> Giorgio Laguzzi

Regularity properties and tree-forcings

Giorgio Laguzzi

Universität Hamburg

AILA Conference - April 2014

Brief Introduction

Regularity properties and tree-forcings

> Giorgio Laguzzi

Over the years, several notions of regularity have been studied in set theory. The most popular ones are certainly the Baire property and the Lebesgue measurability.

Definition

A set of reals X is *Lebesgue measurable* iff there exists a Borel set B such that $X \triangle B$ is null. Analogously one can define the Baire property by replacing "null" with "meager".

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Brief Introduction

Regularity properties and tree-forcings

> Giorgio Laguzzi

Over the years, several notions of regularity have been studied in set theory. The most popular ones are certainly the Baire property and the Lebesgue measurability.

Definition

A set of reals X is *Lebesgue measurable* iff there exists a Borel set B such that $X \triangle B$ is null. Analogously one can define the Baire property by replacing "null" with "meager".

Another important notion of regularity comes from Ramsey theory.

Definition

 $X \subseteq [\omega]^{\omega}$ is completely Ramsey iff for every $s \in [\omega]^{<\omega}$ and $H \in [\omega]^{\omega}$, $H \supset s$, there exists $H' \subseteq H$ such that either $[s, H']^{\omega} \subseteq X$ or $[s, H']^{\omega} \cap X = \emptyset$.

Definition

properties and tree-forcings

Regularity

Laguzzi

 $T \subseteq \omega^{<\omega}$ is called *perfect tree* iff it is closed under initial segments and for every $s \in T$ there exist $t \supseteq s$ in T and $n_0, n_1 \in \omega$ such that both $t^{\frown} n_0$ and $t^{\frown} n_1$ are in T. A poset \mathbb{P} is called *tree-forcing* iff every $T \in \mathbb{P}$ is a perfect tree and for all $t \in T$ one has $T_t := \{s \in T : s \subseteq t \lor t \subseteq s\} \in \mathbb{P}$. The ordering is given by $T' \leq T$ iff $T' \subseteq T$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

properties and tree-forcings Giorgio

Regularity

Laguzzi

 $T \subseteq \omega^{<\omega}$ is called *perfect tree* iff it is closed under initial segments and for every $s \in T$ there exist $t \supseteq s$ in T and $n_0, n_1 \in \omega$ such that both $t^{\frown} n_0$ and $t^{\frown} n_1$ are in T. A poset \mathbb{P} is called *tree-forcing* iff every $T \in \mathbb{P}$ is a perfect tree and for all $t \in T$ one has $T_t := \{s \in T : s \subseteq t \lor t \subseteq s\} \in \mathbb{P}$. The ordering is given by $T' \leq T$ iff $T' \subseteq T$.

Any tree-forcing adds a generic element of ω^{ω} , which is the unique element in $\bigcap_{T \in G} [T] (= \bigcup_{T \in G} \text{STEM}(T)).$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Definition

properties and tree-forcings Giorgio

Regularity

 $T \subseteq \omega^{<\omega}$ is called *perfect tree* iff it is closed under initial segments and for every $s \in T$ there exist $t \supseteq s$ in T and $n_0, n_1 \in \omega$ such that both $t^{\frown} n_0$ and $t^{\frown} n_1$ are in T. A poset \mathbb{P} is called *tree-forcing* iff every $T \in \mathbb{P}$ is a perfect tree and for all $t \in T$ one has $T_t := \{s \in T : s \subseteq t \lor t \subseteq s\} \in \mathbb{P}$. The ordering is given by $T' \leq T$ iff $T' \subseteq T$.

