Social welfare relations and descriptive set theory

Giorgio Laguzzi

Albert-Ludwigs-Universität Freiburg

AILA meeting - September 2017

Infinite utility streams

We consider:

- a set of *utility levels Y* with some given topology (e.g., $Y = \{0,1\}, [0,1], \omega$)
- $X := Y^{\omega}$ the space of infinite utility streams, endowed with the product topology

Given $x, y \in X$ we use the following notation:

- $x \le y$ iff forall $n \in \omega$, $x(n) \le y(n)$
- x < y iff $x \le y$ and $\exists n \in \omega, x(n) < y(n)$
- $\mathcal{F} := \{\pi : \omega \to \omega : \text{ finite permutation}\}$
- $x \in X$, $x \circ \pi := (x_{\pi(0)}, x_{\pi(1)}, \dots, x_{\pi(n)}, \dots)$.

We consider preorders on X.

Efficiency conditions

Definition

Let \leq be a preorder on X (reflexive and transitive relations). \leq is said to be:

- strongly Paretian iff $x < y \Rightarrow x \prec y$
- intermediate Paretian iff $\exists^{\infty} n(x(n) < y(n)) \Rightarrow x \prec y$
- weakly Paretian iff $\forall n(x(n) < y(n)) \Rightarrow x \prec y$.

An equity condition

Definition

A preorder \leq is said to be *finitely anonimous* iff for every finite permutation π we have $x \circ \pi \sim x$.

An equity condition

Definition

A preorder \leq is said to be *finitely anonimous* iff for every finite permutation π we have $x \circ \pi \sim x$.

A pre-order which is both finitely anonimous and strong Paretian is called strong *ethical preference relations* (strong EPR)

What about total EPR? Do they exists?

Proposition (Folklore)

AC implies the existence of total EPR.

Proposition (Lawers, 2011)

If there is a total EPR, then there is a non-Ramsey set.

Proposition (Zame, 2007)

If there is a total EPR, then there is a non-measurable set.

Some easy facts

- In L there is a Δ_2^1 total EPR.
- There are no Borel total EPR.
- an ω_1 -iteration of random forcing kills all Δ_2^1 total EPRs.
- an ω_1 -iteration of Mathias forcing kills all Σ_2^1 total EPRs.

Introduction: social welfare relations non-measurable set without total EPR non-Ramsey set without total EPR Further questions

Question: (Bowler, Delhommé, Di Prisco and Mathias, *Flutters* and *Chameleon*, Problem 11.14) Is the existence of a total EPR somehow connected with the Baire property?

Question: (Bowler, Delhommé, Di Prisco and Mathias, *Flutters* and *Chameleon*, Problem 11.14) Is the existence of a total EPR somehow connected with the Baire property?

- Question: Does the existence of a non-Ramsey set imply the existence of a total EPR?
- **Question**: Does the existence of a non-measurable set imply the existence of a total EPR?

Introduction: social welfare relations non-measurable set without total EPR non-Ramsey set without total EPR Further questions

non-measurable set without total EPR

non-measurable set without total EPR

Idea

- We first prove that the existence of a total EPR gives a set without Baire property.
- We then use Shelah's model where all sets have the Baire property (and so there are no total EPR) but there is a non measurable set.

Question: How many incompatiple elements are there?

We start with a basic example. Let \lhd be defined as follows: for every $x,y\in X$, we say $x\lhd y$ iff there exists $\pi\in\mathcal{F}$ such that $x\circ\pi< y$.

Lemma

 $A := \{(x, y) \in X \times X : x \not \supseteq y \land y \not \supseteq x\}$ is comeager.

Let A' be the complement of A. We show that A' is meager. First note that A' can be partitioned into two pieces:

$$E := \{(x,y) \in X \times X : x \trianglerighteq y\}$$
 and

 $D := \{(x, y) \in X \times X : y \trianglerighteq x\}$. We prove E is meager, since the proof for D works similarly.

Fix $y \in X$ so that supp(y) is infinite (i.e., y is not eventually 0) and consider $E^y := \{x \in X : (x,y) \in E\}$. Let $H^y := \{x \in X : x \geq y\}$. Note that

$$E^{y} := \bigcup_{\pi \in \mathcal{F}} H^{y \circ \pi}.$$

Since \mathcal{F} is countable it is enough to prove that for each $\pi \in \mathcal{F}$, $H^{y \circ \pi}$ is meager.

