The non-constructive nature of social welfare relations

Giorgio Laguzzi

Albert-Ludwigs-Universität Freiburg

DMV annual meeting, 16th September 2020

Background

Utility streams over an infinite time horizon and/or for models with infinitely many individuals have been extensively studied along the years in economics and social choice theory.

F.P. Ramsey, *A mathematical theory of savings*, The Economic Journal, 1928.

P.A. Diamond, *Evaluation of infinite utility streams*, Econometrica, 1965.

P.C. Fishburn, *Arrow's impossibility theorem: Concise proof and infinite voters*, Journal of economic theory, 1970.

Introduction: social welfare relations Paretian SWRs and Baire property Representation and construction of Asymptotic Pareto SWRs

Infinite utility streams

We consider:

- a set of *utility levels* Y with some given topology (e.g., $Y = \{0, 1\}, [0, 1], \omega$)
- $X := Y^{\omega}$ space of infinite utility streams.

Given $x, y \in X$ we use the following notation:

- $x \leq y$ iff for all $n \in \omega$, $x(n) \leq y(n)$
- x < y iff $x \le y$ and $\exists n \in \omega, x(n) < y(n)$
- $\mathcal{F} := \{ \pi : \omega \to \omega : \text{ finite permutation} \}$

伺 ト イ ヨ ト イ ヨ ト

Efficiency principles

In this context pre-orders \leq (reflexive and transitive relations) on a space of utility streams are usually called *social welfare relations* (SWR).

Definition

A SWR \preceq is said to be:

- strong Pareto (SP) if $\forall x, y \in X(x < y \Rightarrow x \prec y)$
- intermediate Pareto (IP) if for all $x, y \in X$, $\exists^{\infty} n(x(n) < y(n)) \Rightarrow x \prec y$
- weak Pareto (WP) if for all $x, y \in X$, $\forall n(x(n) < y(n)) \Rightarrow x \prec y$.

伺 ト イ ヨ ト イ ヨ ト

-

Introduction: social welfare relations Paretian SWRs and Baire property Representation and construction of Asymptotic Pareto SWRs

Intergenerational equity principles

Definition

A SWR \leq on X is called *anonymous* (AN) if whenever for

 $x, y \in X$ there are $i, j \in \omega$ such that:

•
$$x(i) = y(j)$$
 and $y(i) = x(j)$

• for all
$$k \neq i, j, x(k) = y(k)$$
,

then $x \sim y$.

伺 ト く ヨ ト く ヨ ト

-

In some cases, total SWRs can be well-represented

Definition

Let \leq be a SWR. Then \leq is said to be *represented* by the *utility function* $u: X \to \mathbb{R}$ iff

$$x \leq y \Leftrightarrow u(x) \leq u(y).$$

Easy example: Let $Y = \omega$ and define $u : Y^{\omega} \to \mathbb{R}$ as:

$$u(x) := \min\{x(n) : n \in \omega\}.$$

The associated \leq_u satisfies WP and AN.

Introduction: social welfare relations Paretian SWRs and Baire property Representation and construction of Asymptotic Pareto SWRs

Some results

Proposition (Folklore)

Assume there exists a non-principal ultrafilter on ω . Then there exists a total SWR on 2^{ω} satisfying IP and AN.

伺 ト く ヨ ト く ヨ ト

э

Introduction: social welfare relations Paretian SWRs and Baire property Representation and construction of Asymptotic Pareto SWRs

Some results

Proposition (Folklore)

Assume there exists a non-principal ultrafilter on ω . Then there exists a total SWR on 2^{ω} satisfying IP and AN.

Proposition (Zame, 2007)

If there is a total SWR on $[0, 1]^{\omega}$ satisfying WP and AN, then there is a non-measurable set.

Proposition (Lauwers, 2011)

If there is a total SWR on 2^{ω} satisfying IP and AN, then there is a non-Ramsey set.

| 4 同 1 4 三 1 4 三 1

First General Question

When we combine two equity and/or efficiency principles, investigate whether it is possible to define a welfare function or at least a total SWR associated without using the axiom of choice, and on the contrary whether it has a non-constructive nature.

Second General Question

In case the total SWR reveals a non-constructive nature, investigate the exact fragment of AC associated, in particular compared to other well-known irregular sets (non-Ramsey, non-Lebesgue, non-Baire sets)

伺 ト イ ヨ ト イ ヨ ト

Paretian SWRs and Baire property

同 ト イ ヨ ト イ ヨ ト

э

Question (Bowler, Delommé, Di Prisco, Mathias)

Investigate the interplay between Paretian SWRs and the Baire property.

Proposition (L., 2017)

Assume that there is a total social welfare relation on $X = 2^{\omega}$ satisfying SP and AN. Then there exists a non-Baire set.

The proof is a sort of application of Kuratowski-Ulam theorem. The details of the proof reveal one cannot easily generalise such a method to IP, or to WP with larger utility domains.

伺 ト イ ヨ ト イ ヨ ト

Proposition (Dubey - L., 2020)

Assume there is a total social welfare relation on $X = 2^{\omega}$ satisfying IP and AN. Then there exists a non-Baire set.

Proposition (Dubey - L., 2020)

Let $Y \subseteq \mathbb{R}$ be a set with order type \mathbb{Z} . Assume that there is a total social welfare relation on $X = Y^{\omega}$ satisfying WP and AN. Then there exists a non-Baire set in 2^{ω} .

伺 ト イ ヨ ト イ ヨ ト

The key idea is the use of a variant of Silver trees.

Definition

A tree $p \subseteq 2^{<\omega}$ is called *Silver* tree if and only if p is perfect and for every $s, t \in p$, with |s| = |t| one has $s^{\circ}0 \in p \Leftrightarrow t^{\circ}0 \in p$ and $s^{\circ}1 \in p \Leftrightarrow t^{\circ}1 \in p$.

Note that one can associate any Silver tree p with a partial function $f_p: \omega \to 2$ in such a way that

$$N_{f_p} := \{x \in 2^{\omega} : \forall n \in \operatorname{dom}(f_p)(x(n) = f_p(n))\} = [p]$$

Notation. Let *p* be a Silver tree:

$$egin{aligned} S(p) &:= \omega \setminus \operatorname{dom}(f_p) \ U(p) &:= \{n \in \operatorname{dom}(f_p) : f_p(n) = 1\} \end{aligned}$$

Definition

Let $p \subseteq 2^{<\omega}$ be a Silver tree with $\{n_{\mu}^{p} : k \ge 1\}$ enumeration of $S(p) \cup U(p)$; p is called a *Mathias-Silver* tree ($p \in \mathbb{MV}$) if and only if there are infinitely many triples $(n_{m_i}^p, n_{m_i+1}^p, n_{m_i+2}^p)$'s such that: • for all $j \ge 1$, m_i is even; (2) for all $j \ge 1$, $n_{m_i}^p, n_{m_i+1}^p, n_{m_i+2}^p$ are in S(p) with $n_{m_i}^p + 1 < n_{m_i+1}^p$ and $n_{m_i+1}^p + 1 < n_{m_i+2}^p$; \bigcirc for all i > 1, $t \in p$, i < |t| $(n_{m_i}^{\rho} < i < n_{m_i+1}^{\rho} \lor n_{m_i+1}^{\rho} < i < n_{m_i+2}^{\rho} \Rightarrow t(i) = 0).$ Such $(n_{m_i}^p, n_{m_i+1}^p, n_{m_i+2}^p)$ are called *Mathias triples*.

伺 ト イ ヨ ト イ ヨ ト

Lemma

Given any comeager set $C \subseteq 2^{\omega}$ there exists $p \in \mathbb{MV}$ such that $[p] \subseteq C$.

Definition

A set $X \subseteq 2^{\omega}$ is called *Mathias-Silver measurable set* (or \mathbb{MV} -measurable set) if and only if there exists $p \in \mathbb{MV}$ such that $[p] \subseteq X$ or $[p] \cap X = \emptyset$.

Corollary

If $A \subseteq 2^{\omega}$ satisfies the Baire property, then A is a \mathbb{MV} -measurable set.

伺下 イヨト イヨト

Proposition

Let \leq denote a total SWR satisfying IP and AN on $X = 2^{\omega}$. Then there exists a subset of X which is not \mathbb{MV} -measurable.

Proof-sketch.

Given $x \in 2^{\omega}$, let $U(x) := \{n \in \omega : x(n) = 1\}$ and $\{n_k^x : k \ge 1\}$ enumerate the numbers in U(x). Define

$$\begin{aligned}
o(x) &:= [n_1^x, n_2^x) \cup [n_3^x, n_4^x) \cdots [n_{2j+1}^x, n_{2j+2}^x) \cup \cdots \\
e(x) &:= [n_2^x, n_3^x) \cup [n_4^x, n_5^x) \cdots [n_{2j+2}^x, n_{2j+3}^x) \cup \cdots
\end{aligned} \tag{1}$$

Then put $\Gamma := \{x \in 2^{\omega} : e(x) \prec o(x)\}$. The aim is to show Γ is not \mathbb{MV} -measurable.

・ 同 ト ・ ヨ ト ・ ヨ ト

• • • •

Fix $p \in \mathbb{MV}$ and $x \in [p]$ such that $x(n_k) = 1$, for all $k \in \omega$. We have to find $z \in [p]$ such that

$$x \in \Gamma \Leftrightarrow z \notin \Gamma$$
.

