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Historical background

Over the years, several notions of regularity have been studied in
set theory. Let us remind some popular examples.

Definition

A set of reals X is Lebesgue measurable iff there exists a Borel set
B such that X∆B is null. Analogously one can define the Baire
property by replacing “null” with“meager”.

Definition

A set of reals X is Sacks-measurable iff there exists a perfect tree
T such that [T ] ⊆ X or [T ] ∩ X = ∅.
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Theorem (Solovay, 1970)

Σ1
2(Baire)⇔ ∀x ∈ ωω,C(L[x ]) is comeager

Theorem (Judah-Shelah,1979)

∆1
2(Baire)⇔ ∀x ∈ ωω,C(L[x ]) 6= ∅

Theorem (Brendle-Löwe,1999)

∆1
2(S)⇔ Σ1

2(S)⇔ ∀x ∈ ωω, ωω ∩ L[x ] 6= ωω

∆1
2(M)⇔ Σ1

2(M)⇔ ∀x ∈ ωω, ωω ∩ L[x ] does not dominate ωω

∆1
2(L)⇔ Σ1

2(L)⇔ ∀x ∈ ωω, ωω ∩ L[x ] is not unbounded in ωω
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Theorem (Solovay, 1970)

L(ωω)V [G ] |= all sets are “regular”,

where G is Coll(ω,< κ)-generic, with κ inaccessible.

Theorem (Shelah, 1984)

L(ωω)V [G ] |= all sets have the Baire property,

where G is Bω1-generic and Bω1 is a ccc algebra built by using
“sweetness” and Shelah’s amalgamation.

Theorem (Brendle-Halbeisen-Löwe, 2005)

L(ωω)V [G ] |= all sets are Silver measurable,

where G is Cω1-generic.
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From ωω to κκ

Question. What happens if we move from Baire space ωω to the
generalized Baire space κκ, with κ uncountable?
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Differences and problems

In L there is a Σ1
1-good well-ordering of the “κ-reals”;

In L there exists a ∆1
1 set which is not regular;

there is a Σ1
1 set without Baire property (namely the club

filter Cub);

it is not clear how to generalize the Lebesgue measure;
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Generalizing tree-forcings

T ⊆ 2<κ is Sacks iff every node has a splitting extension. We
call S the poset of Sacks trees ordered by inclusion. (Note
that S is not < κ-closed)

T ⊆ 2<κ is club Sacks iff it is Sacks and for every x ∈ [S ] we
have {α < κ : x�α ∈ Split(T )} is closed unbounded (we
write T ∈ Sclub)

T ⊆ 2<κ is Silver iff it is Sacks and moreover for every
s, t ∈ T such that |s| = |t| one has sai ∈ T ⇔ tai ∈ T , for
i ∈ {0, 1} (we write T ∈ V);

T ⊆ 2<κ is club Silver iff it is Silver and
Lv(T ) := {α < κ : ∃t ∈ T (t ∈ Split(T ) ∧ |t| = α)} is
closed unbounded (we write T ∈ Vclub); analogously for Vstat;
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. . .

T ⊆ κ<κ is called Miller iff
∀t ∈ T∃t ′ ∈ T (t ⊆ t ′ ∧ t ′ ∈ Split(T ) ∧ |Succ(t,T )| = κ)
(we write T ∈M);

T ⊆ κ<κ is called club Miller (T ∈Mclub) iff it is Miller and
the following hold:

for every x ∈ [T ] one has {α < κ : x�α ∈ Split(T )} is closed
unbounded,
for every t ∈ Split(T ) one has {α < κ : taα ∈ T} is closed
unbounded.

T ⊆ κ<κ is called full Miller (T ∈Mfull) iff it is Miller and for
every t ∈ Split(T ) for every α < κ, one has taα ∈ T .
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P-measurability

Definition

Let P ∈ {Sclub,Vclub,Mclub, S,V,M}. We say that a set of κ-reals
X is P-measurable iff there exists T ∈ P such that [T ] ⊆ X or
[T ] ∩ X = ∅.

For Γ topologically reasonable class of subsets of κ-reals, the
following implications easily generalize from the standard
framework.

Γ(Baire)⇒ Γ(Mclub)

Γ(Mclub)⇒ Γ(Sclub)

Γ(Vclub)⇒ Γ(Sclub)

Γ(Baire)⇒ Γ(Vclub), for κ inaccessible.
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Measurability for “club” tree forcing

Question. Can we obtain “nice” characterizations of
P-measurability for the first levels of projective hierarchy?

