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Introduction
The main construction

Some results

Generalized Cantor space

Instead of countable sequences of 0,1s we consider
uncountable sequences of 0,1, i.e. we take 2κ, with κ
uncountable.

Bounded topology: we consider the topology generated by
the following basic open sets:

[s] := {x ∈ 2κ : x ⊃ s}, with s ∈ 2<κ.

Question. What about the generalized Lebesgue measure?
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Introduction
The main construction

Some results

Experience suggests that trying to directly define a notion of a null
set by generalizing the Lebesgue measure seems not to be the
right path.

Another way to define null sets is by using tree-like forcings (like
Sacks, random, Cohen, Miller, Laver, Mathias, etc.)

Definition

Let P be a tree-like forcing. A set X ⊆ 2κ is said to be P-null iff

∀T ∈ P∃T ′ ∈ P(T ′ ≤ T ∧ [T ′] ∩ X = ∅).

Note that C-null sets correspond to κ-nowhere dense sets.
When dealing with the ω-case, random null sets correspond to
measure zero sets.
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Some results

The issue then becomes to find a generalization of random forcing
for 2κ. In particular, in “On CON(dκ > cov(M)), Trans. of AMS
(2014)”, Shelah poses the following question:

Can one define a (tree-like) forcing adding new subsets of κ
which is < κ-closed, κ+-cc and κκ-bounding, for κ
inaccessible cardinal?

Shelah himself gives an answer to such a question, but assuming
that κ be weakly compact.
Our method is different and provides us with an answer for κ
inaccessible (weak compactness is not needed).
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The main construction

Some results

We recursively define, for λ < κ+, an increasing sequence of
families of trees {Fλ : λ < κ+} satisfying the following properties:

(P1) Fλ ⊆ Sclub and |Fλ| ≤ κ;

(P2) ∀T ∈ F<λ∀γ < κ∃T ′ ≤γ T∀T ′′ ≤ T ′(T ′ ∈ Fλ ∧ T ′′ /∈ F<λ);

(P3) ∀T ∈ Fλ∀t ∈ T (Tt ∈ Fλ);

(P4) Fλ is closed under descending < κ-sequences;

(P5) ∀α < λ∀T ∈ Fλ \ Fα∃γ̄ < κ∀γ ≥ γ̄∀t ∈ Splitγ(T )∃S ∈
Fα \ F<α(Tt ⊆ S).

(Remind that T ∈ Sclub iff T is Sacks and for all x ∈ [T ] one has
{α < κ : x�α splits } is closed unbounded.)
Finally, we define our forcing as follows:

F :=
⋃
λ<κ+

Fλ.
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In our construction we assume ♦κ+(Sκκ+), where
Sκκ+ := {λ < κ+ : cf(λ) = κ}.

1. F0 := {(2<κ)t : t ∈ 2<κ}.
2. Case λ+ 1: For every T ∈ Fλ \ F<λ and γ < κ, pick

T ′ ∈ Sclub such that T ′ ≤γ T and T ′ does not contain
subtrees in Fλ. Then for all t ∈ T ′ we add T ′t to Fλ+1. We
then close Fλ+1 under descending < κ-sequences, i.e., for
every descending {T i : i < δ}, with δ < κ, we put
T ∗ :=

⋂
i<δ T

i into Fλ+1.

3. Case cf(λ) < κ: let {T i : i < cf(λ)} ⊆ F<λ be descending
with {Rank(T i ) : i < cf(λ)} cofinal in λ.
Then put T ∗ :=

⋂
i<cf(λ) T

i into Fλ. Finally close Fλ under
descending < κ-sequences.
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4. Case cf(λ) = κ, where (λi : i < κ) is increasing and cofinal in
λ:

4.a Suppose Dλ ⊆ λ codes a maximal antichain Aλ in F<λ. For
every T ∈ F<λ and γ < κ, construct a “κ-fusion” sequence
{T i : i < κ} of trees in Sclub such that

1 T =: T 0 ≥γ T 1 ≥γ+1 T
2 ≥γ+2 · · · ≥γ+i T

i+1 ≥γ+i+1 . . .
2 T i

t belongs to F<λ with Rank(T i
t ) at least λi for each t in

Splitγ+i (T ).

