies (2), fix a p ∈ P, an s ∈ C(Hα), and assume that
s ≤ e(p). Define p′ ∈ P as follows: For every n ∈ J = (s \ e(p))−1(0) pick a
γn ∈ κ\ {α} such that n ∈ Hγn

. Let dom(p′) = dom(p)∪{γn : n ∈ J} and define
p′(α) = p(α)∪s−1(1), if β ∈ dom(p′)\{α} then p′(β) = p(β)∪{n ∈ J : β = γn}.
It is straightforward to see that p′ ∈ P, p′ ≤ p, and e(p′) = s.

We know that if G is (V,P)-generic then e[G] generates a (V,C)-generic filter
G′. Notice that the Cohen real defined from G′ is FG(α), so we are done. �

Unfortunately, at this moment, we do not know whether we really needed
Martin’s Axiom in the previous theorem or it holds in ZFC. We show that if we
attempt to construct a counterexample, that is, say a tall Borel ideal I and a
family H ∈ [I+]<c without a (I, Fin)-ADR, we have to be careful. Let us define
the following cardinal invariants of tall ideals on ω: The star-additivity of I is

add∗(I) =min
�

|X| : X ⊆ I and > A∈ I ∀ X ∈ X X ⊆∗ A
	

,

the Fodor number of I is

F(I) =min
�

|H| : H ⊆ I+ has no I-ADR
	

,

and the star-Fodor number of I is

F∗(I) =min
�

|H| : H ⊆ I+ has no (I, Fin)-ADR
	

.

Clearly, I is a P-ideal iff add∗(I) > ω. Proposition 1.9 says that F(I) = c
whenever I is everywhere meager; and clearly, F∗(I)≤ F(I).

Fact 6.2. If add∗(I)< F(I) then add∗(I)< F∗(I). If add∗(I) = F(I) then F(I) =
F∗(I).

Proof. Assume that H = {Hα : α < κ} ⊆ I+ where κ = add∗(I) < F(I). First
fix an I-ADR {Aα : α < κ} of H (Aα ⊆ Hα). Then for every α < κ fix a Bα ∈ I

such that Aα ∩ Aβ ⊆∗ Bα for every β < α, and let A′α = Aα \ Bα. Then {A′α : α <
κ} is an (I, Fin)-ADR of H. The second statement can be proved by the same
argument. �
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In particular, if I is an everywhere meager P-ideal and F∗(I)< c, then F∗(I)<
F(I) hence add∗(I)< F(I) and so ω1 ≤ add∗(I)< F∗(I)< c, therefore c≥ω3.

7. MIXING REALS

In this section, we study two closely related properties of forcing notions, one
of which is slightly stronger then “[ω]ω ∩ V has an ADR in VP”.

First of all, let us recall the following definition from the introduction: Let
P be a forcing notion. We say that an f ∈ ωω ∩ VP is a mixing real over V if
| f [X ]∩ Y |=ω for every X , Y ∈ [ω]ω ∩ V . (Clearly, it is enough to require that
f [X ] ∩ Y 6= ; for every X , Y ∈ [ω]ω ∩ V .) If such an f is one-to-one, then we
call it an injective mixing real or a mixing injection.

We already mentioned that mixing reals can be seen as “infinite splitting
partitions” (see the proof below), and that if P adds a mixing injection then it
is easy to find an ADR of [ω]ω ∩ V in VP.

Proposition 7.1. Let P be a forcing notion. Then the following are equivalent:
(i) There is a mixing real f ∈ωω ∩ VP over V .

(ii) There is an f ∈ωω ∩ VP such that f [X ] =ω for all X ∈ [ω]ω ∩ V .
(iii) There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n |X ∩ Yn|=ω.
(iii)’ There is a partition (Yn)n∈ω of ω into infinite sets in VP such that ∀

X ∈ [ω]ω ∩ V ∀ n X ∩ Yn 6= ;.

