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Social welfare relations

We consider:

a set of utility levels Y with some given topology (e.g.,
Y = {0, 1}, [0, 1], ω)

X := Y ω the space of infinite utility streams, endowed with
the product topology

Given x , y ∈ X we use the following notation:

x ≤ y iff forall n ∈ ω, x(n) ≤ y(n)

x < y iff x ≤ y and ∃n ∈ ω, x(n) < y(n)

F := {π : ω → ω : finite permutation}
x ∈ X , fπ(x) := (xπ(0), xπ(1), . . . , xπ(n), . . . ).
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Definition

In this context pre-orders � (reflexive and transitive relations) are
usually called social welfare relations (SWR). Moreover a SWR �
is called:

strongly Paretian iff x < y ⇒ x ≺ y

intermediate Paretian iff ∃∞n(x(n) < y(n))⇒ x ≺ y

weakly Paretian iff ∀n(x(n) < y(n))⇒ x ≺ y .

Moreover, if � is Paretian SWR we say that � is an ethical
preference relations (EPR) iff for every π ∈ F we have fπ(x) ∼ x .
(The latter property is usually called finite anonimity or
intergenerational equity.)
We say � is continuous iff for every x ∈ X the sets
{y ∈ X : x � y} and {y ∈ X : y � x} are closed.

Example: The lex-order is a total SWR which is not continuous.
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In some cases, total SWR can be well-represented

Definition

Let � be a SWR. Then � is said to be represented by the utility
function u : X → R iff

x � y ⇔ u(x) ≤ u(y).

Lemma (Debreu’s Lemma)

Let � be a SWR. � is total and continuous iff there exists a utility
function u that represents �.

Remark: The lex-order is not representable via utility functions.
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What about total EPR? Do they exists?

Proposition (Folklore)

AC implies the existence of total EPR.

Proposition (Lawners, 2011)

If there is a total EPR, then there is a non-Ramsey set.

Proposition (Zame, 2007)

If there is a total EPR, then there is a non-measurable set.
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Question 1: Does the existence of a non-Ramsey set imply
the existence of a total EPR?

Question 2: Does the existence of a non-measurable set
imply the existence of a total EPR?
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non-measurable set without total EPR

Idea

We first prove that the existence of a total EPR gives a set
without Baire property.

We then use Shelah’s model where all sets have the Baire
property (and so there are no total EPR) but there is a non
measurable set.

Giorgio Laguzzi Infinite utility streams and irregular sets



Introduction: social welfare relations
non-measurable set without total EPR

non-Ramsey set without total EPR
Further questions

Question: How many incompatiple elements are there?

We start with a basic example. Let C be defined as follows: for
every x , y ∈ X , we say x C y iff there exists π ∈ F such that
fπ(x) < y .

Lemma

A := {(x , y) ∈ X × X : x 5 y ∧ y 5 x} is comeager.
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Proof.

Let A′ be the complement of A. We show that A′ is meager. First
note that A′ can be partitioned into two pieces:
E := {(x , y) ∈ X × X : x D y} and
D := {(x , y) ∈ X × X : y D x}. We prove E is meager, since the
proof for D works similarly.
Fix y ∈ X so that supp(y) is infinite (i.e., y is not eventually 0)
and consider E y := {x ∈ X : (x , y) ∈ E}. Let
Hy := {x ∈ X : x ≥ y}. Note that

E y :=
⋃
π∈F

H fπ(y).

Since F is countable it is enough to prove that for each π ∈ F ,
H fπ(y) is meager.
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Proof.

Actually we show that Hy is nowhere dense, for every y ∈ X with
|supp(y)| = ω. Indeed, fix U ⊆ X basic open set, and let k ∈ ω be
sufficiently large that for all n ≥ k , Un = [0, 1]. Then pick n∗ > k
such that n∗ ∈ supp(y) and pick U ′ ⊆ U so that:

∀n 6= n∗, Un = U ′n;

U ′n∗ := [0, y(n∗))

Then it is clear that U ′ ∩ Hy = ∅. This concludes the proof that
each Hy is nowhere dense, when |supp(y)| = ω. Note that if
π ∈ F we get |supp(fπ(y))| = ω as well, and so H fπ(y) is nowhere
dense too.
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Proof.

By Ulam-Kuratowski theorem, we conclude the proof if we show
that the set {y ∈ X : |supp(y)| = ω} is comeager. So let B be the
complement of such a set, i.e., B consists of those y that are
eventually 0. Define Bn := {y ