$\begin{array}{l} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

κ -trees and Cohen κ -sequences

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and Wolfgang Wohofsky)

Universität Freiburg

Amsterdam, August 2018

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and K-trees and Cohen K-sequences

Tree-forcing

In set theory of the reals some rather important objects are the so-called *tree-forcings*. This kind of forcings plays a relevant role in many applications regarding cardinal characteristics and regularity properties.

Definition

- T ⊆ 2^{<κ} is called *perfect tree* iff T is closed under initial segments, T is closed under increasing < κ-sequences of nodes and ∀s ∈ T∃t ∈ T such that s ⊆ t and t is *splitting*.
- P is called *tree-forcing* iff every p ∈ P is a perfect tree and for every t ∈ P, T_t ∈ P too, and we define q ≤ p ⇔ q ⊆ p.

• □ ▶ • • □ ▶ • • □ ▶

 $\begin{array}{c} \text{Introduction}\\ \text{Mathias forcing and Cohen sequences}\\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

Tree-ideals and tree-measurability

Definition

- X is P-open dense iff ∀T ∈ P∃T' ⊆ T(T' ∈ P∧ [T'] ⊆ X). The complement of a P-open dense set is called P-nowhere dense. X is P-meager iff it can be covered by a ≤ κ-size union of P-nowhere dense sets. The ideals of P-nowhere dense sets and P-meager sets are respectively denoted by N_P and I_P.
- X is \mathbb{P} -measurable iff for every $T \in \mathbb{P}$ there is $T' \subseteq T$, $T' \in \mathbb{P}$ such that $[T'] \cap X \in \mathcal{I}_{\mathbb{P}}$ or $[T'] \setminus X \in \mathcal{I}_{\mathbb{P}}$.

Some results about regularity properties at κ

- (Schlicht) The Levy collapse of an inaccessible to κ⁺ gives a model where all projective sets have the perfect set property.
- (Lücke, Motto Ros, Schlicht) The Levy collapse of an inaccessible to κ⁺ gives a model where all Σ¹₁ sets have the Hurewicz dichotomy.
- (Friedman, Khomskii, Kulikov) Let P be a tree forcing which is either κ⁺-cc or satisfies κ-axiom A. Then a κ⁺-iteration of P with support of size κ yields Δ₁¹(P).
- (L.) A κ⁺ iteration with support of size < κ of κ-Cohen forcing gives a model where all projective sets are Silver measurable.

 $\begin{array}{c} \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \operatorname{vs} \operatorname{cov}(\mathcal{M}) \end{array}$

$\kappa\text{-Mathias}$ forcing and Cohen $\kappa\text{-sequences}$

< A >

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and k-trees and Cohen k-sequences

What we know from the standard ω -case:

- MA has pure decision, satifies the Laver property (and so does not add Cohen reals)
- $\mathbb{MA}_{\omega_2} \Vdash \mathfrak{b} > \mathsf{cov}(\mathcal{M})$

•
$$\mathbb{MA}_{\omega_1} \Vdash \mathbf{\Sigma}^1_2(\mathbb{MA}) \land \neg \mathbf{\Delta}^1_2(\mathbb{C}).$$

 $\begin{array}{c} \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathfrak{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

 κ -Mathias forcing MA for κ uncountable is defined as the poset of pairs (s, A), where $s \subseteq \kappa$ of size $< \kappa$ and $A \subseteq \kappa$ of size κ such that $\sup(s) < \min(A)$, with $(s, A) \ge (t, B) \Leftrightarrow t \supseteq s \land A \subseteq B \land t \setminus s \subseteq A$.

Remark

Note that for \mathbb{MA}^{Club} we have the following two straightforward facts:

MA^{Club} adds Cohen κ-reals. Let z be the canonical MA^{Club}-generic set and then define c ∈ 2^κ by: c(α) = 0 iff the α + 1-st element of z is in S (where S ⊆ κ is stationary and co-stationary). One can easily check that c is κ-Cohen.
MA^{Club} does not have pure decision. In fact, let T ∈ MA^{Club} and α ∈ κ such that T does not decide the α-th element of z. Consider the formula φ = "the α-th element of z is in S"; then φ cannot be purely decided by T.