Proof. (ii)→(i) and (iii)↔(iii)’ are trivial. (ii)↔(iii)’ because let Yn = f −1(n)
(and vice versa). Finally, (i) implies (ii): Fix a partition (Cn)n∈ω of ω into
infinite sets in V and let g : ω→ ω, g � Cn ≡ n. If f is a mixing real over V ,
then h= g ◦ f has the required property. �

Proposition 7.2. Let P be a forcing notion.
(i) If P adds random reals then it adds mixing reals.

(ii) If P adds dominating reals, then it adds mixing reals.
(iii) If P adds Cohen reals then it adds mixing injections.
(iv) If P adds mixing injections then it adds unbounded reals.
(v) If P has the Laver-property, then it does not add injective mixing reals.

Proof. (i): Let λ be the usual probability measure on ωω, that is, λ is uniquely
determined by the values λ([s]) = 2−s(0)−s(1)−···−s(n−1)−n where s : n→ ω and
[s] = { f ∈ ωω : s ⊆ f }. If Nλ = {A ⊆ ωω : λ(A) = 0}, then it is well-know
that Borel(ωω)/Nλ is forcing equivalent to the random forcing. It is enough to
see that the set AX ,Y = { f ∈ ωω : | f [X ]∩ Y | < ω} is a null set in ωω for every
X , Y ∈ [ω]ω: AX ,Y =

⋃

n∈ω{ f ∈ ω
ω : f [X ] ∩ Y ⊆ n} and if X = {xk : k ∈ ω}

and n ∈ ω then { f : f [X ] ∩ Y ⊆ n} = { f : ∀ k f (xk) ∈ n ∪ (ω \ Y )}. Clearly,
∑

{2−m−1 : m ∈ n ∪ (ω \ Y )} = ε < 1 and hence λ({ f : f [X ] ∩ Y ⊆ n}) ≤
limk→∞ ε

k = 0.
(ii): Trivial modification of the proof of the fact (see e.g. [Hb, Fact 20.1])

that adding a dominating real implies adding a splitting real works here as
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well: Adding a dominating real is equivalant to adding a dominating partition
(Pn)n∈ω of ω into finite sets (see [Bl10, Thm. 2.10]), that is, for every partition
(Qm)m∈ω ∈ V ofω into finite sets, ∀∞ n ∃m Qm ⊆ Pn. Now any infinite partition
of ω containing of unions of infinitely many Pn’s satisfy (iii) from Proposition
7.1.

(iii): We can talk about injective Cohen-reals. Simply consider the forcing
notion (Inj,⊇) where Inj = {s ∈ ω<ω : s is one-to-one}, or the forcing notion
(Borel(INJ) \M(INJ),⊆) where INJ = { f ∈ωω : f is one-to-one} is a nowhere
dense closed subset onωω and M(INJ) is the meager ideal on this Polish space.
It is not difficult to see that these forcing notions are forcing equivalent to the
Cohen forcing (moreover, INJ is homemomorphic to ωω).

If c is an injective Cohen-real over V , then c is mixing: For every X , Y ∈ [ω]ω,
the set A′X ,Y = AX ,Y ∩ INJ =

⋃

n∈ω
�

f ∈ INJ : f [X ]∩ Y ⊆ n
	

is meager because
{ f ∈ INJ : f [X ]∩ Y ⊆ n} is closed and nowhere dense in INJ.

(iv): Let f ∈ INJ∩VP be a mixing injection and assume on the contrary that
there is a strictly increasing g ∈ ωω ∩ V such that f , f −1 < g (where of course
f −1 < g means that f −1(k)< g(k) for every k ∈ ran( f )).

We define X = {xk : k ∈ ω}, Y = {yk : k ∈ ω} ∈ [ω]ω in V as follows:
x0 = 0, y0 = g(0), xn = max{g(yk) : k < n}, and yn = g(xn). Suppose that
f (xk) = yl for some k, l ∈ω. If k ≤ l then

f (xk)< g(xk) = g
�

max
m<k

g(ym)
�

≤ g
�

max
m<l

g(ym)
�

= x l < g(x l) = yl ,

a contradiction. Now, if k > l then

xk = f −1(yl)< g(yl)≤max{g(ym) : m< k}= xk

which is again impossible. Thus, f [X ]∩Y = ;, so f cannot be a mixing injection.

