Full-splitting Miller trees and infinitely often equal trees

Giorgio Laguzzi (joint with Yurii Khomskii)

Universität Hamburg

Poznan - September 2014

\mathbb{P} -dichotomies

Let ${\mathcal I}$ be a $\sigma\text{-ideal}$ over the reals, and let ${\mathbb P}$ be a forcing with tree conditions.

Definition

We say that a set of reals X satisfies the $(\mathcal{I}, \mathbb{P})$ -dichotomy iff either $X \in \mathcal{I}$ or there exists $T \in \mathbb{P}$ such that $[T] \subseteq X$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

\mathbb{P} -dichotomies

Let ${\mathcal I}$ be a $\sigma\text{-ideal}$ over the reals, and let ${\mathbb P}$ be a forcing with tree conditions.

Definition

We say that a set of reals X satisfies the $(\mathcal{I}, \mathbb{P})$ -dichotomy iff either $X \in \mathcal{I}$ or there exists $T \in \mathbb{P}$ such that $[T] \subseteq X$.

Well-known examples:

- Perfect set property: $\mathcal{I} = \mathsf{ideal}$ of countable sets / $\mathbb{P} = \mathsf{Sacks}$ forcing
- \mathcal{K}_{σ} -regularity: $\mathcal{I} = \text{ideal of bounded sets } / \mathbb{P} = \text{Miller forcing}$

・ロト ・同ト ・ヨト ・ヨト

Such dichotomies provide a dense embedding

```
\mathbb{P} \hookrightarrow \mathrm{Borel} \setminus \mathcal{I}.
```

They are useful because we can use both the combinatorial properties of trees and the properties of the σ -ideal for studying the forcing notion associated. As an example, one can consider the following result.

Theorem (Zapletal)

If \mathcal{I} is a σ -ideal on $\omega^{\omega} \sigma$ -generated by closed sets then the forcing BOREL $\setminus \mathcal{I}$ is proper and preserves Baire category (non-meager ground-model sets remain non-meager in the extension).

- 4 同 6 4 日 6 4 日 6

The perfect set property is related to Davis' game on the Cantor space 2^{ω} . The analogous game played on the Baire space ω^{ω} gives rise to the following dichotomy.

Definition

• We say that a tree $T \subseteq \omega^{<\omega}$ is full-splitting Miller iff for every splitting node $t \in T$ for all $n \in \omega$, $t^{\frown} n \in T$.

The perfect set property is related to Davis' game on the Cantor space 2^{ω} . The analogous game played on the Baire space ω^{ω} gives rise to the following dichotomy.

Definition

• We say that a tree $T \subseteq \omega^{<\omega}$ is full-splitting Miller iff for every splitting node $t \in T$ for all $n \in \omega$, $t^{\frown} n \in T$.

• Given
$$f : \omega^{<\omega} \to \omega$$
, let
 $D_f := \{x \in \omega^{\omega} : \forall^{\infty} n(f(x \upharpoonright n) \neq x(n))\}$ and then
 $\mathfrak{D}_{\omega} := \{D_f : f : \omega^{<\omega} \to \omega\}.$

The perfect set property is related to Davis' game on the Cantor space 2^{ω} . The analogous game played on the Baire space ω^{ω} gives rise to the following dichotomy.

Definition

• We say that a tree $T \subseteq \omega^{<\omega}$ is full-splitting Miller iff for every splitting node $t \in T$ for all $n \in \omega$, $t^{\frown} n \in T$.

• Given
$$f : \omega^{<\omega} \to \omega$$
, let
 $D_f := \{x \in \omega^{\omega} : \forall^{\infty} n(f(x \upharpoonright n) \neq x(n))\}$ and then
 $\mathfrak{D}_{\omega} := \{D_f : f : \omega^{<\omega} \to \omega\}.$

 We say that a set X ⊆ ω^ω satisfies the (𝔅_ω, 𝑘𝔅)-dichotomy (or *Rosłanowski dichotomy*) iff either X ∈ 𝔅_ω or there exists T ∈ 𝑘𝔅 such that [T] ⊆ X.

Theorem (Rosłanowski)

Every Σ_1^1 set satisfies the Rosłanowski dichotomy.

A slightly different σ -ideal has been studied by Spinas.

Definition

For every $x \in \omega^{\omega}$ let $K_x := \{y \in \omega^{\omega} \mid \forall^{\infty} n(x(n) \neq y(n))\}$, and let \mathfrak{I}_{ioe} be the σ -ideal generated by K_x , for $x \in \omega^{\omega}$.

□→ < □→</p>

A slightly different σ -ideal has been studied by Spinas.

Definition

For every $x \in \omega^{\omega}$ let $K_x := \{y \in \omega^{\omega} \mid \forall^{\infty} n(x(n) \neq y(n))\}$, and let $\mathfrak{I}_{\text{ioe}}$ be the σ -ideal generated by K_x , for $x \in \omega^{\omega}$.

The two ideals are very similar, and in fact the following equalities hold.

Proposition

$$\texttt{ ord} \ \textit{cov}(\mathfrak{I}_{\mathrm{ioe}}) = \textit{cov}(\mathfrak{D}_{\omega}) = \textit{cov}(\mathcal{M})$$

$$\texttt{a} \quad \mathsf{non}(\mathfrak{I}_{\mathrm{ioe}}) = \mathsf{non}(\mathfrak{D}_{\omega}) = \mathsf{non}(\mathcal{M}).$$

3
$$\operatorname{\mathsf{add}}(\mathfrak{I}_{\operatorname{ioe}}) = \operatorname{\mathsf{add}}(\mathfrak{D}_\omega) = \omega_1$$

•
$$\operatorname{\mathit{cof}}(\mathfrak{I}_{\operatorname{ioe}}) = \operatorname{\mathit{cof}}(\mathfrak{D}_{\omega}) = \mathfrak{c}.$$

・ 同 ト ・ ヨ ト ・ ヨ

The notion of a full-splitting Miller tree is not sufficient to get the right dichotomy for $\Im_{\rm ioe}$, as the following example shows.

Example

Let T be the tree on $\omega^{<\omega}$ defined as follows:

- If |s| is even then $\operatorname{Succ}_{\mathcal{T}}(s) = \{0, 1\}$.
- If |s| is odd then

$$\operatorname{Succ}_{\mathcal{T}}(s) = \begin{cases} 2\mathbb{N} & \text{if } s(|s|-1) = 0\\ 2\mathbb{N}+1 & \text{if } s(|s|-1) = 1 \end{cases}$$

where $\operatorname{Succ}_{\mathcal{T}}(s) := \{n \mid s^{\frown} \langle n \rangle \in \mathcal{T}\}$. Clearly \mathcal{T} is $\mathfrak{I}_{\text{ioe}}$ -positive but cannot contain a full-splitting subtree.

The right dichotomy for \mathfrak{I}_{ioe} involves a subtle modification of the notion of a full-splitting Miller tree.

Definition

A tree $T \subseteq \omega^{\omega}$ is called an *infinitely often equal tree*, or simply *ioe-tree*, if for each $t \in T$ there exists N > |t|, such that for every $k \in \omega$ there exists $s \in T$ extending t such that s(N) = k. Let \mathbb{IE} denote the partial order of ioe-trees ordered by inclusion.

Definition

We say that a set $X \subseteq \omega^{\omega}$ satisfies the $(\mathfrak{I}_{ioe}, \mathbb{IE})$ -dichotomy (or *Spinas dichotomy*) iff either $X \in \mathfrak{I}_{ioe}$ or there exists $T \in \mathbb{IE}$ such that $[T] \subseteq X$.

Theorem (Spinas)

Every Σ_1^1 set satisfies the Spinas dichotomy.

2) (E

Simple remarks about $\mathbb{F}\mathbb{M}$ and $\mathbb{I}\mathbb{E}$

- FM adds a Cohen real (let {s_n : n ∈ ω} be a fixed
 enumeration of ω^{<ω} and consider the function φ defined by
 φ(x) = s_{x(0)}[^]s_{x(1)}[^]s_{x(2)}[^]...).
- $\mathbb{IE} * \mathbb{IE}$ adds a Cohen real.
- IE below a certain condition is equivalent to FM. Such a condition is constructed in the following way:
 - If $s \neq t$ are splitting nodes of T^{GS} then $|s| \neq |t|$.
 - If t ∈ T^{GS} is a not the immediate successor of a splitting node of T then t(|t| − 1) = 0.

Hence, $\mathbb{I}\mathbb{E}$ also adds Cohen reals.

- 4 周 ト - 4 月 ト - 4 月 ト - -

Dichotomies for higher projective levels

▲ 同 ▶ → 三 ▶

Dichotomies for higher projective levels

Theorem (Khomskii - L.)