・ロト ・同ト ・ヨト ・ヨト

We now want to show that we can build a somehow more general κ -Cohen sequence which occurs even in cases when the set of splitting levels of a κ -Mathias condition is not a club. Let $\{\gamma_i : i < \kappa\}$ enumerate the limit ordinals $< \kappa$.

Fix a stationary and costationary set $S \subseteq \{\alpha < \kappa : cf(\alpha) = \omega\}$. Given $x \in [\kappa]^{\kappa}$, $x := \{\alpha_{\gamma} : \gamma < \kappa\}$, we define, for $i < \kappa$:

$$C_{\mathsf{x}}(i) := \begin{cases} 0 & \text{iff } \sup\{\alpha_{\gamma_i+n} : n \in \omega\} \in \mathcal{S}. \\ 1 & \text{else.} \end{cases}$$

Claim

If x is MA-generic, then C_x is κ -Cohen.

Sketch of the proof.

Let $(s, A) \in \mathbb{MA}$, \bar{c} the part of C_x decided by (s, A) and $\sigma \in 2^{<\kappa}$ arbitrarily fixed. It is enough to show that there exists $(t, B) \leq (s, A)$ such that $(t, B) \Vdash \bar{c}^{\frown} \sigma \subseteq C_x$. Let $A := \{\alpha_{\gamma}^A : \gamma < \kappa\}$. Define $\beta_j^A := \sup\{\alpha_{\gamma_j+n}^A : n \in \omega\}$. Then we can freely remove elements from A in order to find $B \subseteq A$ such that

$$\beta_j^B \in S \Leftrightarrow \sigma(j) = 0.$$

Hence by fixing $t \subseteq B$ sufficiently long, we get (t, B) as desired.

 $\begin{array}{c} \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

Two important topological differences from the ω -case

Proposition (Proposition 1)

 $\mathcal{N}_{\mathbb{MA}}\neq\mathcal{I}_{\mathbb{MA}}.$

Proposition (Proposition 2)

Let Γ be a topologically reasonable family of subsets of κ -reals. Then $\Gamma(\mathbb{MA}) \Rightarrow \Gamma(\mathbb{C})$.

• □ ▶ • □ ▶ • □ ▶ •

(Remind that $\Gamma(\mathbb{P}) :=$ every set in Γ is \mathbb{P} -measurable.)

Proof of Proposition 1.

Define

$$X_i := \{x \in [\kappa]^{\kappa} : \forall j > i, C_x(j) = 0\}.$$

It is clear that for each $i < \kappa$, $X_i \in \mathcal{N}_{M\mathbb{A}}$; indeed, let $T \in \mathbb{M}\mathbb{A}$ and pick j > i so large that $\gamma_j > ot(\{\alpha : \operatorname{STEM}(T)(\alpha) = 1\})$. Then, one can easily shrink T in order to get $[T'] \cap X_i = \emptyset$, in a similar way as we argued before to prove that C_x was κ -Cohen. But $X := \bigcup_{i < \kappa} X_i \notin \mathcal{N}_{M\mathbb{A}}$; indeed, for every $T \in \mathbb{M}\mathbb{A}$, we can always find $z \in [T]$ and $i < \kappa$ such that for all j > i, $C_z(j) = 0$, which proves $[T] \cap X \neq \emptyset$ (e.g., it is enough to pick $\gamma_i > ot(\{\alpha : \operatorname{STEM}(T)(\alpha) = 1\}).)$

Proof of Proposition 2.

W.I.o.g. assume every $T_{(s,A)} \in \mathbb{MA}$ is such that ot(s) is a limit ordinal. Define a map $\varphi : 2^{\kappa} \to 2^{\kappa}$ as follows: for every $x \in 2^{\kappa}$,

$$arphi(x)(j) := egin{cases} 0 & ext{iff sup } eta_j^x \in S \ 1 & ext{else}, \end{cases}$$

where remind $\beta_j^x := \sup\{\alpha_{\gamma_j+n}^x : n \in \omega\}$. Moreover let $\varphi^* : 2^{<\kappa} \to 2^{<\kappa}$ be its associated *approximating function*. Let $X \in \Gamma$ and $Y := \varphi^{-1}[X]$. By assumption Y is MA-measurable. We aim to prove X has the Baire property.