Any tree-forcing adds a generic element of ω^{ω} , which is the unique element in $\bigcap_{T \in G} [T] (= \bigcup_{T \in G} \text{STEM}(T))$. Some examples:

- Cohen forcing $\mathbb{C} := \{s \in 2^{<\omega}\}$
- random forcing $\mathbb{B} := \{T : T \text{ perfect tree} \land \mu([T]) > 0\}$
- Mathias forcing

 $\mathbb{MA} := \{ T \subseteq 2^{<\omega} : \forall s \supseteq \operatorname{STEM}(T)(s^{\uparrow} 1 \in T \Rightarrow s^{\uparrow} 0 \in T) \}.$

\mathbb{P} -measurability

Regularity properties and tree-forcings

> Giorgio Laguzzi

Definition

A set of reals X is called \mathbb{P} -null iff for every $T \in \mathbb{P}$ there exists $T' \in \mathbb{P}$ such that $T' \subseteq T$ and $X \cap [T'] = \emptyset$. Furthermore, we define $I_{\mathbb{P}}$ to be the σ -ideal σ -generated by the \mathbb{P} -null sets. A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] \in I_{\mathbb{P}} \vee [T'] \setminus X \in I_{\mathbb{P}}).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

\mathbb{P} -measurability

Regularity properties and tree-forcings

> Giorgio Laguzzi

Definition

A set of reals X is called \mathbb{P} -null iff for every $T \in \mathbb{P}$ there exists $T' \in \mathbb{P}$ such that $T' \subseteq T$ and $X \cap [T'] = \emptyset$. Furthermore, we define $I_{\mathbb{P}}$ to be the σ -ideal σ -generated by the \mathbb{P} -null sets. A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] \in I_{\mathbb{P}} \vee [T'] \setminus X \in I_{\mathbb{P}}).$

The following are well-known:

- X has the Baire property iff X is C-measurable;
- X is Lebesgue measurable iff X is \mathbb{B} -measurable;
- X has the Ramsey property iff X is $\mathbb{M}A$ -measurable.

\mathbb{P} -measurability

Regularity properties and tree-forcings

> Giorgio Laguzzi

Definition

A set of reals X is called \mathbb{P} -null iff for every $T \in \mathbb{P}$ there exists $T' \in \mathbb{P}$ such that $T' \subseteq T$ and $X \cap [T'] = \emptyset$. Furthermore, we define $I_{\mathbb{P}}$ to be the σ -ideal σ -generated by the \mathbb{P} -null sets. A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] \in I_{\mathbb{P}} \vee [T'] \setminus X \in I_{\mathbb{P}}).$

The following are well-known:

- X has the Baire property iff X is C-measurable;
- X is Lebesgue measurable iff X is \mathbb{B} -measurable;
- X has the Ramsey property iff X is MA-measurable. We use the following notation

 $\Gamma(\mathbb{P}) :\equiv$ all sets of reals are \mathbb{P} -measurable.

Silver and Miller Regularity properties and tree-forcings

Silver and Miller

Regularity properties and tree-forcings

> Giorgio Laguzzi

> > ■ A perfet tree $T \subseteq 2^{<\omega}$ is *Silver* iff for every $s, t \in T$, with |s| = |t|, one has

$$s^{\frown}0 \in T \Leftrightarrow t^{\frown}0 \in T \land s^{\frown}1 \in T \Leftrightarrow t^{\frown}1 \in T.$$

A perfet tree T ⊆ ω^{<ω} is *Miller* iff every splitting node has infinitely many immediate successors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regularity properties and tree-forcings

> Giorgio Laguzzi

 (Vitali, 1905) by using the axiom of choice one can build non-measurable sets;

Regularity properties and tree-forcings

> Giorgio Laguzzi

 (Vitali, 1905) by using the axiom of choice one can build non-measurable sets;

 (Solovay, 1970) if κ is inaccessible and G is Coll(ω, κ)-generic over V, then L(ℝ)^{V[G]} ⊨ ZF + DC + Γ(ℙ);

Regularity properties and tree-forcings

Giorgio Laguzzi

- (Vitali, 1905) by using the axiom of choice one can build non-measurable sets;
- (Solovay, 1970) if κ is inaccessible and G is Coll(ω, κ)-generic over V, then L(ℝ)^{V[G]} ⊨ ZF + DC + Γ(ℙ);
- (Shelah, 1984-1985) $\operatorname{Con}(ZF + DC + \Gamma(\mathbb{B})) \to \operatorname{Con}(ZFC + \exists \kappa \text{ inaccessible}),$ while $\operatorname{Con}(ZFC) \to \operatorname{Con}(ZF + DC + \Gamma(\mathbb{C})).$

