Rosłanowski and Spinas dichotomies

Giorgio Laguzzi (joint with Yurii Khomskii)

Universität Hamburg

München - September 2014

\mathbb{P} -dichotomies

Let ${\mathcal I}$ be a $\sigma\text{-ideal}$ over the reals, and let ${\mathbb P}$ be a forcing with tree conditions.

Definition

We say that a set of reals X satisfies the $(\mathcal{I}, \mathbb{P})$ -dichotomy iff either $X \in \mathcal{I}$ or there exists $T \in \mathbb{P}$ such that $[T] \subseteq X$.

▲ 同 ▶ → 三 ▶

\mathbb{P} -dichotomies

Let ${\mathcal I}$ be a $\sigma\text{-ideal}$ over the reals, and let ${\mathbb P}$ be a forcing with tree conditions.

Definition

We say that a set of reals X satisfies the $(\mathcal{I}, \mathbb{P})$ -dichotomy iff either $X \in \mathcal{I}$ or there exists $T \in \mathbb{P}$ such that $[T] \subseteq X$.

Well-known examples:

- Perfect set property: $\mathcal{I} = \mathsf{ideal}$ of countable sets / $\mathbb{P} = \mathsf{Sacks}$ forcing
- K_{σ} -regularity: $\mathcal{I} = \text{ideal of bounded sets } / \mathbb{P} = \text{Miller forcing}$

イロト イポト イヨト イヨト

Such dichotomies provide a dense embedding

```
\mathbb{P} \hookrightarrow \mathrm{BOREL} \setminus \mathcal{I}.
```

They are useful because we can use both the combinatorial properties of trees and the properties of the σ -ideal for studying the forcing notion associated. As an example, one can consider the following result of Zapletal.

Theorem (Zapletal)

If \mathcal{I} is a σ -ideal on $\omega^{\omega} \sigma$ -generated by closed sets then the forcing BOREL $\setminus \mathcal{I}$ is proper and preserves Baire category (non-meager ground-model sets remain non-meager in the extension).

The perfect set property is related to Davis' game on the Cantor space 2^{ω} . The analogous game played on the Baire space ω^{ω} gives rise to the following dichotomy.

Definition

• Given
$$f: \omega^{<\omega} \to \omega$$
, let
 $D_f := \{x \in \omega^{\omega} : \forall^{\infty} n(f(x \restriction n) \neq x(n))\}$ and then
 $\mathfrak{D}_{\omega} := \{D_f : f : \omega^{<\omega} \to \omega\}.$

- We say that a tree $T \subseteq \omega^{<\omega}$ is *full-splitting* iff for every splitting node $t \in T$ for all $n \in \omega$, $t^{\frown}n \in T$.
- We say that a set X ⊆ ω^ω satisfies the (𝔅_ω, 𝑘𝔅)-dichotomy (or *Rosłanowski dichotomy*) iff either X ∈ 𝔅_ω or there exists T ∈ 𝑘𝔅 such that [T] ⊆ X.

Theorem (Rosłanowski)

Every Σ_1^1 set satisfies the Rosłanowski dichotomy.

A slightly different $\sigma\text{-ideal}$ has been studied by Spinas.

Definition

For every $x \in \omega^{\omega}$ let $K_x := \{y \in \omega^{\omega} \mid \forall^{\infty} n(x(n) \neq y(n))\}$, and let \mathfrak{I}_{ioe} be the σ -ideal generated by K_x , for $x \in \omega^{\omega}$.

▲ 同 ▶ → 三 ▶

A slightly different $\sigma\text{-ideal}$ has been studied by Spinas.

Definition

For every $x \in \omega^{\omega}$ let $K_x := \{y \in \omega^{\omega} \mid \forall^{\infty} n(x(n) \neq y(n))\}$, and let \mathfrak{I}_{ioe} be the σ -ideal generated by K_x , for $x \in \omega^{\omega}$.

The two ideals are very similar, and in fact the following equalities hold.