• • • •

Sublemma: Let $T \in MA$. If $Y \cap [T]$ is MA-comeager in [T], then $X \cap [\varphi^*(\text{STEM}(T))]$ is comeager in $[\varphi^*(\text{STEM}(T))]$. We give a sketch of the proof of this Sublemma. Pick $\{B_{\alpha} : \alpha < \kappa\}$ be a \subseteq -decressing sequence of MA-open dense sets in [T] such that $\bigcap_{\alpha \leq r} B_{\alpha} \subseteq Y \cap [T]$. AIM: Find $\{U_{\alpha} : \alpha < \kappa\}$ open dense sets in $[\varphi^*(\text{STEM}(\mathcal{T}))]$ such that $\bigcap_{\alpha \leq \kappa} U_{\alpha} \subseteq X \cap [\varphi^*(\text{STEM}(T))].$ The set U_{α} are obtained as $U_{\alpha} := \bigcup \{ [\varphi^*(\text{STEM}(T(t)))] : t \in \kappa^{<\alpha} \}, \text{ where the } T(t) \text{'s are} \}$ recursively built as follows. Fix an enumeration $\{\sigma_j : j < \kappa\}$ of all $\sigma \in 2^{<\kappa}$. Given $t \in \kappa^{\alpha}$ we can find $S(t^{j}) \leq T(t)$ so that $\varphi^*(\operatorname{STEM}(S(t^{j})) \supseteq \varphi^*(\operatorname{STEM}(T(t))^{\frown} \sigma_i)$ Then we pick $T(t^{j}) \leq S(t^{j})$ so that $T(t^{j}) \in B_{|t|}$. For $t \in \kappa^{\alpha}$ with α limit ordinal, simply put $T(t) := \bigcap_{\xi < \alpha} T(t \upharpoonright \xi)$. $\begin{array}{c} \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

• • • •

The construction then satisfies the following points:

• for every
$$t\in\kappa^{lpha+1}$$
, we have $[{\mathcal T}(t)]\subseteq {\mathcal B}_{\!lpha};$

• $U_{\alpha+1} := \bigcup_{t \in \kappa^{\alpha+1}} [\varphi^*(\operatorname{STEM}(T)(t))]$ is dense in U_{α} .

Note also that we can refine the choice of the $T(t^{\frown}j)$ in order to get for every $i \neq j$, $[STEM(T(t^{\frown}i))] \cap [STEM(T(t^{\frown}j))] = \emptyset$. Hence $\bigcap_{\alpha < \kappa} U_{\alpha}$ is dense in $[\varphi^*(STEM(T))]$. Finally, to show $\bigcap_{\alpha < \kappa} U_{\alpha} \subseteq X \cap [\varphi^*(STEM(T))]$ we argue as follows: pick $x \in \bigcap_{\alpha} U_{\alpha}, \eta \in \kappa^{\kappa}$ (unique) so that $x \in [\varphi^*(STEM(T_{\eta \upharpoonright \alpha}))]$, for every $\alpha < \kappa$. Then pick $y \in \bigcap_{\alpha < \kappa} [T_{\eta \upharpoonright \alpha}]$ so that $\varphi(y) = x$. By construction $y \in \bigcap_{\alpha < \kappa} B_{\alpha} \subseteq Y \cap [T]$, and so $\varphi(y) := x \in \varphi[Y] := X$. q.e.d (Sublemma)

- 4 同 6 4 日 6 4 日 6

 $\begin{array}{c} \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

• • • •

Now for every $t \in 2^{<\kappa}$, pick $T \in \mathbb{MA}$ so that $\varphi[[T]] = [t]$ (i.e., $\varphi^*(\text{STEM}(T)) = t$). Since we are assuming Y is \mathbb{MA} -measurable, it follows:

- there is $T' \leq T$ such that $Y \cap [T']$ is MA-comeager, and so $\varphi^*(\text{STEM}(T')) := t' \supseteq t$ is such that $X \cap [t']$ is comeager in [t'] by the Sublemma applied to Y, or
- there is $T' \leq T$ such that $Y \cap [T']$ is MA-meager, and so $\varphi^*(\text{STEM}(T')) := t' \supseteq t$ is such that $X \cap [t']$ is meager in [t'] by the Sublemma applied to $\kappa^{\kappa} \setminus Y$.

Hence, we get

 $\forall t \in 2^{<\kappa} \exists t' \supseteq t([t'] \cap X \text{ is meager } \lor [t'] \cap X \text{ is comeager}),$

・ロト ・同ト ・ヨト ・ヨト

which means X has the Baire property.