Regularity properties and tree-forcings

Giorgio Laguzzi

- (Vitali, 1905) by using the axiom of choice one can build non-measurable sets;
- (Solovay, 1970) if κ is inaccessible and G is Coll(ω, κ)-generic over V, then L(ℝ)^{V[G]} ⊨ ZF + DC + Γ(ℙ);
- (Shelah, 1984-1985) $\operatorname{Con}(ZF + DC + \Gamma(\mathbb{B})) \rightarrow \operatorname{Con}(ZFC + \exists \kappa \text{ inaccessible}),$ while $\operatorname{Con}(ZFC) \rightarrow \operatorname{Con}(ZF + DC + \Gamma(\mathbb{C})).$

More recently, the study of regularity properties has been continued by other set theorists: Brendle, Löwe, Spinas, Schrittesser, Friedman, Ikegami and Khomskii.

Regularity properties diagram

Regularity properties and tree-forcings

> Giorgio Laguzzi

The main scope of our research is to investigate the implications and non-implications between these regularity properties.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regularity properties diagram

Regularity properties and tree-forcings

> Giorgio Laguzzi

> > Γ(C

The main scope of our research is to investigate the implications and non-implications between these regularity properties. $\Gamma(\mathbb{M}\mathbb{A}) \xrightarrow{\qquad} \Gamma(\mathbb{S})$

Г(₿`

ſ(₩

Regularity properties diagram

Regularity properties and tree-forcings

> Giorgio Laguzzi

The main scope of our research is to investigate the implications and non-implications between these regularity properties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

	\mathbb{P} -homogeneity
Regularity properties and tree-forcings Giorgio Laguzzi	

・ロト・日本・モート モー うらの

\mathbb{P} -homogeneity

Regularity properties and tree-forcings

> Giorgio Laguzzi

To force all sets to be \mathbb{P} -measurable, Solovay's proof needs a complete boolean algebra satisfying the following key property.

Definition

A complete boolean algebra B is \mathbb{P} -homogeneous iff for every formula $\phi(x)$ with parameters in the ground model, and B-name τ for a \mathbb{P} -generic real, one has $||\phi(\tau)||_B \in B_{\tau}$, where B_{τ} is the complete subalgebra generated by τ .

In particular, if B satisfies the following:

for every $B_0, B_1 \lt B$ such that $B_0 \cong B_1 \cong \mathbb{P}$ and $f : B_0 \to B_1$ there exists $f^* \supseteq f$ such that f^* is an automorphism of B,

then B is \mathbb{P} -homogeneous.

(\mathbb{P}, Y) -homogeneity

Regularity properties and tree-forcings

> Giorgio Laguzzi

Shelah's idea was to use a variant of Solovay's method, by using a refinement of \mathbb{P} -homogeneity.

(\mathbb{P}, Y) -homogeneity

Regularity properties and tree-forcings

> Giorgio Laguzzi

Shelah's idea was to use a variant of Solovay's method, by using a refinement of \mathbb{P} -homogeneity.

Definition

Let *B* be a complete boolean algebra and *Y* a *B*-name for a set of reals. We say that *B* is (\mathbb{P}, Y) -homogeneous iff for every formula $\phi(Y, x)$ and *B*-name τ for a \mathbb{P} -generic real, one has $||\phi(Y, \tau)||_B \in B_{\tau}$, where B_{τ} is the complete subalgebra generated by τ .

To obtain this property, the *B*-name *Y* needs to be a fixed point of the automorphisms f^* , i.e., $\Vdash_B f^*(Y) = Y$.

(\mathbb{P}, Y) -homogeneity

Regularity properties and tree-forcings

> Giorgio Laguzzi

Shelah's idea was to use a variant of Solovay's method, by using a refinement of \mathbb{P} -homogeneity.

