A null ideal for inaccessibles (?)

Giorgio Laguzzi (joint work with Sy Friedman)

Universität Freiburg

DMV conference - Hamburg 2015

Generalized Cantor space

• Instead of countable sequences of 0,1s we consider uncountable sequences of 0,1, i.e. we take 2^{κ} , with κ uncountable.

Generalized Cantor space

- Instead of countable sequences of 0,1s we consider uncountable sequences of 0,1, i.e. we take 2^{κ} , with κ uncountable.
- **Bounded topology:** we consider the topology generated by the following basic open sets:

$$[s] := \{x \in 2^{\kappa} : x \supset s\}, \text{ with } s \in 2^{<\kappa}.$$

Generalized Cantor space

- Instead of countable sequences of 0,1s we consider uncountable sequences of 0,1, i.e. we take 2^{κ} , with κ uncountable.
- **Bounded topology:** we consider the topology generated by the following basic open sets:

$$[s] := \{x \in 2^{\kappa} : x \supset s\}, \text{ with } s \in 2^{<\kappa}.$$

• Question. What about the generalized Lebesgue measure?

Experience suggests that trying to directly define a notion of a **null set** by generalizing the Lebesgue measure seems not to be the right path.

Experience suggests that trying to directly define a notion of a **null set** by generalizing the Lebesgue measure seems not to be the right path.

Another way to define null sets is by using *tree-like forcings* (like Sacks, random, Cohen, Miller, Laver, Mathias, etc.)

Definition

Let \mathbb{P} be a tree-like forcing. A set $X \subseteq 2^{\kappa}$ is said to be \mathbb{P} -null iff

$$\forall T \in \mathbb{P} \exists T' \in \mathbb{P}(T' \leq T \land [T'] \cap X = \emptyset).$$

Experience suggests that trying to directly define a notion of a **null set** by generalizing the Lebesgue measure seems not to be the right path.

Another way to define null sets is by using *tree-like forcings* (like Sacks, random, Cohen, Miller, Laver, Mathias, etc.)

Definition

Let $\mathbb P$ be a tree-like forcing. A set $X\subseteq 2^\kappa$ is said to be $\mathbb P$ -null iff

$$\forall T \in \mathbb{P} \exists T' \in \mathbb{P}(T' \leq T \land [T'] \cap X = \emptyset).$$

Note that \mathbb{C} -null sets correspond to κ -nowhere dense sets. When dealing with the ω -case, random null sets correspond to measure zero sets. The issue then becomes to find a generalization of random forcing for 2^{κ} . In particular, in "On $CON(d_{\kappa} > cov(\mathcal{M}))$, Trans. of AMS (2014)", Shelah poses the following question:

The issue then becomes to find a generalization of random forcing for 2^{κ} . In particular, in "On $CON(d_{\kappa} > cov(\mathcal{M}))$, Trans. of AMS (2014)", Shelah poses the following question:

 Can one define a (tree-like) forcing adding new subsets of κ which is < κ-closed, κ⁺-cc and κ^κ-bounding, for κ inaccessible cardinal? The issue then becomes to find a generalization of random forcing for 2^{κ} . In particular, in "On $CON(d_{\kappa} > cov(\mathcal{M}))$, Trans. of AMS (2014)", Shelah poses the following question:

 Can one define a (tree-like) forcing adding new subsets of κ which is < κ-closed, κ⁺-cc and κ^κ-bounding, for κ inaccessible cardinal?

Shelah himself gives an answer to such a question, but assuming that κ be weakly compact.

Our method is different and provides us with an answer for κ inaccessible (weak compactness is not needed).

The main construction

(日)

문 🛌 문

We recursively define, for $\lambda < \kappa^+$, an increasing sequence of families of trees $\{\mathbb{F}_{\lambda} : \lambda < \kappa^+\}$ satisfying the following properties: (P1) $\mathbb{F}_{\lambda} \subset \mathbb{S}^{\mathsf{club}}$ and $|\mathbb{F}_{\lambda}| < \kappa$; (P2) $\forall T \in \mathbb{F}_{<\lambda} \forall \gamma < \kappa \exists T' \leq_{\gamma} T \forall T'' \leq T' (T' \in \mathbb{F}_{\lambda} \land T'' \notin \mathbb{F}_{<\lambda});$ (P3) $\forall T \in \mathbb{F}_{\lambda} \forall t \in T(T_t \in \mathbb{F}_{\lambda});$ (P4) \mathbb{F}_{λ} is closed under descending $< \kappa$ -sequences; (P5) $\forall \alpha < \lambda \forall T \in \mathbb{F}_{\lambda} \setminus \mathbb{F}_{\alpha} \exists \bar{\gamma} < \kappa \forall \gamma \geq \bar{\gamma} \forall t \in \text{Split}_{\gamma}(T) \exists S \in$ $\mathbb{F}_{\alpha} \setminus \mathbb{F}_{\leq \alpha}(T_t \subset S).$ (Remind that $T \in \mathbb{S}^{club}$ iff T is **Sacks** and for all $x \in [T]$ one has $\{\alpha < \kappa : x \mid \alpha \text{ splits }\}$ is closed unbounded.) Finally, we define our forcing as follows:

$$\mathbb{F} := \bigcup_{\lambda < \kappa^+} \mathbb{F}_{\lambda}.$$

・ 同 ト ・ ヨ ト ・ - ヨ ト …

In our construction we assume $\Diamond_{\kappa^+}(S_{\kappa^+}^{\kappa})$, where $S_{\kappa^+}^{\kappa} := \{\lambda < \kappa^+ : cf(\lambda) = \kappa\}.$

1.
$$\mathbb{F}_0 := \{ (2^{<\kappa})_t : t \in 2^{<\kappa} \}.$$

- Case λ + 1: For every T ∈ F_λ \ F_{<λ} and γ < κ, pick T' ∈ S^{club} such that T' ≤_γ T and T' does not contain subtrees in F_λ. Then for all t ∈ T' we add T'_t to F_{λ+1}. We then close F_{λ+1} under descending < κ-sequences, i.e., for every descending {Tⁱ : i < δ}, with δ < κ, we put T* := ⋂_{i<δ} Tⁱ into F_{λ+1}.
- Case cf(λ) < κ: let {Tⁱ : i < cf(λ)} ⊆ 𝔽_{<λ} be descending with {Rank(Tⁱ) : i < cf(λ)} cofinal in λ. Then put T^{*} := ⋂_{i<cf(λ)} Tⁱ into 𝔽_λ. Finally close 𝔽_λ under descending < κ-sequences.

・ 同 ト ・ ヨ ト ・ ヨ ト

4. Case
$$cf(\lambda) = \kappa$$
, where $(\lambda_i : i < \kappa)$ is increasing and cofinal in λ :

・ロト ・回ト ・ヨト ・ヨト

æ

- 4. Case $cf(\lambda) = \kappa$, where $(\lambda_i : i < \kappa)$ is increasing and cofinal in λ :
 - 4.a Suppose $D_{\lambda} \subseteq \lambda$ codes a maximal antichain A_{λ} in $\mathbb{F}_{<\lambda}$. For every $T \in \mathbb{F}_{<\lambda}$ and $\gamma < \kappa$, construct a " κ -fusion" sequence $\{T^{i} : i < \kappa\}$ of trees in $\mathbb{S}^{\mathsf{club}}$ such that
 - $T =: T^0 \geq_{\gamma} T^1 \geq_{\gamma+1} T^2 \geq_{\gamma+2} \cdots \geq_{\gamma+i} T^{i+1} \geq_{\gamma+i+1} \cdots$
 - **2** T_t^i belongs to $\mathbb{F}_{<\lambda}$ with $\operatorname{Rank}(T_t^i)$ at least λ_i for each t in $\operatorname{Split}_{\gamma+i}(T)$.
 - $\begin{array}{l} \textcircled{O} \quad \mathcal{T}^1 := \bigcup \{S_t : t \in \operatorname{Split}_{\gamma}(\mathcal{T})\}, \text{ where each } S_t \leq T_t \text{ and } S_t \text{ hits } \\ A_{\lambda}, \text{ i.e., there exists } S^* \in A_{\lambda} \text{ such that } S_t \leq S^*. \end{array}$
 - Then add $T^* := \bigcap_{i < \kappa} T^i$ to \mathbb{F}_{λ} . Moreover, for every $t \in T^*$, add T^*_t to \mathbb{F}_{λ} too. Finally close \mathbb{F}_{λ} under descending $< \kappa$ -sequences.

同 ト イ ヨ ト イ ヨ ト

- 4.b Suppose that $D_{\lambda} \subseteq \lambda$ codes $\{A_{i,j} : i < \kappa, j < \kappa\}$, where for each $i < \kappa$, $\bigcup_{j < \kappa} A_{i,j}$ is a maximal antichain in $\mathbb{F}_{<\lambda}$ and $j_0 \neq j_1 \Rightarrow A_{i,j_0} \cap A_{i,j_1} = \emptyset$. For every $T \in \mathbb{F}_{<\lambda}$ and $\gamma < \kappa$, build a κ -fusion sequence $\{T^i : i < \kappa\}$ of trees in $\mathbb{S}^{\mathsf{club}}$ such that
 - $T =: T^0 \ge_{\gamma} T^1 \ge_{\gamma+1} T^2 \ge_{\gamma+2} \cdots \ge_{\gamma+i} T^{i+1} \ge_{\gamma+i+1} \cdots$
 - **2** T_t^i belongs to $\mathbb{F}_{<\lambda}$ with $\operatorname{Rank}(T_t^i)$ at least λ_i for t in $\operatorname{Split}_{\gamma+i}(T^i)$.
 - for every $i < \kappa$, $T^{i+1} := \bigcup \{S_t^{i+1} : t \in \text{Split}_{\gamma+i}(T^i)\}$, where each $S_t^{i+1} \le T_t^i$ and S_t^{i+1} hits $\bigcup_{j < \kappa} A_{i,j}$.

Then add $T^* := \bigcap_{i < \kappa} T^i$ to \mathbb{F}_{λ} . Moreover, for every $t \in T^*$, add T^*_t to \mathbb{F}_{λ} too. Finally close \mathbb{F}_{λ} under descending $< \kappa$ -sequences.

伺 ト く ヨ ト く ヨ ト

- 4.b Suppose that $D_{\lambda} \subseteq \lambda$ codes $\{A_{i,j} : i < \kappa, j < \kappa\}$, where for each $i < \kappa$, $\bigcup_{j < \kappa} A_{i,j}$ is a maximal antichain in $\mathbb{F}_{<\lambda}$ and $j_0 \neq j_1 \Rightarrow A_{i,j_0} \cap A_{i,j_1} = \emptyset$. For every $T \in \mathbb{F}_{<\lambda}$ and $\gamma < \kappa$, build a κ -fusion sequence $\{T^i : i < \kappa\}$ of trees in $\mathbb{S}^{\mathsf{club}}$ such that
 - $T =: T^0 \ge_{\gamma} T^1 \ge_{\gamma+1} T^2 \ge_{\gamma+2} \cdots \ge_{\gamma+i} T^{i+1} \ge_{\gamma+i+1} \cdots$
 - **2** T_t^i belongs to $\mathbb{F}_{<\lambda}$ with $\operatorname{Rank}(T_t^i)$ at least λ_i for t in $\operatorname{Split}_{\gamma+i}(T^i)$.
 - for every $i < \kappa$, $T^{i+1} := \bigcup \{S_t^{i+1} : t \in \text{Split}_{\gamma+i}(T^i)\}$, where each $S_t^{i+1} \le T_t^i$ and S_t^{i+1} hits $\bigcup_{j < \kappa} A_{i,j}$.

Then add $T^* := \bigcap_{i < \kappa} T^i$ to \mathbb{F}_{λ} . Moreover, for every $t \in T^*$, add T^*_t to \mathbb{F}_{λ} too. Finally close \mathbb{F}_{λ} under descending $< \kappa$ -sequences.

4.c If D_λ neither codes a maximal antichain (case (a)) nor an instance of κ^κ-bounding (case (b)), then proceed as in case (a) without its item iii.

Proposition

 \mathbb{F} is < κ -closed, κ^+ -cc and κ^{κ} -bounding.

Proof.