Problem. If P ∈ {Sclub,Vclub,Mclub}, then Σ1
1(P) fails in ZFC,

because of the club filter. This is shown in a general framework by
Friedman, Khomskii and Kulikov. (We will see later a direct and
specific proof for Vclub).
This suggests that we should look at ∆1

1 sets.
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∆1
1-measurability

Proposition

∆1
1(Sclub)⇒ ∀x ∈ κκ(κκ ∩ L[x ] 6= κκ).

Proposition (Friedman-Khomskii-Kulikov, 2013)

∆1
1(Mclub)⇒ ∀x ∈ κκ(κκ ∩ L[x ] is not dominating).

Proposition (L., 2012)

∆1
1(Baire)⇒ ∀x ∈ κκ(C(L[x ]) 6= ∅).

So in general we are able to generalize only one direction.
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Proposition (Friedman-Wu-Zdomskyy, 2013)

Suppose κ is successor. There exists an extension M ⊇ L such that

M |= ¬∆1
1(Baire) ∧ ∀x ∈ κκ(C(L[x ]) 6= ∅).

Corollary

M |= ¬∆1
1(Sclub) ∧ ∀x ∈ κκ(κκ ∩ L[x ] 6= κκ).

M |= ¬∆1
1(Mclub) ∧ ∀x ∈ κκ(κκ ∩ L[x ] is not dominating).
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∆1
1-separations

Even if one cannot prove exact characterizations for statements
∆1

1(P), one can anyway prove some separation theorems for
different notions of measurability.

Proposition (Friedman-Khomskii-Kulikov, 2013)

Let κ be inaccessible. Then

Sκ+ 
 ∆1
1(Sclub) ∧ ¬∆1

1(Mclub)

Vκ+ 
 ∆1
1(Vclub) ∧ ¬∆1

1(Mclub).
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Projective measurability

Question. What about projective measurability?

We have already mentioned that it fails for every “club” tree
forcing.
Question. But what if we consider the notions of measurability
with non-club tree forcing?
The club filter becomes measurable in this case. As a consequence,
in such a case one might be able to build a model where all
projective sets are measurable.
The first step is to look at the method used in the standard setting.
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In the standard setting, we have:

if P ∈ {S,V}, then Cω1 
 Pr(P);

if P ∈ {C,M,B}, λ inaccessible, then Coll(ω,<λ) 
 Pr(P).

The key point which fails in the generalized setting is the so called
factor lemma.

Lemma (Factor Lemma)

Let G be Coll(ω,< λ) and x ∈ ωω ∩ V [G ]. Then there exists
H Coll(ω,< λ)-generic over V [x ] such that V [x ][H] = V [G ].

Let G be Cω1 and x ∈ ωω ∩ V [G ]. Then there exists H
Cω1-generic over V [x ] such that V [x ][H] = V [G ].

Even if we do not have an analogue for Cκ+ and Coll(κ,< λ), the
main scope will be to find “sufficiently” many κ-reals with good
quotient. This clever idea is due to Philipp Schlicht.
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Stationary Silver vs club Silver

Proposition (L., 2013 / Friedman-Khomskii-Kulikov, 2013)

Cub is not Vclub-measurable.

Proposition (L., 2013)

Let κ be inaccessible and G be Cκ+-generic over N. Then

N[G ] |= all Onκ-definable subsets of 2κ is Vstat-measurable.
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Proposition (L., 2013 / Friedman-Khomskii-Kulikov, 2014)

Cub is not Vclub-measurable.

Proof.

We show that for every T ∈ Vclub,

∃x ∈ 2κ(x ∈ Cub ∩ [T ]) ∧ ∃y ∈ 2κ(y ∈ NS ∩ [T ]),

Define x ∈ 2κ as follows:

x(α) :=

{
fT (α) if α ∈ dom(fT ),

1 otherwise.

Then obviously x ⊇ Lv(T ) and so x ∈ Cub ∩ [T ]. Analogously,
we can define y ∈ 2κ so that y(α) = 0 iff α /∈ dom(fT ), in oder to
obtain y ∈ NS ∩ [T ].
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obtain y ∈ NS ∩ [T ].
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Proving that Cκ+ forces that all Onκ-definable sets are stationary
Silver measurable requires more work.