Actually we show that H^y is nowhere dense, for every $y \in X$ with $|\operatorname{supp}(y)| = \omega$. Indeed, fix $U \subseteq X$ basic open set, and let $k \in \omega$ be sufficiently large that for all $n \geq k$, $U_n = [0,1]$. Then pick $n^* > k$ such that $n^* \in \operatorname{supp}(y)$ and pick $U' \subseteq U$ so that:

- $\forall n \neq n^*$, $U_n = U'_n$;
- $U'_{n^*} := [0, y(n^*)]$

Then it is clear that $U'\cap H^y=\emptyset$. This concludes the proof that each H^y is nowhere dense, when $|\mathrm{supp}(y)|=\omega$. Note that if $\pi\in\mathcal{F}$ we get $|\mathrm{supp}(y\circ\pi)|=\omega$ as well, and so $H^{y\circ\pi}$ is nowhere dense too.

By Ulam-Kuratowski theorem, we conclude the proof if we show that the set $\{y \in X : | \operatorname{supp}(y)| = \omega\}$ is comeager. So let B be the complement of such a set, i.e., B consists of those y that are eventually 0. Define $B_n := \{y \in B : |\operatorname{supp}(y)| \le n\}$. Clearly $B := \bigcup_{n \in \omega} B_n$. Moreover each B_n in nowhere dense. Indeed, let U be a basic open set and pick k > n so that for all $m \ge k$, $U_m = [0,1]$. Then define $U' \subseteq U$ by replacing the kth of U with (0,1]. It is clear that $U' \cap B_n = \emptyset$. Hence, we have proved that for comeager many y, E^y is meager, and that implies E is meager by Kuratowski-Ulam theorem.

A generalization of the previous result gives us.

Proposition

Let \leq be a partial EPR, and $A := \{(x, y) \in X \times X : x \not\succ y \land y \not\succ x\}$. If A has the Baire property, then A is comeager.

Question: But what about total EPR?

Proposition

Let \leq be a total EPR, and $A := \{(x, y) \in X \times X : x \not\succ y \land y \not\succ x\}$. Then A does not have the Baire property.

Proof.

Note that in this case the EPR is total and so the set $A = \{(x,y) \in X \times X : x \sim y\}$. To reach a contradiction, assume A has the Baire property. By the previous proposition, A has to be comeager.

Hence, by Kuratowski-Ulam's there is $y \in X$ such that A_y is comeager. For 0 < r < 1, define the function $i: X \to X$ such that i(x(0)) := x(0) + r and $\forall n > 0$, i(x(n)) = x(n). Note also that for every $x \in X$, $i(x) \succ x$ and so in particular $x \sim y \Rightarrow x \not\sim i(y)$. Hence, $A_y \cap i[A_y] = \emptyset$. Since A_y is comeager, it should be $A_y \cap i[A_y] \neq \emptyset$, yielding to a contradiction.

Introduction: social welfare relations non-measurable set without total EPR non-Ramsey set without total EPR Further questions

non-Ramsey set without total EPR

non-Ramsey set without total EPR

Idea

- Use Shelah's amalgamation to build a model where all sets in $L(\mathbb{R}, \{Y\})$ are measurable (and so there are no total EPRs) but Y is non-Ramsey.
- Consider the $L(\mathbb{R}, \{Y\})$ of such a forcing-extension in order to get a model where all sets are measurable but there is a non-Ramsey set.

The main property

Definition $((\mathbb{B}, \dot{Y})$ -homogeneity)

Let B be a complete Boolean algebra, \dot{Y} be B-names. One says that B is (\mathbb{B},\dot{Y}) -homogeneous if and only if for any isomorphism ϕ between two complete subalgebras B_1,B_2 of B, such that $B_1\approx B_2\approx \mathbb{B}$, there exists $\phi^*:B\to B$ automorphism extending ϕ such that \Vdash_B " $\phi^*(\dot{Y})=\dot{Y}$ ". (Intuitively, we want B-names fixed by any automorphism constructed by the amalgamation).