 $\begin{array}{l} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathcal{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

$\mathsf{add}(\mathcal{I}_\mathbb{S}) \mathsf{vs} \mathsf{cov}(\mathcal{M})$

æ

<ロト <部ト < 注ト < 注ト

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and K-trees and Cohen K-sequences

Amoeba for Sacks

We start with an example for Sacks forcing in the $\omega\text{-case}.$

Definition

We define \mathbb{AS} the poset consisting of pairs (n, T), with T perfect tree and $n \in \omega$. The ordering is given by:

 $(n',T') \leq (n,T) \Leftrightarrow n' \geq n \wedge T' \subseteq T \wedge T' \restriction n = T \restriction n.$

Given a generic filter G for \mathbb{AS} , one may easily check that $T_G := \bigcap \{T : (n, T) \in G\}$ is a perfect tree such that each branch is Sacks generic. From now on we refer to T_G as a **generic tree**.

Remark

Let T_G be the generic tree and $\{t_n : n \in \omega\}$ be the sequence of its leftmost splitting nodes. Define $z \in 2^{\omega}$ so that z(n) = 0 iff $|t_{n+1}| \le \min\{|t| : t \in SPLIT(T_G) \land t \supseteq t_n^{\frown}0\}.$

 $\begin{array}{c} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathfrak{S}}) \operatorname{vs} \operatorname{cov}(\mathcal{M}) \end{array}$

It easy to check that z is a Cohen real.

However, there is way to define finer versions of Sacks-amoeba in order to *kill* this kind (and all other kinds) of Cohen reals. This in particolar implies that one can force

 $\mathsf{add}(\mathcal{I}_\mathbb{S}) > \mathsf{cov}(\mathcal{M}).$

(Similar situations occur for Miller and Laver forcing (Spinas, 1995).)

But what about the generalized context?

 $\begin{array}{c} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \operatorname{vs} \operatorname{cov}(\mathcal{M}) \end{array}$

Amoeba for Sacks in 2^{κ}

э

- ∢ ⊒ →

<ロト < 同ト < 三ト

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and K-trees and Cohen K-sequences

 $\begin{array}{l} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

Club Sacks forcing

There are several ways to generalize Sacks forcing. For instance one can consider the following.

Definition

Let $T \subseteq 2^{<\kappa}$ be a perfect tree. We say T is club Sacks iff for each $x \in [T]$ one has

 $\{\alpha < \kappa : x \upharpoonright \alpha \text{ is splitting}\}\$ is club.

The forcing consisting of this kind of trees is called **club Sacks** forcing and denoted by \mathbb{S}^{Club} .

Amoeba for club Sacks

Definition

Define \mathbb{AS}^{Club} as the poset consisting of pairs (p, T), with T club Sacks tree in $2^{<\kappa}$ and $p \subset T$ club subtree with size $< \kappa$. The order is:

$$(p',T') \leq (p,T) \Leftrightarrow p' \supseteq^{\mathsf{end}} p \land T' \subseteq T.$$

As in the ω -case, given a generic filter G for $\mathbb{AS}^{\mathsf{Club}}$, one can check that $T_G := \bigcap \{T : (\alpha, T) \in G\}$ is a club Sacks tree of generic branches.

Some important properties:

- $\mathbb{AS}^{\mathsf{Club}}$ satisfies κ -axiom A, for κ inaccessible.
- $\mathbb{AS}^{\mathsf{Club}}$ satisfies **quasi pure decision**: for every $D \subseteq \mathbb{AS}$ dense, $(p, T) \in \mathbb{AS}$, there is T' such that for every $(q, S) \leq (p, T')$,

$$(q,S)\in D\Rightarrow (q,T'{\upharpoonright}q)\in D.$$

As in the ω -case, $\mathbb{AS}^{\mathsf{Club}}$ adds κ -Cohen reals.

Here we are going to prove a much stronger result, showing that when you have a Sacks tree (not necessarily with club splitting) one can always code a sort of κ -Cohen sequence *inside* the tree. This will then yield to the proof that $add(\mathcal{I}_{\mathbb{S}}) \leq cov(\mathcal{M})$.

Coding by stationary sets

Let κ be inaccessible. Fix $\{S_{\tau} : \tau \in 2^{<\kappa}\}$ family of pairwise disjoint stationary subsets of $\{\alpha < \kappa : cf(\alpha) = \omega\}$.