Main idea. We want to find a stationary Silver tree whose
branches have good quotient, i.e., they satisfy the factor lemma.
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Perfect trees of generic reals

Lemma

Let κ be inaccessible. Let VT := {p : ∃T ∈ V∃α ∈ κ(p = T �α)},
ordered by end-extension, i.e., p′ ≤ p iff
p ⊆ p′ ∧ ∀t ∈ p′ \ p∃s ∈ Term(p)(s ⊆ t). Let
TG :=

⋃
{p : p ∈ G}, where G is VT-generic filter over the ground

model N. Then

N[G ] |= TG ∈ V ∧ ∀x ∈ [TG ](x is Cohen over N)

∧ Lv(TG ) is stationary and co-stationary,

Moreover, VT is a forcing of size κ and is < κ-closed. So it is
actually equivalent to κ-Cohen forcing.
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Proof.

Fix p ∈ VT and D ⊆ C open dense and let {tα : α < δ < κ},
enumerate all terminal nodes of p (w.l.o.g. assume δ is a limit
ordinal). Then consider the following recursive construction:

- pick s0 ⊇ t0 such that s0 ∈ D;

- for α + 1, pick sα+1 ⊇ tα+1 ⊕ sα such that sα+1 ∈ D.

- for α limit, put s ′α =
⋃
ξ<α sξ and pick sα ⊇ tα ⊕ s ′α such that

sα ∈ D.

- once the procedure has been done for every α < δ, we put
sδ :=

⋃
α<δ t0 ⊕ sα and then t ′α := tα ⊕ sδ.

Finally, let p′ be the downward closure of
⋃
α<δ t

′
α. By

construction, p′ ∈ VT, p′ ≤ p and for every terminal node t ∈ p′,
we get t ∈ D. Hence p′ 
 ∀x ∈ [TG ](Hx ∩ D 6= ∅), where
Hx := {s ∈ C : s ⊂ x}.
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. . . .

We now want to further extend p′ in order to catch the second
property as well, i.e., Lv(TG ) is both stationary and co-stationary.
So fix Ċ name for a club of κ. Build sequences {qn : n ∈ ω} and
{ξn : n ∈ ω} such that: q0 = p′, and qn+1 ≤ qn such that
qn+1 
 ξn ∈ Ċ and ξn > ht(qn) and ht(qn+1) > ξn. Finally put
ξω = limn<ω ξn, qω :=

⋃
n∈ω qn, and then

p∗ := qω ∪
⋃
{tai : t ∈ Term(qω) ∧ i ∈ {0, 1}}.

Hence p∗ 
 ∀n(ξn ∈ Ċ ), and then p∗ 
 ξω ∈ Ċ . But ξω = ht(qω),
since the ξn’s and the |ht(qn)|’s are mutually cofinal, and hence
p∗ 
 ξω ∈ Lv(TG ) ∩ Ċ . This shows that Lv(TG ) is stationary.

Giorgio Laguzzi Generalized Silver measurability



Introduction
Generalized tree forcings

Stationary Silver vs club Silver
Full Miller measurability

Perfect trees of generic reals
Cohen branches with good quotient
Projective stationary Silver measurability

. . . .

For proving that it is co-stationary as well, we can further extend
p∗, by using the same procedure, in order to find {q′n : n ∈ ω} and
{ξ′n : n ∈ ω} as above and then p∗∗ ≤ q′ω such that
p∗∗ := q′ω ∪

⋃
{ta0 : t ∈ Term(q′ω)}. Hence

p∗∗ 
 ξω ∈ Lv(TG ) ∩ Ċ ∧ ξ′ω /∈ Lv(TG ) ∩ Ċ ,

which completes the proof.
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Brief digression: Miller trees of generic branches

Remark

Coll(κ, 2κ) adds a full Miller tree of Cohen branches. Indeed,
define the forcing MT := {p : ∃T ∈Mfull∃α < κ(p w T [α])},
ordered by end-extension. Then MT adds a full Miller tree of
Cohen branches and MT ∼= Coll(κ, 2κ).

Lemma (L., 2014)

Let M be a ZFC-model extending the ground model N. If for all
x ∈ κκ ∩M there exists y ∈ κκ ∩N such that
∀α < κ∃β ≥ α(x(β) < y(β)), then in M there is no club Miller
tree of Cohen branches.
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Cohen branches with good quotient

We now aim at showing that any Cohen branch through the Silver
tree added by VT has good quotient.

Lemma

Let α < κ+. Let Ṫ be the canonical VT0-name for the generic
Silver tree added by VT0, and ẋ be a VTα-name for a Cohen
branch through Ṫ . Let G be a VTα-generic filter over N and
z = ẋG . Then VTα/ẋ=z is equivalent to VTα.