Definition

Let *B* be a complete boolean algebra and *Y* a *B*-name for a set of reals. We say that *B* is (\mathbb{P}, Y) -homogeneous iff for every formula $\phi(Y, x)$ and *B*-name τ for a \mathbb{P} -generic real, one has $||\phi(Y, \tau)||_B \in B_{\tau}$, where B_{τ} is the complete subalgebra generated by τ .

To obtain this property, the *B*-name *Y* needs to be a fixed point of the automorphisms f^* , i.e., $\Vdash_B f^*(Y) = Y$.

Question. Why (\mathbb{P}, Y) -homogeneity?

> Giorgio Laguzzi

Solovay's proof: P-homogeneity gives
1 V[G] ⊨ all On^ω-definable sets are P-measurable.
2 Hence, L(R)^{V[G]} ⊨ Γ(P).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

> Giorgio Laguzzi

Solovay's proof: P-homogeneity gives
V[G] ⊨ all On^ω-definable sets are P-measurable.
Hence, L(R)^{V[G]} ⊨ Γ(P).
Analogously, (P, Y)-homogeneity gives
V[G] ⊨ all (On^ω, Y)-definable sets are P-measurable.
Moreover, Y can be constructed in order to get V[G] ⊨ Y is not Q-measurable.
Hence, L(R, {Y})^{V[G]} ⊨ Γ(P) ∧ ¬Γ(Q).

Shelah's amalgamation

Regularity properties and tree-forcings

> Giorgio Laguzzi

The key technique to build *homogeneous* algebras is the *amalgamation*. It was invented by Shelah for building a model for $\Gamma(\mathbb{C})$ without any need of an inaccessible.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Shelah's amalgamation

Regularity properties and tree-forcings

> Giorgio Laguzzi

The key technique to build *homogeneous* algebras is the amalgamation. It was invented by Shelah for building a model for $\Gamma(\mathbb{C})$ without any need of an inaccessible. Given a Boolean algebra $A, A^0, A^1 \leq A$ and $f : A^0 \rightarrow A^1$ an isomorphism, the amalgamation provides us with a machinery to build a complete Boolean algebra $A^* \supset A$ and an automorphism $f^* : A^* \to A^*$ such that $f^* \supset f$. Then, we can iterate this process and use a book-keeping argument in order to obtain a complete Boolean algebra $B \supset A$ such that for each isomorphic pair $A^0, A^1 \lt B$ and $f : A^0 \rightarrow A^1$ there exists $f^* \supseteq f$, $f^* : B \to B$ automorphism.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Shelah's amalgamation

Regularity properties and tree-forcings

> Giorgio Laguzzi

The key technique to build *homogeneous* algebras is the amalgamation. It was invented by Shelah for building a model for $\Gamma(\mathbb{C})$ without any need of an inaccessible. Given a Boolean algebra $A, A^0, A^1 \leq A$ and $f : A^0 \rightarrow A^1$ an isomorphism, the amalgamation provides us with a machinery to build a complete Boolean algebra $A^* \supset A$ and an automorphism $f^* : A^* \to A^*$ such that $f^* \supset f$. Then, we can iterate this process and use a book-keeping argument in order to obtain a complete Boolean algebra $B \supset A$ such that for each isomorphic pair $A^0, A^1 \leq B$ and $f : A^0 \rightarrow A^1$ there exists $f^* \supseteq f$, $f^* : B \to B$ automorphism.

key point. We want to define Y is order to obtain:

■ f*(Y) = Y, for every automorphism generated by the amalgamation, and

■ Y is not Q-measurable.

 $\Gamma(\mathbb{V}) \land \neg \Gamma(\mathbb{M}) \land \neg \Gamma(\mathbb{B})$

> Giorgio Laguzzi

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

> Giorgio Laguzzi

In this particular situation we need to build two different sets of B-names Y and Z:

- Y will be non-Miller measurable;
- Z will be non-Lebesgue measurable.