3 T 1 :=
⋃
{St : t ∈ Splitγ(T )}, where each St ≤ Tt and St hits

Aλ, i.e., there exists S∗ ∈ Aλ such that St ≤ S∗.

Then add T ∗ :=
⋂

i<κ T
i to Fλ. Moreover, for every t ∈ T ∗,

add T ∗
t to Fλ too. Finally close Fλ under descending

< κ-sequences.
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4.b Suppose that Dλ ⊆ λ codes {Ai ,j : i < κ, j < κ}, where for
each i < κ,

⋃
j<κ Ai ,j is a maximal antichain in F<λ and

j0 6= j1 ⇒ Ai ,j0 ∩ Ai ,j1 = ∅. For every T ∈ F<λ and γ < κ,
build a κ-fusion sequence {T i : i < κ} of trees in Sclub such
that

1 T =: T 0 ≥γ T 1 ≥γ+1 T
2 ≥γ+2 · · · ≥γ+i T

i+1 ≥γ+i+1 . . .
2 T i

t belongs to F<λ with Rank(T i
t ) at least λi for t in

Splitγ+i (T
i ).

3 for every i < κ, T i+1 :=
⋃
{S i+1

t : t ∈ Splitγ+i (T
i )}, where

each S i+1
t ≤ T i

t and S i+1
t hits

⋃
j<κ Ai,j .

Then add T ∗ :=
⋂

i<κ T
i to Fλ. Moreover, for every t ∈ T ∗,

add T ∗t to Fλ too. Finally close Fλ under descending
< κ-sequences.

4.c If Dλ neither codes a maximal antichain (case (a)) nor an
instance of κκ-bounding (case (b)), then proceed as in case
(a) without its item iii.
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Proposition

F is < κ-closed, κ+-cc and κκ-bounding.

Proof.

The < κ-closure follows from point 3 of the construction.
To prove κ+-cc we argue as follows. Let A ⊆ F be a maximal
antichain and pick λ such that cf(λ) = κ and A ∩ F<λ is coded by
Dλ, using ♦κ+(Sκκ+). By 4.(a) of the construction, for every
T ∈ Fλ \ F<λ, there is γ′ such that for every γ ≥ γ′ for every
t ∈ Splitγ(T ), Tt is a subtree of some element of A ∩ F<λ. By P5,
if T ∈ F \ Fλ, there is γ′′ ≥ γ′ such that for every γ ≥ γ′′ for every
t ∈ Splitγ(T ), Tt is a subtree of some element of Fλ \ F<λ. It
follows that for any T ∈ Fλ \ F<λ there is t ∈ T such that Tt is a
subtree of some element of A ∩ F<λ, and therefore A ∩ F<λ is a
maximal antichain in F. So A ∩ F<λ = A, which finishes the proof
as |F<λ| = κ.
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. . . .

For κκ-bounding we argue as follows. Let ẋ be an F-name for an
element of κκ and T ∈ F. Choose {Aij : i < κ, j < κ} so that for
each i < κ,

⋃
j<κ Aij is a maximal antichain and elements of Aij

force ẋ(i) = j . Pick λ < κ such that T belongs to F<λ, cf(λ) = κ
and Dλ codes such a sequence of antichains. By 4.(b) of the
construction, we can then build a κ-fusion sequence in order to get
T ′ ≤ T such that for each i < κ, T ′ forces the generic to hit⋃

j∈Ji Aij , where each Ji ⊆ κ has size ≤ 2i . Define z ∈ κκ ∩ V by
z(i) = sup Ji ; then T ′ 
 ∀i < κ, ẋ(i) ≤ z(i).
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Some results

F-null VS meager

Proposition

There is X ⊆ 2κ such that X is F-null and co-meager.

Proof.

Let A := {Ai : i < κ} be a maximal antichain in F. Clearly,
X :=

⋃
i<κ[Ai ] is F-conull, since for every T ∈ F, there is i < κ

such that Ai ‖ T , and so there is T ′ ≤ Ai such that T ′ ≤ T . It is
then sufficient to show that we can find such an antichain A with
the further property that any [Ai ] is nowhere dense. But note that
by property P2, any T ∈ F can be extended to contain no subtree
of the form (2<κ)s for s ∈ 2<κ and [T ] is nowhere dense for such a
tree T . Now let F∗ ⊆ F be the dense set of such trees, and pick A
a maximal antichain in F∗. Then A remains a maximal antichain in
F as well, and it is then enough for our purpose.
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Measurability

There are essentially two possible notions of regularity related to F.