The proof splits into three cases: $e(x) \prec o(x)$, $e(x) \sim o(x)$ and $o(x) \prec e(x)$. We only sketch the case $e(x) \prec o(x)$. Let

$$z(n) := \left\{ egin{array}{cc} x(n) & ext{if } n \notin \left\{ n_{m_1+1}, n_{m_j}, n_{m_j+1} : j > 1
ight\} \\ 0 & ext{otherwise.} \end{array}
ight.$$

Let

$$O(m_1) := [n_1, n_2) \cup [n_3, n_4) \cdots [n_{m_1-1}, n_{m_1}),$$

$$E(m_1) := [n_2, n_3) \cup [n_4, n_5) \cdots [n_{m_1}, n_{m_1+1}).$$

く 山 マ く ヨ マ く

• • • •

Let $\{k_1, k_2, \dots, k_M\}$ enumerate the elements in $O(m_1)$, and let $\{k^1, \dots, k^M\}$ enumerate the initial M elements of the infinite set $\bigcup_{j>1} [n_{m_j}, n_{m_j+1})$. We permute $e(z)(k_1)$ with $e(z)(k^1)$, $e(z)(k_2)$

with $e(z)(k^2)$, continuing likewise till $e(z)(k_M)$ with $e(z)(k^M)$ to obtain $e^{\pi}(z)$. Further, $o^{\pi}(z)$ is obtained by carrying out identical permutation on o(z). Observe that $e^{\pi}(z)$ and $o^{\pi}(z)$ are finite permutations of e(z) and o(z) respectively.

A technical argument allows to show that:

• AN implies
$$e^{\pi}(z) \sim e(z)$$
 and $o^{\pi}(z) \sim o(z)$.

3 IP implies
$$o(x) \prec e^{\pi}(z)$$
 and $o^{\pi}(z) \prec e(x)$.

Combining 1 and 2 (and transitivity) we get $o(z) \sim o^{\pi}(z) \prec e(x) \prec o(x) \prec e^{\pi}(z) \sim e(z) \rightarrow o(z) \prec e(z)$, which implies $z \notin \Gamma$.

Representation and construction of Asymptotic Pareto SWRs

- A 🗄 🕨

- A - E - N

Given $S \subseteq \omega$

$$\underline{d}(S) = \liminf_{n \to \infty} \frac{|S \cap \{1, 2, \cdots, n\}|}{n}.$$

Similarly, the upper asymptotic density of S is defined as follows with lim sup instead of lim inf.

Definition

Upper Asymptotic Pareto (UAP henceforth): Given $x, y \in X$, if $x \ge y$ and there exists $S \subseteq \omega$ such that $\overline{d}(S) > 0$ and for all $i \in S$, x(i) > y(i), then $x \succ y$.

Similarly LAP (Lower Asymptotic Pareto) is defined by using $\underline{d}(S)$.

Theorem (Petri, 2018)

There is a social welfare function $W : Y^{\omega} \to \mathbb{R}$ satisfying LAP and AN iff Y is finite.

Question 1

What happens when we strengthen LAP to UAP?

Question 2

Can we define a total SWR satisfying LAP and AN without using the axiom of choice?

-

Proposition (Dubey - L - Ruscitti, 2020)

There does not exist any social welfare function satisfying UAP and AN on $X = 2^{\omega}$.

Proposition (Dubey - L. - Ruscitti, 2020)

Assume that there is a total social welfare relation on $X = 2^{\omega}$ satisfying UAP and AN. Then there exists a non-Ramsey set.

Proposition (Dubey - L. - Ruscitti, 2020)

Assume that there is a total social welfare relation on $X = \omega^{\omega}$ satisfying LAP and AN. Then there exists a non-Ramsey set.

・ロト ・同ト ・ヨト ・ヨト

Ongoing project: Generalised distributive equity principles

伺 ト イ ヨ ト イ ヨ ト

э

Distributive equity principles

Definition

A SWR on X satisfies Hammond equity (HE) if for every $x, y \in X$ there are $i, j \in \omega$ such that

•
$$x(i) < y(i) < y(j) < x(j)$$

• for all
$$k \neq i, j, x(k) = y(k)$$
,

then $x \prec y$.

Ongoing project

- Generalise the Hammond equity principles in order to always rank $\langle 1, 2, 1, 2, 1, 2... \rangle$ being better-off than $\langle 0, 3, 0, 3, 0, 3... \rangle$;
- Avoid pathogical cases where the reduction of inequality occurs on a very sparse set, so that such equity principle raises conflict even with basic intuitive weak efficiency principles.

Question

Study the representation and constructive nature of SWRs satisfyng these generalised Hammond equity principles.

THANK YOU FOR YOUR ATTENTION!

- 4 同 6 4 日 6 4 日 6

Some references

- R.S. Dubey, G. Laguzzi, F. Ruscitti, On the representation and construction of social welfare orders, Mathematical Social Science, Volume 7, 2020.
- R.S. Dubey, G. Laguzzi, Paretian social welfare relations and Baire property, submitted.
- Luc Lauwers, Ordering infinite utility streams comes at the cost of a non-Ramsey set, Journal of Math. Economics, Volume 46, 2009.
- William R. Zame, Can intergenerational equity be operationalized?, Theoretical Economics 2, 2007.