- $\Sigma_2^1(\mathbb{FM}\text{-dich})$
- **2** $\Sigma_2^1(\mathbb{IE}\text{-dich})$

$$\forall r \in \omega^{\omega} \left(\omega_1^{L[r]} < \omega_1 \right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Dichotomies for higher projective levels

Theorem (Khomskii - L.)

- $\Sigma_2^1(\mathbb{FM}\text{-dich})$
- **2** $\Sigma_2^1(\mathbb{IE}\text{-dich})$

$$\forall r \in \omega^{\omega} \left(\omega_1^{L[r]} < \omega_1 \right)$$

Theorem (Khomskii - L.)

Let κ be inaccessible and let G be $Coll(\omega, < \kappa)$ -generic over V. Then in V[G] all sets definable from countable sequences of ordinals satisfy the \mathbb{FM} - and the \mathbb{IE} -dichotomy, and in $L(\mathbb{R})^{V[G]}$ all sets of reals satisfy the \mathbb{FM} - and \mathbb{IE} -dichotomy.

| 4 同 1 4 三 1 4 三 1

Marczewski-type regularity properties

\mathbb{FM} and \mathbb{IE} -measurability ...

In the following definitions ${\ensuremath{\mathbb P}}$ is any tree-like forcing notion.

Definition

- A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] = \emptyset \lor [T'] \subseteq X).$
- A set of reals X is said to be weakly- \mathbb{P} -measurable iff $\exists T \in \mathbb{P}(X \cap [T] = \emptyset \lor [T] \subseteq X).$

\mathbb{FM} and \mathbb{IE} -measurability

In the following definitions $\ensuremath{\mathbb{P}}$ is any tree-like forcing notion.

Definition

- A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] = \emptyset \lor [T'] \subseteq X).$
- A set of reals X is said to be weakly- \mathbb{P} -measurable iff $\exists T \in \mathbb{P}(X \cap [T] = \emptyset \lor [T] \subseteq X).$

Such a notion of measurability generalizes the Lebesgue measurability (\mathbb{P} = random forcing), the Bernstein partition property (\mathbb{P} =Sacks forcing) and the Ramsey property (\mathbb{P} = Mathias forcing).

- 同 ト - ヨ ト - - ヨ ト

\mathbb{FM} and \mathbb{IE} -measurability

In the following definitions $\ensuremath{\mathbb{P}}$ is any tree-like forcing notion.

Definition

- A set of reals X is said to be \mathbb{P} -measurable iff $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}, T' \subseteq T(X \cap [T'] = \emptyset \lor [T'] \subseteq X).$
- A set of reals X is said to be weakly- \mathbb{P} -measurable iff $\exists T \in \mathbb{P}(X \cap [T] = \emptyset \lor [T] \subseteq X).$

Such a notion of measurability generalizes the Lebesgue measurability (\mathbb{P} = random forcing), the Bernstein partition property (\mathbb{P} =Sacks forcing) and the Ramsey property (\mathbb{P} = Mathias forcing).

Theorem (Brendle - Löwe)

Let Γ be a topologically reasonable family of sets of reals. Then for many tree forcings \mathbb{P} one has $\Gamma(\mathbb{P}) \Leftrightarrow \Gamma(w\mathbb{P})$.

... vs Baire property

Question. How are \mathbb{FM} - and \mathbb{IE} -measurability related to the other notions of regularity?

▲□ ▶ ▲ □ ▶ ▲ □

... vs Baire property

Question. How are \mathbb{FM} - and $\mathbb{IE}\text{-measurability}$ related to the other notions of regularity?

Theorem (Khomskii - L.)

Let Γ be a pointclass closed under continuous pre-images. Then the following are equivalent:

- Γ(Baire)
- 2 Γ(FM)
- S Γ(IE)

Proof.

- 2 ⇒ 3. We say that an ioe-tree *T* is *in strict form* if it can be written as follows:
 - for every $\sigma\in\omega^{<\omega}$, there exists $N_{\sigma}\subseteq\omega^{n}$, for some $n\geq 1$, such that
 - $orall k \exists ! s \in N_\sigma \ (s(n-1)=k)$, and
 - for m < (n-1), there is some k such that $s(m) \neq k$ for all $s \in N_{\sigma}$. We use $\operatorname{len}(N_{\sigma}) = n$ to denote the length of N_{σ} , and we canonically enumerate N_{σ} as $\{s_k^{\sigma} \mid k < \omega\}$, in such a way that $s_k^{\sigma}(n-1) = k$.
 - $\ensuremath{\mathcal{T}}$ is the tree generated by sequences of the form

$$s_{n_0}^{\varnothing} \frown s_{n_1}^{\langle n_0
angle} \frown s_{n_2}^{\langle n_0, n_1
angle} \frown \ldots \frown s_{n_\ell}^{\langle n_0, n_1, n_2, \ldots, n_{\ell-1}
angle}$$

for some sequence $\langle n_0, n_1, \ldots, n_\ell \rangle$.