Definition

A set X ⊆ 2κ is said to be:

1 F-measurable iff for every T ∈ F there exists T ′ ∈ F, T ′ ≤ T
such that [T ′] \ X ∈ IF or X ∩ [T ′] ∈ IF.

2 F-regular iff there exists B ∈ Bor such that XMB ∈ IF.

Proposition

Let X ⊆ 2κ. X is F-measurable iff X is F-regular.

Proposition (Friedman - L. / Friedman - Khomskii - Kulikov)

The club filter Cub is not F-measurable. So, Σ1
1(F) fails in ZFC.

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)



Introduction
The main construction

Some results

Measurability

There are essentially two possible notions of regularity related to F.

Definition

A set X ⊆ 2κ is said to be:

1 F-measurable iff for every T ∈ F there exists T ′ ∈ F, T ′ ≤ T
such that [T ′] \ X ∈ IF or X ∩ [T ′] ∈ IF.

2 F-regular iff there exists B ∈ Bor such that XMB ∈ IF.

Proposition

Let X ⊆ 2κ. X is F-measurable iff X is F-regular.

Proposition (Friedman - L. / Friedman - Khomskii - Kulikov)

The club filter Cub is not F-measurable. So, Σ1
1(F) fails in ZFC.

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)



Introduction
The main construction

Some results

Measurability

There are essentially two possible notions of regularity related to F.

Definition

A set X ⊆ 2κ is said to be:

1 F-measurable iff for every T ∈ F there exists T ′ ∈ F, T ′ ≤ T
such that [T ′] \ X ∈ IF or X ∩ [T ′] ∈ IF.

2 F-regular iff there exists B ∈ Bor such that XMB ∈ IF.

Proposition

Let X ⊆ 2κ. X is F-measurable iff X is F-regular.

Proposition (Friedman - L. / Friedman - Khomskii - Kulikov)

The club filter Cub is not F-measurable. So, Σ1
1(F) fails in ZFC.

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)



Introduction
The main construction

Some results

Measurability

There are essentially two possible notions of regularity related to F.

Definition

A set X ⊆ 2κ is said to be:

1 F-measurable iff for every T ∈ F there exists T ′ ∈ F, T ′ ≤ T
such that [T ′] \ X ∈ IF or X ∩ [T ′] ∈ IF.

2 F-regular iff there exists B ∈ Bor such that XMB ∈ IF.

Proposition

Let X ⊆ 2κ. X is F-measurable iff X is F-regular.

Proposition (Friedman - L. / Friedman - Khomskii - Kulikov)

The club filter Cub is not F-measurable. So, Σ1
1(F) fails in ZFC.

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)



Introduction
The main construction

Some results

Shelah’s forcing Q VS F

Theorem (Friedman- L.)

Let V = L and Fκ+ be a κ+-iteration with ≤ k-size support. Then

Fκ+ 
 ∆1
1(F) ∧ ¬∆1

1(Q).

Proof.

The proof that ∆1
1(F) holds is rather standard. To prove ¬∆1

1(Q)
the key point is to check that Q does not satisfy the generalized
Sacks property. To this aim, we prove that the Q-generic is not
captured by any ground model λ̄-slalom S = {ai : i < κ}, for a
fixed λ̄ = {λi : i < κ}.
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. . . .

Let 〈κi : i < κ〉 list all inaccessibles below κ (remind κ is weakly
compact here). Let λ̄ := 〈λi : i < κ〉 and καi be the least
inaccessible > λi . Given x ∈ 2κ, we define hx ∈ κκ so that
hx(i) = c(x�Ii ) has size ≤ λi , where c : 2<κ → κ is some coding
map, I0 := [0, κα1) and for all i < κ, Ii := [καi , καi+1). Let
S ∈ ([κ]<κ)κ be a λ̄-slalom. A rather technical proof shows that

AS := {x ∈ 2κ : ∀i < κ(hx(i) ∈ ai )}

is Q-null, which concludes the proof.
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Conclusion

What is good: we give an answer to Shelah’s question and we
find a notion of null sets which is orthogonal to meager sets.

What is not so good: F seems not to behave like random is
some cases: for instance it satisfies the generalized Sacks property.
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Thank you for listening!
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