Proposition

$$\texttt{o} \ \ \mathsf{cov}(\mathfrak{I}_{\mathrm{ioe}}) = \mathsf{cov}(\mathfrak{D}_\omega) = \mathsf{cov}(\mathcal{M})$$

2
$$\operatorname{\mathit{non}}(\mathfrak{I}_{\operatorname{ioe}}) = \operatorname{\mathit{non}}(\mathfrak{D}_\omega) = \operatorname{\mathit{non}}(\mathcal{M}).$$

(3)
$$\operatorname{\mathsf{add}}(\mathfrak{I}_{\operatorname{ioe}}) = \operatorname{\mathsf{add}}(\mathfrak{D}_\omega) = \omega_1$$

$$\bullet \ {\it cof}(\mathfrak{I}_{\rm ioe}) = {\it cof}(\mathfrak{D}_{\omega}) = \mathfrak{c}.$$

The notion of a full-splitting Miller tree is not sufficient to get the right dichotomy for $\Im_{\rm ioe}$, as the following example shows.

Example

Let T be the tree on $\omega^{<\omega}$ defined as follows:

- If |s| is even then $\operatorname{Succ}_{\mathcal{T}}(s) = \{0, 1\}$.
- If |s| is odd then

$$\operatorname{Succ}_{\mathcal{T}}(s) = \left\{ egin{array}{cc} 2\mathbb{N} & \operatorname{if} & s(|s|-1) = 0 \\ 2\mathbb{N}+1 & \operatorname{if} & s(|s|-1) = 1 \end{array}
ight.$$

where $\operatorname{Succ}_{\mathcal{T}}(s) := \{n \mid s^{\frown} \langle n \rangle \in \mathcal{T}\}$. Clearly \mathcal{T} is $\mathfrak{I}_{\operatorname{ioe}}$ -positive but cannot contain a full-splitting subtree.

The right dichotomy for $\Im_{\rm ioe}$ involves a subtle modification of the notion of a full-splitting Miller tree.

Definition

A tree $T \subseteq \omega^{\omega}$ is called an *infinitely often equal tree*, or simply *ioe-tree*, if for each $t \in T$ there exists N > |t|, such that for every $k \in \omega$ there exists $s \in T$ extending t such that s(N) = k. Let \mathbb{IE} denote the partial order of ioe-trees ordered by inclusion.

Definition

We say that a set $X \subseteq \omega^{\omega}$ satisfies the $(\mathfrak{I}_{ioe}, \mathbb{IE})$ -dichotomy (or *Spinas dichotomy*) iff either $X \in \mathfrak{I}_{ioe}$ or there exists $T \in \mathbb{IE}$ such that $[T] \subseteq X$.

Theorem (Spinas)

Every Σ_1^1 set satisfies the Spinas dichotomy.

Simple remarks about $\mathbb{F}\mathbb{M}$ and $\mathbb{I}\mathbb{E}$

- FM adds a Cohen real (let {s_n : n ∈ ω} be a fixed enumeration of ω^{<ω} and consider the function φ defined by φ(x) = s_{x(0)}[¬]s_{x(1)}[¬]s_{x(2)}[¬]...).
- $\mathbb{IE} * \mathbb{IE}$ adds a Cohen real.
- IIE below a certain condition is equivalent to FM. Such a condition is constructed in the following way:
 - If $s \neq t$ are splitting nodes of T^{GS} then $|s| \neq |t|$.
 - 2 If $t \in T^{GS}$ is a non-splitting node of T then t(|t|-1) = 0.

くほし くほし くほし

Hence, $\mathbb{I}\mathbb{E}$ also adds Cohen reals.

Dichotomies for higher projective levels

(日) (同) (三) (三)

э

We now want to investigate the behaviour of Rosłanowski and Spinas dichotomies for higher projective class, i.e., statements of the form $\Sigma_2^1(\mathbb{FM}\text{-dich})$, $\Sigma_2^1(\mathbb{IE}\text{-dich})$, etc. Note that such statements have a rather unpredictable behaviour:

We now want to investigate the behaviour of Rosłanowski and Spinas dichotomies for higher projective class, i.e., statements of the form $\Sigma_2^1(\mathbb{FM}\text{-dich})$, $\Sigma_2^1(\mathbb{IE}\text{-dich})$, etc. Note that such statements have a rather unpredictable behaviour:

• K_{σ} -regularity for Σ_2^1 sets is equiconsistent with ZFC;

We now want to investigate the behaviour of Rosłanowski and Spinas dichotomies for higher projective class, i.e., statements of the form $\Sigma_2^1(\mathbb{FM}\text{-dich})$, $\Sigma_2^1(\mathbb{IE}\text{-dich})$, etc. Note that such statements have a rather unpredictable behaviour:

- K_{σ} -regularity for Σ_2^1 sets is equiconsistent with ZFC;
- the perfect set property for Σ_2^1 sets has the strength of an inaccessible;

We now want to investigate the behaviour of Rosłanowski and Spinas dichotomies for higher projective class, i.e., statements of the form $\Sigma_2^1(\mathbb{FM}\text{-dich})$, $\Sigma_2^1(\mathbb{IE}\text{-dich})$, etc. Note that such statements have a rather unpredictable behaviour:

- K_{σ} -regularity for Σ_2^1 sets is equiconsistent with ZFC;
- the perfect set property for Σ_2^1 sets has the strength of an inaccessible;
- in yet other cases, involving the Silver forcing, the related dichotomy for Σ¹₂ sets is actually inconsistent.

We now want to investigate the behaviour of Rosłanowski and Spinas dichotomies for higher projective class, i.e., statements of the form $\Sigma_2^1(\mathbb{FM}\text{-dich})$, $\Sigma_2^1(\mathbb{IE}\text{-dich})$, etc. Note that such statements have a rather unpredictable behaviour:

- K_{σ} -regularity for Σ_2^1 sets is equiconsistent with ZFC;
- the perfect set property for Σ_2^1 sets has the strength of an inaccessible;
- in yet other cases, involving the Silver forcing, the related dichotomy for Σ¹₂ sets is actually inconsistent.

Spinas and Rosłanowski dichotomies will fall into the second category.

A useful characterization is the Mansfield-Solovay style theorem for \mathbb{FM} and $\mathbb{IE}.$

Proposition (Khomskii - L.)

- For any Σ¹₂(r) set A, either there exists an FM-tree U ∈ L[r], such that [U] ⊆ A, or A can be covered by ℑ_ω-small Borel sets coded in L[r].
- Provide any Σ¹₂(r) set A, either there exists an IE-tree U ∈ L[r], such that [U] ⊆ A, or A can be covered by ℑ_{ioe}-small Borel sets coded in L[r].

The proof uses a standard Cantor-Bendixson analysis.

・ 同・ ・ ヨ・

We can then use such a characterization to prove the following result.

Theorem (Khomskii - L.)
a
$$\Sigma_2^1(\mathbb{F}M\text{-dich})$$

b $\Sigma_2^1(\mathbb{I}\mathbb{E}\text{-dich})$
c $\forall r \in \omega^{\omega} \{x \mid x \text{ is not iof over } L[r]\} \in \mathfrak{D}_{\omega}$
c $\forall r \in \omega^{\omega} \{x \mid x \text{ is not ioe over } L[r]\} \in \mathfrak{I}_{ioe}$
c $\forall r \in \omega^{\omega} (\omega_1^{L[r]} < \omega_1)$

▲ 同 ▶ → ● 三

э

Proof.

over L[r]. It is not hard to see that X is a $\Sigma_2^1(r)$ set, so by assumption either $X \in \mathfrak{D}_{\omega}$ or there is some $T \in \mathbb{FM}$ such that $[\mathcal{T}] \subset X$. We will show that the second option is impossible. From $\Sigma_2^1(\mathbb{FM}\text{-dich})$ we have $\Sigma_2^1(\mathbb{FM})$, which can be proven to be equivalent to Σ_2^1 (Baire). In particular, there is a Cohen real c, which is an iof real, over L[r]. Let $T \in \mathbb{FM}$ and recall that there is a homeomorphism $\psi: \omega^{\omega} \cong [\mathcal{T}]$ such that ψ -preimages of \mathfrak{D}_{ω} -small sets are \mathfrak{D}_{ω} -small. Since being an iof real is the same as being \mathfrak{D}_{ω} -quasigeneric, it easily follows that $\psi(c)$ is an iof real in [T]. This contradicts $[T] \subseteq X$.