Shelah's amalgamation

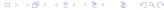
```
Let B_0, B_1 \lessdot B isomorphic complete subalgebras and \phi : B_0 \to B_1.
Let e_0 : B \to B \times B such that e_0(b) = (b, 1) (and analogously e_1(b) = (1, b)).
```

- Step 1: define $\operatorname{Am}_1(B, \phi_0) \lessdot B \times B$ and $\phi_1 : e_0[B] \to e_1[B]$ so that ϕ_1 is an isomorphism extending ϕ .
- Step *n*: define $Am_n = Am(Am_{n-1}, \phi_{n-1})$ and ϕ_n extends ϕ_{n-1} .
- Step ω : define $\mathbf{Am}_{\omega}(B,\phi)$ as the direct limit of the B_n 's and ϕ_{ω} the limit of the ϕ_n 's.

The main construction

Let κ be inaccessible. We recursively build a sequence of complete Boolean algebras $\{B_i: i>\kappa\}$ and a sequence of sets of names for reals $\{Y_i: i<\kappa\}$ such that $\forall i< j<\kappa$, $B_i\lessdot B_j$ and $Y_i\subseteq Y_j$ as follows:

- Using a book-keeping argument we cofinally often amalgamate over random algebras and we fix the set Y_i under the isomorphisms generated by the amalgamation. (To get (\mathbb{B}, Y) -homogeneity)
- for cofinally many i we put $B_{i+1} = B_i * \mathbb{A}$ and $Y_{i+1} = Y_i$
- for cofinally many i we put $B_{i+1} = B_i * \mathbb{MA}$ and $Y_{i+1} = Y_i$
- for cofinally many i we put $B_{i+1} = B_i * \mathbb{M}\mathbb{A}$ and $Y_{i+1} = Y_i \cup \{x_T : T \in \mathbb{M}\mathbb{A}\}$
- at limit steps $j < \kappa$ put $B_j = \lim_{i < j} B_i$ and $Y_j = \bigcup_{i > j} Y_i$.



Two key-steps

- Dominating reals are preserved under iteration with random forcing.
- Dominating reals are in a sense preserved by amalgamation.

non-Ramsey set without total EPR

Let $B = \lim_{i < \kappa} B_i$, $Y = \bigcup_{i < \kappa} Y_i$ and let G be B-generic over V.

 $L(\mathbb{R}, \{Y\})^{V[G]} \models \text{ no total EPR and } Y \text{ is non-Ramsey.}$

Introduction: social welfare relations non-measurable set without total EPR non-Ramsey set without total EPR Further questions

Further questions

Further questions

Egalitarian conditions

Compare Paretian principles with the following: **Hammond's equity:** For every $x, y \in X$, if there are $i, j \in \mathbb{N}$ such that $x_i < y_i < y_j < x_j$ and for all $k \neq i, j$ one has $x_k = y_k$, then $x \prec y$.

Further questions

Egalitarian conditions

Compare Paretian principles with the following: **Hammond's equity:** For every $x, y \in X$, if there are $i, j \in \mathbb{N}$ such that $x_i < y_i < y_j < x_j$ and for all $k \neq i, j$ one has $x_k = y_k$, then $x \prec y$.

Non-dictatorship conditions

Investigate non-dictatorship conditions for social choices (Tadeusz Litak, Infinite populations, choice and determinacy, Studia Logica, (2017))

Further questions

Egalitarian conditions

Compare Paretian principles with the following: **Hammond's equity:** For every $x, y \in X$, if there are $i, j \in \mathbb{N}$ such that $x_i < y_i < y_j < x_j$ and for all $k \neq i, j$ one has $x_k = y_k$, then $x \prec y$.

Non-dictatorship conditions

Investigate non-dictatorship conditions for social choices (Tadeusz Litak, Infinite populations, choice and determinacy, Studia Logica, (2017))

Infinite games

Investigate the connections with infinite games.

References

- Haim Judah, Andrej Roslanowsky, On Shelah's amalgamation, Israel Mathematical Conference Proceedings, Vol. 6 (1993), pp. 385-414.
- Luc Lauwers, Ordering infinite utility streams comes at the cost of a non-Ramsey set, Journal of Math. Economics, Volume 46, pp 32-37, (2009).
- Tadeusz Litak, Infinite populations, choice and determinacy, Studia Logica, (2017).
- William R. Zame, Can intergenerational equity be operationalized?, Theoretical Economics 2, pp 187-202, (2007).

Introduction: social welfare relations non-measurable set without total EPR non-Ramsey set without total EPR Further questions

THANK YOU FOR YOUR ATTENTION!