Lemma (Pruning Lemma)

Let $\{D_{\alpha} : \alpha < \kappa\}$ be a \subseteq -decreasing family of open subsets of 2^{κ} , $T \in \mathbb{S}$. There exists $T^* \leq_{\alpha} T$ such that for all $\alpha \in \lim(\kappa)$ there is $\tau_{\alpha} \in 2^{<\kappa}$ such that:

•
$$orall \sigma \in 2^{\leq lpha}$$
, $[\sigma^{\frown} au_{lpha}] \subseteq D_{lpha}$, and

sup{|r_n^α| : n ∈ ω} ∈ S_{τα}, where for every n ∈ ω, r_n^α is the leftmost splitnode in SPLIT_{α+n}(T*).

The key step to prove the Pruning Lemma is the following result.

Lemma (Coding Lemma)

Let $\alpha \in \lim(\kappa)$, $T \in \mathbb{S}$ and $\tau \in 2^{<\kappa}$. There exists $T' \leq_{\alpha} T$ such that $\sup\{|r_n^{\alpha}| : n \in \omega\} \in S_{\tau}$ (where the r_n^{α} 's are the leftmost splitnodes in $\operatorname{SpLit}_{\alpha+n}(T')$).

Sketch of the proof.

Consider the stationary subset S_{τ} . Let *s* be the leftmost in $\operatorname{SPLIT}_{\alpha+1}(T)$. Then one can find $r_n^{\alpha} \supset s$, $r_n^{\alpha} \in \operatorname{SPLIT}(T)$ in such a way that $\sup\{|r_n^{\alpha}| : n \in \omega\} \in S_{\tau}$, and then let T' be the subtree obtained by setting r_n^{α} as the "new" leftmost nodes in $\operatorname{SPLIT}_{\alpha+n}(T')$, by removing the exceeding splitnodes.

・ロト ・同ト ・ヨト ・ヨト

 $\begin{array}{c} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathfrak{S}}) \operatorname{vs} \operatorname{cov}(\mathcal{M}) \end{array}$

Proof of Pruning Lemma.

We build a κ -fusion sequence { $T_{\alpha} : \alpha < \kappa$ } as follows. We start from $T_0 = T$; for $\alpha < \kappa$ we recursively construct:

- $\alpha \notin \lim(\kappa)$: $T_{\alpha+1} = T_{\alpha}$.
- $\alpha \in \lim(\kappa)$: First put $S_{\alpha} = \bigcap_{\beta < \alpha} T_{\beta}$. Pick $\tau_{\alpha} \in 2^{<\kappa}$ such that:

$$\forall \sigma \in H_{\alpha}, \sigma^{\frown}\tau_{\alpha} \in \bigcap_{\beta < \alpha} D_{\beta}.$$

Note this can be done as $2^{\leq \alpha}$ has size $< \kappa$ and each D_{β} is open dense. Then apply the sublemma with $\tau = \tau_{\alpha}$ and $T = S_{\alpha}$, and set $T_{\alpha} = T'$.

Finally put $T^* = \bigcap_{\alpha < \kappa} T_{\alpha}$. By construction T^* clearly satisfies the required properties.

 $\begin{array}{c} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathfrak{S}}) \operatorname{vs} \operatorname{cov}(\mathcal{M}) \end{array}$

Definition

Given $T \in \mathbb{S}$ we define the *coding sequence associated with* $T \{\tau_{\alpha} : \alpha \in \lim(\kappa)\}$ in such a way that for every $\alpha \in \lim(\kappa)$, τ_{α} is chosen so that $\sup\{|t_{n}^{\alpha}| : n \in \omega\} \in S_{\tau_{\alpha}}$, where $t_{n}^{\alpha} \in \text{SpLIT}_{\alpha+n}(T)$.

 $\begin{array}{l} {\rm Introduction} \\ {\rm Mathias \ forcing \ and \ Cohen \ sequences} \\ {\rm add}(\mathcal{I}_{\mathfrak{S}}) \ {\rm vs \ cov}(\mathcal{M}) \end{array}$

Theorem

 $\mathit{add}(\mathcal{I}_{\mathbb{S}}) \leq \mathit{cov}(\mathcal{M}_{\kappa}).$

Sketch of proof.