The $< \kappa$ -closure follows from point 3 of the construction. To prove κ^+ -cc we argue as follows. Let $A \subseteq \mathbb{F}$ be a maximal antichain and pick λ such that $cf(\lambda) = \kappa$ and $A \cap \mathbb{F}_{<\lambda}$ is coded by D_{λ} , using $\Diamond_{\kappa^+}(S_{\kappa^+}^{\kappa})$. By 4.(a) of the construction, for every $T \in \mathbb{F}_{\lambda} \setminus \mathbb{F}_{<\lambda}$, there is γ' such that for every $\gamma \geq \gamma'$ for every $t \in \text{Split}_{\gamma}(T)$, T_t is a subtree of some element of $A \cap \mathbb{F}_{<\lambda}$. By P5, if $T \in \mathbb{F} \setminus \mathbb{F}_{\lambda}$, there is $\gamma'' \geq \gamma'$ such that for every $\gamma > \gamma''$ for every $t \in \text{Split}_{\gamma}(T), T_t$ is a subtree of some element of $\mathbb{F}_{\lambda} \setminus \mathbb{F}_{<\lambda}$. It follows that for any $T \in \mathbb{F}_{\lambda} \setminus \mathbb{F}_{<\lambda}$ there is $t \in T$ such that T_t is a subtree of some element of $A \cap \mathbb{F}_{<\lambda}$, and therefore $A \cap \mathbb{F}_{<\lambda}$ is a maximal antichain in \mathbb{F} . So $A \cap \mathbb{F}_{<\lambda} = A$, which finishes the proof as $|\mathbb{F}_{<\lambda}| = \kappa$.

• • • •

For κ^{κ} -bounding we argue as follows. Let \dot{x} be an \mathbb{F} -name for an element of κ^{κ} and $T \in \mathbb{F}$. Choose $\{A_{ij} : i < \kappa, j < \kappa\}$ so that for each $i < \kappa$, $\bigcup_{j < \kappa} A_{ij}$ is a maximal antichain and elements of A_{ij} force $\dot{x}(i) = j$. Pick $\lambda < \kappa$ such that T belongs to $\mathbb{F}_{<\lambda}$, $cf(\lambda) = \kappa$ and D_{λ} codes such a sequence of antichains. By 4.(b) of the construction, we can then build a κ -fusion sequence in order to get $T' \leq T$ such that for each $i < \kappa$, T' forces the generic to hit $\bigcup_{j \in J_i} A_{ij}$, where each $J_i \subseteq \kappa$ has size $\leq 2^i$. Define $z \in \kappa^{\kappa} \cap V$ by $z(i) = \sup J_i$; then $T' \Vdash \forall i < \kappa, \dot{x}(i) \leq z(i)$.

Some results

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)

イロン イロン イヨン イヨン

æ

F-null VS meager

Proposition

There is $X \subseteq 2^{\kappa}$ such that X is \mathbb{F} -null and co-meager.

(日) (同) (三) (三)

э

F-null VS meager

Proposition

There is $X \subseteq 2^{\kappa}$ such that X is \mathbb{F} -null and co-meager.

Proof.

Let $A := \{A_i : i < \kappa\}$ be a maximal antichain in \mathbb{F} . Clearly, $X := \bigcup_{i < \kappa} [A_i]$ is \mathbb{F} -conull, since for every $T \in \mathbb{F}$, there is $i < \kappa$ such that $A_i \parallel T$, and so there is $T' < A_i$ such that T' < T. It is then sufficient to show that we can find such an antichain A with the further property that any $[A_i]$ is nowhere dense. But note that by property P2, any $T \in \mathbb{F}$ can be extended to contain no subtree of the form $(2^{<\kappa})_s$ for $s \in 2^{<\kappa}$ and [T] is nowhere dense for such a tree \mathcal{T} . Now let $\mathbb{F}^* \subseteq \mathbb{F}$ be the dense set of such trees, and pick Aa maximal antichain in \mathbb{F}^* . Then A remains a maximal antichain in \mathbb{F} as well, and it is then enough for our purpose.

Measurability

There are essentially two possible notions of regularity related to \mathbb{F} .

Measurability

There are essentially two possible notions of regularity related to $\mathbb{F}.$

Definition

- A set $X \subseteq 2^{\kappa}$ is said to be:
 - \mathbb{F} -measurable iff for every $T \in \mathbb{F}$ there exists $T' \in \mathbb{F}$, $T' \leq T$ such that $[T'] \setminus X \in \mathcal{I}_{\mathbb{F}}$ or $X \cap [T'] \in \mathcal{I}_{\mathbb{F}}$.
 - **2** \mathbb{F} -regular iff there exists $B \in$ Bor such that $X \triangle B \in \mathcal{I}_{\mathbb{F}}$.

Measurability

There are essentially two possible notions of regularity related to $\mathbb{F}.$

Definition

- A set $X \subseteq 2^{\kappa}$ is said to be:
 - \mathbb{F} -measurable iff for every $T \in \mathbb{F}$ there exists $T' \in \mathbb{F}$, $T' \leq T$ such that $[T'] \setminus X \in \mathcal{I}_{\mathbb{F}}$ or $X \cap [T'] \in \mathcal{I}_{\mathbb{F}}$.
 - **2** \mathbb{F} -regular iff there exists $B \in$ Bor such that $X \triangle B \in \mathcal{I}_{\mathbb{F}}$.