- 4 同 6 4 日 6 4 日 6

. . . .

- (3) ⇒ (1). By the previous proposition, we know that every Σ¹₂ set A either contains [T] for T ∈ FM or A ⊆ {x | x is not Ω_ω-quasigeneric over L[r]} = {x | x is not iof over L[r]}, from which the result follows.
- (5) \Rightarrow (3). If $\omega_1^{L[r]} < \omega_1$ then $\{x \mid x \text{ is not iof over } L[r]\} = \bigcup \{B \mid B \text{ is a Borel } \mathfrak{D}_{\omega}\text{-small set coded in } L[r]\}$ is a countable union of $\mathfrak{D}_{\omega}\text{-small sets.}$

(人間) ト く ヨ ト く ヨ ト

٠	(3) \Rightarrow (5). A result of Newelski and Rosłanowski implies the for any family $F = \{x_{\alpha} \mid \alpha < \omega_1\}$ of reals satisfying $\forall \alpha \neq \beta \exists^{\infty} n (x_{\alpha}(n) \neq x_{\beta}(n))$, and letting $X_{\alpha} := \{x \mid \forall n (x(n) \neq x_{\alpha}(n))\}$, we have	at
	• $X_{\alpha} \in \mathfrak{I}_{ioe} \subseteq \mathfrak{D}_{\omega}$ for all $\alpha < \omega_1$, and • $\bigcup_{\alpha < \omega_1} X_{\alpha} \notin \mathfrak{D}_{\omega}$.	
	If $\omega_1^{L[r]} = \omega_1$ for some r , then we have an F as above satisfying $F \subseteq \omega^{\omega} \cap L[r]$. But then $\{x \mid x \text{ is not iof over} L[r]\} = \bigcup \{B \mid B \text{ is a Borel } \mathfrak{D}_{\omega}\text{-small coded in} L[r]\} \supseteq \bigcup \{X_{\alpha} \mid \alpha < \omega_1\}$ cannot be $\mathfrak{D}_{\omega}\text{-small.}$	

э

Solovay's model and higher projective levels

Theorem (Khomskii - L.)

Let κ be inaccessible and let G be $Coll(\omega, < \kappa)$ -generic over V. Then in V[G] all sets definable from countable sequences of ordinals satisfy the \mathbb{FM} - and the \mathbb{IE} -dichotomy, and in $L(\mathbb{R})^{V[G]}$ all sets of reals satisfy the \mathbb{FM} - and \mathbb{IE} -dichotomy.

A game for \mathbb{IE} -dichotomy

Definition

Let $G^{\mathbb{IE}}(A)$ be the game in which players I and II play as follows:

where $s_i \in \omega^{<\omega} \setminus \{\emptyset\}$, $N_i \ge 1$, $k_i \in \omega$, and the following rules must be obeyed for all *i*:

• $|s_i| = N_i$,

•
$$s_i(N_i-1)=k_i$$
.

Then player I wins iff $z := s_0^{\circ} s_1^{\circ} \circ s_2^{\circ} \cdots \in A$.

- 4 同 2 4 日 2 4 日 2

Theorem (Khomskii - L.)

- Player I has a winning strategy in G^{IE}(A) iff there is an IE-tree T such that [T] ⊆ A.
- **2** Player II has a winning strategy in $G^{\mathbb{IE}}(A)$ iff $A \in \mathfrak{I}_{ioe}$.

・ロト ・同ト ・ヨト ・ヨト

Open questions

<ロ> <同> <同> < 同> < 同>

æ

A couple of open questions

- **(**) Is there a $T \in \mathbb{IE}$ forcing that "there are no Cohen reals"?
- Are $\Pi_1^1(\mathbb{FM}$ -dich) and $\Pi_1^1(\mathbb{IE}$ -dich) equivalent to $\forall r \in \omega^{\omega} \ (\omega_1^{L[r]} < \omega_1)$?
- Investigate the ideal σ -generated by the sets X satisfying $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}(T' \leq T \land [T'] \cap X = \emptyset)$, where $\mathbb{P} \in \{\mathbb{F} \mathbb{M}, \mathbb{I} \mathbb{E}\}.$

Thanks for your attention!

イロト イポト イヨト イヨト

э