We need some preliminary results.
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Let α < κ+. Let Ṫ be the canonical VT0-name for the generic
Silver tree added by VT0, and ẋ be a VTα-name for a Cohen
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Claim

VT∗α := {p ∈ VTα : |xp| ≥ ht(p(0))} is dense in VTα.

Proof.

Given p ∈ VTα we have to find p′ ≤ p in VT∗α. Start with p0 := p
and then, for every n ∈ ω, pick pn+1 ≤ pn such that
|xpn+1 | > ht(pn(0)). Let pω :=

⋃
n∈ω pn and w :=

⋃
n∈ω xpn . Then

w ⊆ xpω and |w | = ht(pω(0)). Hence p′ := pω has the required
property.
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Claim

For every p ∈ VT∗α we have |xp| = ht(p(0)).

Proof.

By contradiction, assume xp = tas, for some t ∈ Term(p(0)) and
non-empty s ∈ 2<κ. Let S be the downward closure of⋃
{t ⊕ t ′ : t ∈ Term(p(0))}, for some t ′ ⊥ tas with t ′ ⊃ t. Let

p′ ∈ VTα be defined as

p′(ι) :=

{
S if ι = 0,

ṗ(ι) if ι > 0.

Then pick p∗ ≤ p′ such that p∗ ∈ VT∗α. Since p∗ 
 S @ Ṫ and
|xp∗ | ≥ ht(S), it follows that t ′ ⊆ xp∗ and so xp∗ ⊥ xp,
contradicting p∗ ≤ p.
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Claim

∀p ∈ VT∗α∀s ∈ 2<κ(xp ⊆ s ⇒ ∃p∗ ∈ VT∗α(s ⊆ xp∗)).

Proof.

Completely analogous to the previous one.

Corollary

Let D ⊆ VT∗α be open dense. Then
Wq := {xp ∈ 2<κ : p ∈ D ∧ p ≤ q} is dense in C below xq.
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Proof of the main Lemma.

We know that VT∗α/ẋ=z = VT∗α \
⋃
β<γ Aβ, where the elements

of this union are recursively defined in N[z ] as follows:

A0 := {p ∈ VT∗α : ∃ξ < κ(p 
 ẋ(ξ) 6= z(ξ))}.
Aβ+1 := {p ∈ VT∗α : ∃D ⊆ Aβ open dense below p ,D ∈ N}.

Aλ :=
⋃
β<λ

Aβ, for λ limit ordinal,

and finally γ is chosen so that Aγ = Aγ+1. Note that γ = 0
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. . . .

We argue by contradiction, pick p ∈ A1 \ A0. Since p ∈ A1, it
follows that there exists D ⊆ A0 such that D ∈ N and D is dense
below p. Then the set Wp := {xp′ ∈ 2<κ : p′ ∈ D ∧ p′ ≤ p} is
dense in C below xp, by the corollary previously mentioned, and so
there exists p′ ∈ D such that xp′ ⊂ z , as z is Cohen over N (and
xp ⊂ z , by p /∈ A0). Also since D ⊆ A0, it follows p′ ∈ A0. But, by
definition,

p′ ∈ A0 ⇔ p′ 
 ẋ(ξ) 6= z(ξ), for some ξ < κ

providing us with a contradiction. Hence we get

VT∗α/ẋ=z = {p ∈ VT∗α : ∀ξ < κ(p 6
 ẋ(ξ) 6= z(ξ))} =

= {p ∈ VT∗α : xp ⊂ z}.
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Projective stationary Silver measurability

We now have all tools needed for proving the main result.

Proposition

Let κ be inaccessible and G be Cκ+-generic over N. Then

N[G ] |= all Onκ-definable subsets of 2κ is Vstat-measurable.

Proof sketch.

Since we have obtained a method to add a stationary Silver tree of
Cohen branches with good quotient, the method is completely
analogous to the standard one.
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. . . .

If ẋ is a Cohen branch through the generic Silver tree added by
VT0, Cκ+ can be viewed as Qẋ ∗ Ṙ0 ∗ Ṙ1, where Qẋ is the forcing
generated by ẋ , while 
Qẋ

Ṙ0
∼= Cα and finally Ṙ1 is just a “tail”

of Cκ+ , and so it is equivalent to Cκ+ itself. So let us put
Ṙ = Ṙ0 ∗ Ṙ1, so to have N[x ] |= Ṙx ∼= Cκ+ .
Let x be Cohen over N with good quotient. Then

N[x ] |= “ 
Ṙx ϕ(x)” or N[x ] |= “ 6
Ṙx ϕ(x)”.