(v): Fix a sequence (an)n∈ω ∈ ωω ∩ V satisfying an+1 − an > (n + 2)2n+1

and a0 > 1. Assume that p � ḟ ∈ INJ. Let ġ be a P-name for a function
on ω such that p � ġ(n) = ḟ ∩ (an × an) = {(k, l) ∈ an × an : f (k) = l}
for every n (in particular, p �“ ġ(n) is an injective partial function from an to
an”). Then p � ġ ∈

∏

n∈ωP(an × an) hence, applying the Laver property of
our forcing notion to the name ġ for a function from ω to [ω ×ω]<ω, there
is a q ≤ p and a “slalom” S : ω→

�

[ω×ω]<ω
�<ω

in V which catches ġ, that
is, S(n) ⊆ P(an × an), |S(n)| ≤ 2n, and q � ġ(n) ∈ S(n) for every n. Without
loss of generality we can assume that all elements of S(n) are injective partial
functions an→ an.

Working in V , we will define the sets X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} ∈
[ω]ω by recursion on n such that q � ḟ [X ]∩ Y = ;.

Let x0 ∈ a0 be arbitrary. We know that there is a y0 ∈ a0 such that (x0, y0) /∈
⋃

S(0) (a function cannot cover {(x0, k) : k < a0}).
Assume that we already have Xn = {xk : k ≤ n} and Yn = {yk : k ≤ n} such

that (Xn × Yn)∩
⋃

k≤n

⋃

S(k) = ;. There is an xn+1 ∈ an+1 \ an such that
�

s(xn+1) : s ∈ S(n+ 1), xn+1 ∈ dom(s)
	

∩ Yn = ;.
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Why? If for every m ∈ an+1 \ an there is an sm ∈ S(n+ 1) such that sm(m) ∈ Yn
then there is a set H ∈ [an+1\an]n+2 such that sm = s does not depend on m ∈ H
(because |an+1 \ an| > (n+ 2)2n+1 and |S(n+ 1)| ≤ 2n+1). But it would mean
that H ⊆ dom(s) and |s[H]| ≤ |Yn|= n+ 1 which is a contradiction because s is
injective.

We also want to fix a yn+1 ∈ an+1\an such that yn+1 6= s(xk) for any k ≤ n+ 1,
s ∈ S(n + 1) if xk ∈ dom(s). The set of forbidden values is of size at most
2n+1(n+ 2) hence there is such a yn+1. �

In the diagram below, we summarize logical implications between classical
properties of forcing notions and the ones we defined above. We will show
that arrows without an ∗ above them are strict (i.e. not equivalences), and that
there are no other implications between these properties. The arrow -

with question mark means that we do not know whether this implication holds
(but the reverse implication is false). Of course, C stands for the Cohen forcing,
B is the random forcing, and to keep the diagram small, we did not put “P adds
. . . ” and “P has the . . . ” before the properties we deal with.

C-reals dom. reals

inj. mixing -

∗
-

unb. reals
-

B-reals - mix. reals
?-

∗- spl. real

¬Laver prop.
?

-
-

¬Sacks prop.
?

?

-

The non-trivial non-implications in the diagram are the following:

• ¬Laver prop. 9 splitting reals:1 The infinitely equal forcing EE is ωω-
bounding, preserves P-points (hence cannot add splitting reals), and
�E“2ω∩V is a null set” (see [BrJ, Lemma 7.4.13-15]). EE cannot have
the Laver property because otherwise it would have the Sacks property
as well but then it could not force 2ω ∩ V to be of measure zero (it
follows from e.g. [BrJ, Thm. 2.3.12]).
• unbounded reals9 splitting reals: The Miller forcing (see [BrJ, 7.3.E]).
• spl. reals 9 ¬Sacks prop.: The Silver forcing adds splitting reals (see
[Hb, Lemma 2.3]) and it is straightforward to show that it satisfies the
Sacks property.

We list the remaining questions in the next section.