Let $\lambda < \operatorname{add}(\mathcal{I}_{\mathbb{S}})$ and $\{D_i : i < \lambda\}$ family of open dense subsets of 2^{κ} . We aim at finding $x \in 2^{\kappa}$ such that $x \in \bigcap_{i < \lambda} D_i$. Let $\{S_{\tau} : \tau \in 2^{<\kappa}\}$ be a family of pairwise disjoint stationary subsets of $\{\alpha < \kappa : \operatorname{cf}(\alpha) = \omega\}$ as above. First of all recursively construct a family of maximal antichains $\{A_i : i < \lambda\}$ such that for every $i < \lambda$, every $T \in A_i$ satisfies:

$$\forall \beta \in \lim(\kappa) \forall w \in H_{\beta}, [w^{\frown}\tau_{\beta}] \subseteq D_{i}, \tag{1}$$

where $\sup\{|t_n^{\beta}|: n \in \omega\} \in S_{\tau_{\beta}}$ and t_n^{β} is the leftmost node in $\operatorname{SPLIT}_{\beta+n}(T)$. Put $X_i := 2^{\kappa} \setminus \bigcup\{[T]: T \in A_i\}$. Since $\mathcal{N}_{\mathbb{S}} = \mathcal{I}_{\mathbb{S}}$, it follows there is $T^* \in \mathbb{S}$ such that $[T^*] \cap X_i = \emptyset$ for all $i < \lambda$.

• • • •

Now let $f: 2^{<\kappa} \to \text{SPLIT}(T^*)$ the canonical isomorphism and $F: 2^{\kappa} \to [T^*]$ its induced one. Let c be a Cohen κ -real over the ground model and put x = F(c). Note that since $F(c) \in [T^*]^{V[c]}$, T^* is coded in V, each A_i is a maximal antichain, it follows that for every $i < \lambda$ there exists $T^i \in A_i$ such that $V[c] \models x \in [T^i]$, and so there exists $\sigma \in 2^{<\kappa}$ such that $\sigma \Vdash x \in [T^i]$. For $\sigma \in 2^{<\kappa}$, put $B(\sigma) := \bigcap \{T^i \in A_i : i < \lambda \land \sigma \Vdash x \in [T^i]\}$. A density argument shows that there exists $T(\sigma) \in \mathbb{S}$ such that $T(\sigma) \subseteq B(\sigma)$.

• • •

Let $\{T^{\eta} : \eta < \kappa\}$ enumerate all such $T(\sigma)$'s and let $\{\tau_{\xi}^{\eta} : \xi \in \lim(\kappa)\}$ be the coding sequence associated with T^{η} . Define recursively $\{\rho_j : j < \kappa\}$ as follows:

- $\rho_0 := \emptyset$
- $\rho_{j+1} := \rho_j^\frown \tau_{\xi_{j+1}}^\rho$, where ξ_{j+1} is chosen in such a way that $2^{\leq \xi_{j+1}} \ni \rho_j$

•
$$\rho_j := \bigcup_{j' < j} \rho_{j'}$$
, for j limit ordinal

and then put $x := \bigcup_{j < \kappa} \rho_j$. By construction $x \in \bigcap_{i < \lambda} D_i$ as desired.

伺 ト イヨト イヨト

A couple of open questions

э

Image: Image:

-

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and K-trees and Cohen K-sequences

 $\begin{array}{l} & \text{Introduction} \\ \text{Mathias forcing and Cohen sequences} \\ & \operatorname{add}(\mathcal{I}_{\mathbb{S}}) \text{ vs } \operatorname{cov}(\mathcal{M}) \end{array}$

Some final questions

Question

Let \mathcal{M}_{κ} be the ideal of κ -meager sets, $\mathcal{I}_{\mathbb{S}}$ is the ideal of \mathbb{S} -meager sets, and \leq_{T} denotes Tukey embedding. Is $\mathcal{M}_{\kappa} \leq_{\mathsf{T}} \mathcal{I}_{\mathbb{S}}$?

Question

Can one prove κ -axiom A for amoebas and tree-forcings when κ is successor?

< D > < A > < B >

THANK YOU FOR YOUR ATTENTION!

э

< 日 > < 同 > < 三 > < 三 >

Giorgio Laguzzi (joint with Yurii Khomskii, Marlene Koelbing and K-trees and Cohen K-sequences