Assume the former, and put θ(x) := “ 
Ṙx ϕ(x)” Then there
exists s ∈ C such that s 
 θ(ẋ). Pick T stationary-Silver tree of
good Cohen branches over N such that Stem(T ) = s. Hence, for
every z ∈ [T ], we have N[z ] |= θ(z), and so N[z ] |= “ 
Ṙz ϕ(z) ”.
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. . . .

Since any z has good quotient, it follows that Ṙz is Cκ+ . That
means that there exists H filter Ṙz -generic (i.e., Cκ+-generic) over
N[z ] such that N[z ][H] = N[G ]. Hence N[G ] |= ϕ(z), that gives
us N[G ] |= [T ] ⊆ X .
For the case N[x ] |= “ 6
Ṙx ϕ(x)”, simply note that “ 6
Ṙx ϕ(x)” is
equivalent to “ 
Ṙx ¬ϕ(x)”, by weak homogeneity. Hence, a
specular argument provides us with T ∈ Vstat such that
N[G ] |= [T ] ∩ X = ∅.
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Full Miller measurability

Concerning Miller measurability, the situation looks different. It is
not clear whether one can use C for adding a Miller tree of Cohen
branches. We have seen before that this cannot be done if we
require the tree to have club splitting nodes, but we conjecture
that a similar method could be used even to obtain the same
“negative” result for simple Miller tree.

However, we have mentioned before that Coll(κ, 2κ) adds a full
Miller tree of Cohen branches. So the idea to get projective full
Miller measurability is to work with the Levy collapse Coll(κ,< λ),
with λ > κ inaccessible.
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Lemma

Let G be Coll(κ,< λ)-generic over N. Let Ṫ be the canonical
name for the generic Miller tree added by Coll(κ, 2κ), ẋ a
Coll(κ,< λ)-name for a branch in Ṫ , and z = ẋG . Then
Coll(κ,< λ)/ẋ = z is forcing-equivalent to Coll(κ,< λ).

Proposition (L., 2013)

Let λ be inaccessible greater than κ, and let G be
Coll(κ,< λ)-generic over N. Then

N[G ] |= “ all Onκ-definable subsets of κκ are Mfull-measurable ”.
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Full Miller measurability vs Hurewicz dichotomy

We say that X ⊆ κκ has the Hurewicz dichotomy (HD) iff either it
is Kκ-compact or it contains a homeomorphic copy of κκ.

Theorem (Lücke-Motto Ros-Schlicht, 2014)

Coll(κ,< λ) forces that all Onκ-definable sets have the HD.
Moreover, if κ is weakly compact, HD implies the Miller
measurability pointwise.

Their result and mine are anyway independent, since there seems
not to be a direct implication with the full Miller measurability.
Moreover, for κ not weakly compact it is not even clear whether
HD implies the simple Miller measurability.
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Theorem (Lücke-Motto Ros-Schlicht, 2014)

Coll(κ,< λ) forces that all Onκ-definable sets have the HD.
Moreover, if κ is weakly compact, HD implies the Miller
measurability pointwise.

Their result and mine are anyway independent, since there seems
not to be a direct implication with the full Miller measurability.
Moreover, for κ not weakly compact it is not even clear whether
HD implies the simple Miller measurability.

Giorgio Laguzzi Generalized Silver measurability



Introduction
Generalized tree forcings

Stationary Silver vs club Silver
Full Miller measurability

Open questions

Giorgio Laguzzi Generalized Silver measurability



Introduction
Generalized tree forcings

Stationary Silver vs club Silver
Full Miller measurability

Open questions

About generalized Lebesgue measurability and random-like forcing

Can we find a random-like forcing for κ inaccessible, i.e., a
poset that is κ+-cc, κκ-bounding and < κ-closed?

Investigate the corresponding regularity properties.

General question about tree forcing and notions of measurabilty

Find the “right” generalization of a tree forcing P so that P is
< κ-closed (and possibly has fusion) and simultaneously we
can force Pr(P). E.g., Can we find F ultrafilter on κ such
that VF is < κ-closed and we can also force Pr(VF )?
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Open questions

About Miller measurability vs HD and PSP (joint project with
Luca Motto Ros):

In which cases is the inaccessible λ strictly necessary?

Separate projective (full) Miller measubility from projective
HD.

Investigate other separations involving (full) Miller
measurability, HD and PSP.

Look at the generalization of other dichotomies coming from
the standard setting, such as u-regularity, l-property and
Spinas dichotomy.
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Thanks for your attention!
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