1Notice that showing “¬Sacks prop. 9 splitting reals” is easier as the Miller forcing is a
natural counterexample (for details see [BrJ, 7.3.E]).
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8. RELATED QUESTIONS

We already presented Σ∼
1
n- and Π∼

1
n-complete ideals but our construction was

pretty artificial.

Question 8.1. Can we define “natural” Σ∼
1
n- and Π∼

1
n-complete ideals?

Question 8.2. Assume that V, W and I are as in Theorem 1.6. Does there exist
an (I, Fin)-ADR of I+ ∩ V in W? Or at least an I-ADR {AX : X ∈ I+ ∩ V} ∈ W
such that for every distinct X , Y ∈ I+ ∩ V (using the notiations from the proof
of Theorem 1.6) there is a BX ,Y ∈ I∩ V such that AX ∩ AY ⊆ BX ,Y ?

Question 8.3. Does there exist a non-meager ideal I (in ZFC) such that there
are perfect (I, Fin)-AD families on every X ∈ I+?

In Example 5.3, assuming that there is a ∆∼
1
2 ultrafilter, we constructed a ∆∼

1
2

ideal I such that every I-AD family is countable but I is nowhere maximal.

Question 8.4. Is it consistent that there are no ∆∼
1
2 ultrafilters but there is a Σ∼

1
2

ideal I such that every I-AD family is countable but I is nowhere maximal?

A remark to Question 8.4: We know (see [BrJ, Thm. 9.3.9 (2)]) that if there
are no dominating reals over L[r] for any r ∈ωω, then there is aΣ1

2 unbounded
hence non-meager filter. If every∆∼

1
2 set is Lebesgue measurable or has the Baire

property, then there are no ∆∼
1
2 ultrafilters. For instance, these conditions above

hold in the Cohen and random models over V = L (see [BrJ, Thm. 9.2.1]). In
these models a non-meager Σ1

2 ideal I must be nowhere maximal (otherwise a
restriction of I would be a∆1

2 prime ideal). It would be interesting to know the
possible sizes of I-AD families in these models.

Question 8.5. Is it consistent that for some (tall) Borel (P-)ideal I a family
H ∈ [I+]<c does not have an (I, Fin)-ADR (i.e. F∗(I)< c)?

Question 8.6. Does adding mixing injections imply adding Cohen reals?

Question 8.7. Does the Sacks property of a forcing notion imply that it does
not add mixing reals?

Proposition 7.1 motivates the following notion: Let n≥ 2. We say that a forc-
ing notion adds an n-splitting partition, if there is a partition (Yk)k<n of ω into
infinite sets in VP such that |X ∩ Yk| =ω for every X ∈ [ω]ω ∩ V and k < n. In
particular, adding 2-splitting partitions is the same as adding splitting reals, and
adding ω-splitting (infinite splitting) partitions is equivalent to adding mixing
reals.

It is easy to see that if P adds a splitting real then the n stage iteration of
P adds a 2n-splitting partition. In fact, splitting reals and n-splitting partitions
cannot be separated in terms of cardinal invariants. Let us denote sn (2 ≤ n <
ω) the least size of a family Sn of partitions of ω into n many infinite sets such
that

(∗) ∀ X ∈ [ω]ω ∃ P = (Pk)k<n ∈ Sn ∀ k < n |X ∩ Pk|=ω.



ALMOST DISJOINT REFINEMENTS AND MIXING REALS 21

Of course, this definition makes sense for n=ω as well but sω stands for an al-
ready defined and studied cardinal invariant. To avoid confusions, let us denote
this cardinal by smix.

Then sn = s = s2 for every 2 ≤ n < ω. For the non-trivial direction, assume
that we have a family S of splitting partitions of size s and consider all possible
“(n− 1)-long iterated nestings” of these partitions. For example, if n = 3 then
to every pair (P = (P0, P1),Q = (Q0,Q1)) of partitions from S we associate
a partition of ω into three infinite sets as follows: Let e0 : ω → Q0 be the
increasing bijection and take the partition (e0[P0], e0[P1],Q1). We obtain sn−1 =
s many partitions ofω into n many infinite sets, the family Sn of these partitions
satisfies (∗), and hence sn ≤ s.