Proposition

Let $X \subseteq 2^{\kappa}$. X is \mathbb{F} -measurable iff X is \mathbb{F} -regular.

Measurability

There are essentially two possible notions of regularity related to $\mathbb{F}.$

Definition

- A set $X \subseteq 2^{\kappa}$ is said to be:
 - \mathbb{F} -measurable iff for every $T \in \mathbb{F}$ there exists $T' \in \mathbb{F}$, $T' \leq T$ such that $[T'] \setminus X \in \mathcal{I}_{\mathbb{F}}$ or $X \cap [T'] \in \mathcal{I}_{\mathbb{F}}$.
 - **2** \mathbb{F} -regular iff there exists $B \in \text{Bor such that } X \triangle B \in \mathcal{I}_{\mathbb{F}}$.

Proposition

Let $X \subseteq 2^{\kappa}$. X is \mathbb{F} -measurable iff X is \mathbb{F} -regular.

Proposition (Friedman - L. / Friedman - Khomskii - Kulikov)

The club filter Cub is not \mathbb{F} -measurable. So, $\Sigma_1^1(\mathbb{F})$ fails in ZFC.

くつい くち くちつ

Shelah's forcing \mathbb{Q} VS \mathbb{F}

Theorem (Friedman- L.)

Let V = L and \mathbb{F}_{κ^+} be a κ^+ -iteration with $\leq k$ -size support. Then

 $\mathbb{F}_{\kappa^+} \Vdash \mathbf{\Delta}^1_1(\mathbb{F}) \land \neg \mathbf{\Delta}^1_1(\mathbb{Q}).$

- 4 同 2 4 回 2 4 U

Shelah's forcing \mathbb{Q} VS \mathbb{F}

Theorem (Friedman- L.)

Let V = L and \mathbb{F}_{κ^+} be a κ^+ -iteration with $\leq k$ -size support. Then

$$\mathbb{F}_{\kappa^+} \Vdash \mathbf{\Delta}^1_1(\mathbb{F}) \land \neg \mathbf{\Delta}^1_1(\mathbb{Q}).$$

Proof.

The proof that $\Delta_1^1(\mathbb{F})$ holds is rather standard. To prove $\neg \Delta_1^1(\mathbb{Q})$ the key point is to check that \mathbb{Q} does not satisfy the generalized Sacks property. To this aim, we prove that the \mathbb{Q} -generic is not captured by any ground model $\overline{\lambda}$ -slalom $S = \{a_i : i < \kappa\}$, for a fixed $\overline{\lambda} = \{\lambda_i : i < \kappa\}$.

• • •

Let $\langle \kappa_i : i < \kappa \rangle$ list all inaccessibles below κ (remind κ is weakly compact here). Let $\overline{\lambda} := \langle \lambda_i : i < \kappa \rangle$ and κ_{α_i} be the least inaccessible $> \lambda_i$. Given $x \in 2^{\kappa}$, we define $h_x \in \kappa^{\kappa}$ so that $h_x(i) = c(x \upharpoonright l_i)$ has size $\leq \lambda_i$, where $c : 2^{<\kappa} \to \kappa$ is some coding map, $l_0 := [0, \kappa_{\alpha_1})$ and for all $i < \kappa$, $l_i := [\kappa_{\alpha_i}, \kappa_{\alpha_{i+1}})$. Let $S \in ([\kappa]^{<\kappa})^{\kappa}$ be a $\overline{\lambda}$ -slalom. A rather technical proof shows that

$$A_{\mathcal{S}} := \{x \in 2^{\kappa}: orall i < \kappa(h_x(i) \in a_i)\}$$

is Q-null, which concludes the proof.

Conclusion

Giorgio Laguzzi (joint work with Sy Friedman) A null ideal for inaccessibles (?)

æ

< 同 ▶

Conclusion

What is good: we give an answer to Shelah's question and we find a notion of null sets which is *orthogonal* to meager sets.

Conclusion

What is good: we give an answer to Shelah's question and we find a notion of null sets which is *orthogonal* to meager sets.

What is not so good: \mathbb{F} seems not to behave like random is some cases: for instance it satisfies the generalized Sacks property.

Thank you for listening!

æ

<ロト <部ト < 注ト < 注ト