(4月) (1日) (日)

If *T* is in strict form, $t \in T$, and we need to find the first *N* such that $\forall k \exists s \supseteq t$ with s(N) = k, we only need to find the first sequence of the form s_n^{σ} extending *t*, and then $N := |s_n^{\sigma}| + \operatorname{len}(N_{\sigma \land \langle n \rangle})$. Every ioe-tree *T* can be pruned to an ioe-subtree $S \leq T$ in strict form. So, let $A \in \Gamma$ and let *T* be an ioe-tree in strict form. Define a function $\psi' : \omega^{<\omega} \to T$ by setting:

$$\psi'(\langle x(0),\ldots,x(\ell)\rangle):=s_{x(0)}^{\varnothing} \frown s_{x(1)}^{\langle x(0)\rangle} \frown s_{x(2)}^{\langle x(0),x(1)\rangle} \frown \ldots \frown s_{x(\ell)}^{x\restriction\ell}.$$

This gives rise to a natural homeomorphism $\psi : \omega^{\omega} \cong [T]$. Since $\psi^{-1}[A]$ is also in Γ we can find a full-splitting tree S such that $[S] \subseteq \psi^{-1}[A]$ or $[S] \cap \psi^{-1}[A] = \emptyset$. But $\psi^{"}[S]$ generates an ioe-subtree of T; in fact, if t is a splitting node of S then for every n we have $\psi'(t \cap \langle n \rangle) = \psi'(t) \cap s_n^t$, and the last digit of s_n^t is n by definition.

3 ⇒ 2. Let A ∈ Γ and recall the Golstern-Shelah tree T^{GS} introduced before. Since A is IE-measurable there exists S ≤ T^{GS} such that [S] ⊆ A or [S] ∩ A = Ø. But then S is an FM-tree, so A is weakly FM-measurable, which is sufficient.

- 1 ⇒ 2. Let A ⊆ ω^ω be a set in Γ. By Γ(Baire) we can find a basic open set [s] such that [s] ⊆* A or [s] ∩ A =* Ø, where ⊆* and =* stands for "modulo a meager set". Without loss of generality, assume the former. Then there is a G_δ co-meager set B ⊆ [s] ∩ A. Since D_ω ⊆ M, B cannot be D_ω-small, hence it contains an FM-tree. This is sufficient, as FM- and weak FM-measurability are classwise equivalent.
- 2 ⇒ 1. Use the function φ described before. Let A ∈ Γ and let A' := φ⁻¹[A], also in Γ. By Γ(FM) we can find a T ∈ FM such that [T] ⊆ A' or [T] ∩ A' = Ø, without loss of generality the former. Then φ"[T] cannot be meager, but it is analytic, so it is comeager in some [s]. Then [s] ⊆* A. This is sufficient because Γ(Baire) is equivalent to the assertion that for all A ∈ Γ there exists a basic open [s] such that [s] ⊆* A or [s] ∩ A =* Ø.

Theorem (Khomskii - L.)

 $\mathbf{\Delta}_{2}^{1}(\mathsf{Baire}) \Rightarrow \mathbf{\Sigma}_{2}^{1}(\mathsf{w}\mathbb{IE}).$

Corollary

It is consistent that $\Sigma_2^1(WIE)$ is true while $\Sigma_2^1(IE)$ is false; in particular IE- and weak IE-measurability are not classwise equivalent.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of Theorem.