Question 8.8. Does adding n-splitting partitions (2 ≤ n < ω) imply adding
(n+ 1)-splitting partitions?

Question 8.9. Is smix = s? Does adding splitting reals (or n-splitting partitions
for every n) imply adding mixing reals? What can we say about the Silver
forcing? (It is straightforward to see that it adds n-splitting partitions for every
n.)
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A. Hajnal, L. Lovász, V.T. Sós, North-Holland, pages 137-158.

[Bl10] A. Blass: Combinatorial cardinal characteristics of the continuum, Handbook of Set The-
ory, eds.:M. Foreman and A. Kanamori, Springer, 2010, pages 395-491.

[C85] J. Calbrix: Classes de Baire et espaces d’applications continues, C.R. Acad. Sc. Paris, Série
I, 301 (1985), pages 759-762.

[C88] J. Calbrix: Filtres Boréliens sur l’ensemble des entiers et espaces d’applications continues,
Revue Roumaine de Math. Pures et Appl. 33 (1988), pages 655-661.

[E94] F.v. Engelen: On Borel ideals, Ann. Pure Appl. Logic 70, (1994), pages 177-203.
[F] I. Farah: Analytic quotients: theory of liftings for quotients over analytic ideals on the

integers, Memoirs of the American Mathematical Society 148, no. 702, 2000.
[Fl09] J. Flašková: Ideals and sequentially compact spaces, Top. Proc. 33 (2009), pages 107-121.
[Fl10] J. Flašková: The relation of rapid ultrafilters and Q-points to Van der Waerden ideal, Acta

Univ. Carolinae. Mathematica et Physica 51, (2010), no. 4, pages 19-27.
[Hb] L.J. Halbeisen: Combinatorial Set Theory: with a gentle introduction to forcing, Springer-

Verlag (London), 2011.
[Hr11] M. Hrušák: Combinatorics of filters and ideals, in Set theory and its applications, Con-

temp. Math. 533 (2011), Amer. Math. Soc., Providence, RI, pages 29-69.



22 BARNABÁS FARKAS, YURII KHOMSKII, AND ZOLTÁN VIDNYÁNSZKY

[J] T. Jech: Set theory / The Third Millennium Edition, revised and expanded, Springer Mono-
graphs in Mathematics, Springer-Verlag, Berlin, 2003.

[K] A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
[Ma91] K. Mazur: Fσ ideals and ω1ω

∗
1-gaps in the Boolean algebra P(ω)/I , Fund. Math. 138

(1991), pages 103-111.
[Me09] D. Meza-Alcántara: Ideals and filters on countable sets, Ph.D. thesis, Universidad Nacional

Autónoma México, México, 2009.
[So99] S. Solecki: Analytic ideals and their applications, Ann. Pure Appl. Logic 99 (1999), pages

51-72.
[So77] R. C. Solomon: Families of sets and functions, Czechoslovak Math. J. 27(102) (1977),

no. 4, pages 556-559.
[LS08] L. Soukup: Nagata’s conjecture and countably compact hulls in generic extensions, Topol-

ogy Appl. 155 (2008), no. 4, pages 347-353.
[Sz75] E. Szemerédi: On Sets of Integers Containing No k Elements in Arithmetic Progression,

Acta Arith. 27 (1975), pages 199-245.
[VW98] B. Velickovic, W.H. Woodin: Complexity of reals in inner models of set theory, Ann. Pure

Appl. Logic 92/3 (1998), pages 283-295.
[Z90] S. Zafrany: Analytic filters and prefilters, J. Symbolic Logic 55, no. 1 (1990), pages 315-

322.

KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC, VIENNA, AUSTRIA

E-mail address: barnabasfarkas@gmail.com

UNIVERSITY OF HAMBURG, HAMBURG, GERMANY

E-mail address: yurii@deds.nl

ALFRÉD RÉNYI INSTITUTE OF MATHEMATICS, BUDAPEST, HUNGARY

E-mail address: vidnyanszky.zoltan@renyi.mta.hu