We want to recursively construct $\langle B_{\alpha} : \alpha < \kappa \rangle$, $\langle Y_{\alpha} : \alpha < \kappa \rangle$ and $\langle Z_{\alpha} : \alpha < \kappa \rangle$ and put

 $\blacksquare B := \lim_{\alpha < \kappa} B_{\alpha}$

•
$$Y := \bigcup_{\alpha < \kappa} Y_{\alpha}$$

$$Z := \bigcup_{\alpha < \kappa} Z_{\alpha}.$$

Let us see a sketch of the construction.

> Giorgio Laguzzi

• If $f : A_0 \to A_1$ is an isomorphism, $A_0 \cong A_1 \cong \mathbb{V}$, $\langle B_{\alpha_{\eta}} : \eta < \kappa \rangle$ is an *increasing cofinal* sequence of complete Boolean algebras and $\langle f_{\eta} : \eta < \kappa \rangle$ is a sequence of isomorphisms generated by the amalgamation, with $\operatorname{dom}(f_{\eta}) = B_{\alpha_{\eta}}$ and $f_{\eta} \supseteq f$, then we put

$$\begin{split} \dot{Y}_{\alpha_{\eta}+1} &:= \dot{Y}_{\alpha_{\eta}} \cup \{f_{\eta}^{j}(\dot{y}), f_{\eta}^{-j}(\dot{y}) : \dot{y} \in \dot{Y}_{\alpha_{\eta}}, j \in \omega\}, \\ \dot{Z}_{\alpha_{\eta}+1} &:= \dot{Z}_{\alpha_{\eta}} \cup \{f_{\eta}^{j}(\dot{z}), f_{\eta}^{-j}(\dot{z}) : \dot{z} \in \dot{Z}_{\alpha_{\eta}}, j \in \omega\}; \end{split}$$

> Giorgio Laguzzi

for cofinally many α 's,

$$B_{\alpha+1}=B_{\alpha}*\dot{\mathbb{AV}}.$$

In this case, put $\dot{Y}_{\alpha+1} = \dot{Y}_{\alpha}$ and $\dot{Z}_{\alpha+1} = \dot{Z}_{\alpha}$. • for cofinally many α 's, $B_{\alpha+1} = B_{\alpha} * \dot{\mathbb{M}}$ and

$$\dot{Y}_{lpha+1}=\dot{Y}_{lpha}\cup\{\dot{y}_{\mathcal{T}}:\,\mathcal{T}\in\mathbb{M}\},$$

where $\dot{y}_{\mathcal{T}}$ is a name for a Miller real over $N^{B_{\alpha}}$ through $\mathcal{T} \in N^{B_{\alpha}}$,

• for cofinally many α 's, $B_{\alpha+1} = B_{\alpha} * \dot{\mathbb{B}}$ and

$$\dot{Z}_{\alpha+1} = \dot{Z}_{\alpha} \cup \{ \dot{z}_T : T \in \mathbb{B} \},$$

and z_T is a name for a random real through the positive measure tree $T \in \mathbb{N}^{B_{\alpha}}$.

> Giorgio Laguzzi

By using (V, Y, Z)-homogeneity, together with the amoeba Silver AV, a pretty standard argument gives

 $N[G] \models all (On^{\omega}, Y, Z)$ -definable sets are \mathbb{V} -measurable.

> Giorgio Laguzzi

By using (V, Y, Z)-homogeneity, together with the amoeba Silver AV, a pretty standard argument gives

 $N[G] \models all (On^{\omega}, Y, Z)$ -definable sets are \mathbb{V} -measurable.

What is more complicate is to prove that Y and Z are not *regular*.

We need to find two combinatorial properties for the names in Z and Y, respectively, which are:

- preserved by amalgamation;
- preserved by Silver extension;
- satisfied by random reals and Miller reals, respectively.

Unboundedness

Regularity properties and tree-forcings

> Giorgio Laguzzi

> > For Y, the suitable property is:

 \dot{x} is unbounded over the ground model N,

i.e., $\forall y \in \omega^{\omega} \cap \mathbb{N} \exists^{\infty} n(y(n) < \dot{x}(n))$. Note that Miller reals are unbounded over the ground model. Such a property was also used by Shelah to get $\Gamma(\mathbb{B}) \land \neg \Gamma(\mathbb{C})$.