Assume Δ_2^1 (Baire). Let $A \subseteq \omega^{\omega}$ be a Σ_2^1 set. We have to find an IE-tree T such that $[T] \subseteq A$ or $[T] \cap A = \emptyset$. We may assume that for some r, $\omega_1^{L[r]} = \omega_1$, since otherwise $\Sigma_2^1(w\mathbb{IE})$ follows easily (for example from $\Sigma_2^1(Baire)$). We may also assume, without loss of generality, that the parameters in the definition of A are in L[r]. Using the Borel decomposition of Σ_{2}^{1} sets we can write $A = \bigcup_{\alpha < \omega} B_{\alpha}$, where B_{α} are Borel sets coded in L[r]. If there exists at least one α such that $B_{\alpha} \notin \mathfrak{I}_{ioe}$, then there is an IE-tree T with $[T] \subseteq B_{\alpha} \subseteq A$ and we are done. So suppose that all B_{α} are \mathfrak{I}_{ioe} -small. For each α , since $L[r] \models "B_{\alpha} \in \mathfrak{I}_{ioe}$ " we can fix a sequence $\langle x_i^{\alpha} \mid i < \omega \rangle$ of reals in L[r] such that $B_{\alpha} \subseteq \bigcup_{i < \omega} K_{\mathbf{x}^{\alpha}}.$

・ロト ・得ト ・ヨト ・ヨト

Let $\rho: \omega^{\omega} \to \omega^{\omega}$ be defined by $\rho(x) := \langle x(0), x(2), x(4), \ldots \rangle$. By $\mathbf{\Delta}_2^1$ (Baire), we know that in V there is a Cohen real c over L[r]. Then c is infinitely often equal over L[r], and in particular, infinitely often equal to $\rho(x_i^{\alpha})$ for all $\alpha < \omega_1, i < \omega$. Let T_c be the FM-tree such that

$$[T_c] = \{y \mid \rho(y) = c\}.$$

We claim that $[T_c] \cap A = \emptyset$. Let $a \in A$, then there is some $\alpha < \omega_1$ such that $a \in B_\alpha$. By absoluteness of " $B_\alpha \subseteq \bigcup_{i < \omega} K_{x_i^\alpha}$ ", there is some $i < \omega$ such that a is eventually different from x_i^α . Let $N \in \omega$ be such that $\forall n > N$ ($a(n) \neq x_i^\alpha(n)$). But since c is ioe to $\rho(x_i^\alpha)$, we can easily find n > N such that $c(n) = x_i^\alpha(2n) \neq a(2n)$. By definition this implies that $a \notin [T_c]$.

・ロト ・同ト ・ヨト ・ヨト

Open questions

<ロ> (日) (日) (日) (日) (日)

э

A couple of open questions

How can we characterize Δ¹₂(wIE) and Σ¹₂(wIE) in terms of trascendental principle over L?

A couple of open questions

- How can we characterize Δ¹₂(wIE) and Σ¹₂(wIE) in terms of trascendental principle over L?
- Investigate the ideal σ-generated by the sets X satisfying ∀T ∈ ℙ∃T' ∈ ℙ(T' ≤ T ∧ [T'] ∩ X = Ø), where ℙ ∈ {FM, IE}.
 (Work in progress, joint with Yurii Khomskii and Wolfgang Wohofsky.)

- 同 ト - ヨ ト - - ヨ ト

A couple of open questions

- How can we characterize Δ¹₂(wIE) and Σ¹₂(wIE) in terms of trascendental principle over L?
- Investigate the ideal σ -generated by the sets X satisfying $\forall T \in \mathbb{P} \exists T' \in \mathbb{P}(T' \leq T \land [T'] \cap X = \emptyset)$, where $\mathbb{P} \in \{\mathbb{F}\mathbb{M}, \mathbb{I}\mathbb{E}\}$. (Work in progress, joint with Yurii Khomskii and Wolfgang

Wohofsky.)

 Investigate analogous Rosłanowski and Spinas dichotomies in κ^κ. (Related to Philipp Schlicht's work)

(4月) (4日) (4日)

Thank you for your attention!

A game for \mathbb{IE} -dichotomy

Definition

Let $G^{\mathbb{IE}}(A)$ be the game in which players I and II play as follows:

where $s_i \in \omega^{<\omega} \setminus \{\emptyset\}$, $N_i \ge 1$, $k_i \in \omega$, and the following rules must be obeyed for all *i*:

•
$$|s_i| = N_i$$
,

•
$$s_i(N_i-1)=k_i$$
.

Then player I wins iff $z := s_0^{\frown} s_1^{\frown} \sim s_2^{\frown} \cdots \in A$.

- 4 同 6 4 日 6 4 日 6

Theorem (Khomskii - L.)

- Player I has a winning strategy in G^{IE}(A) iff there is an IE-tree T such that [T] ⊆ A.
- **2** Player II has a winning strategy in $G^{\mathbb{IE}}(A)$ iff $A \in \mathfrak{I}_{ioe}$.

- 4 同 6 4 日 6 4 日 6