Unreachability

Regularity properties and tree-forcings

> Giorgio Laguzzi

For Z, we need to introduce a different property: the *unreachability*. A real x is unreachable iff it is not captured by any ground model slalom.

Unreachability

Regularity properties and tree-forcings

> Giorgio Laguzzi

For Z, we need to introduce a different property: the *unreachability*. A real x is unreachable iff it is not captured by any ground model slalom.

• $\Gamma_k = \{\sigma \in \mathbf{HF}^{\omega} : \forall n \in (|\sigma(n)| \le 2^{kn})\}\$ and $\Gamma = \bigcup_{k \in \omega} \Gamma_k$, where \mathbf{HF} denotes the hereditary finite sets; • let $g(n) = 2^n$ and $\{I_n : n \in \omega\}$ be the partition of ω such that $I_0 = \{0\}$ and $I_{n+1} = \left[\sum_{j \le n} g(j), \sum_{j \le n+1} g(j)\right)$, for every $n \in \omega$;

• given $x \in 2^{\omega}$, define $h_x(n) = x \upharpoonright I_n$.

Definition

One says that $z \in 2^{\omega}$ is unreachable over N iff

 $\forall \sigma \in \Gamma \cap \mathrm{N} \exists n \in \omega(h_z(n) \notin \sigma(n)).$

> Giorgio Laguzzi

The following hold:

- If x is random over N, then x is unreachable over N.
- If x is unreachable over N and r is V-generic over N, then x is unreachable over N[r].
- The property "x is unreachable over the ground model" is preserved by amalgamation.

> Giorgio Laguzzi

The following hold:

- If x is random over N, then x is unreachable over N.
- If x is unreachable over N and r is V-generic over N, then x is unreachable over N[r].
- The property "x is unreachable over the ground model" is preserved by amalgamation.

Corollary

Z is not Lebesgue measurable.

 $\Gamma(\mathbb{V}) \land \neg \Gamma(\mathbb{M}) \land \neg \Gamma(\mathbb{B})$

Hence, we obtain

Regularity properties and tree-forcings

> Giorgio Laguzzi

$$L(\mathbb{R}, \{Y\}, \{Z\})^{\mathbb{N}[G]} \models \Gamma(\mathbb{V}) \land \neg \Gamma(\mathbb{B}) \land \neg \Gamma(\mathbb{M}),$$

which gives us the desired diagram

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Regularity properties and tree-forcings

> Giorgio Laguzzi

Regularity properties and tree-forcings

> Giorgio Laguzzi

- Does $\Gamma(\mathbb{C}) \Rightarrow \Gamma(\mathbb{MA})$?
- Does $\Gamma(\mathbb{MA}) \Rightarrow \Gamma(\mathbb{C})$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Giorgio Laguzzi

- Does $\Gamma(\mathbb{C}) \Rightarrow \Gamma(\mathbb{MA})$?
- Does $\Gamma(\mathbb{MA}) \Rightarrow \Gamma(\mathbb{C})$? (I conjecture that one can construct a model for $\Gamma(\mathbb{MA}) \land \neg \Gamma(\mathbb{C})$.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regularity properties and tree-forcings

Giorgio Laguzzi

- Does $\Gamma(\mathbb{C}) \Rightarrow \Gamma(\mathbb{MA})$?
- Does $\Gamma(\mathbb{MA}) \Rightarrow \Gamma(\mathbb{C})$? (I conjecture that one can construct a model for $\Gamma(\mathbb{MA}) \land \neg \Gamma(\mathbb{C})$.)
- Main open problem: can one build a model for Γ(MA) without using inaccessible cardinals?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Regulari	ty
properties	an
tree-forci	ngs

Giorgio Laguzzi

GRAZIE PER LA VOSTRA ATTENZIONE!

Thanks for your attention!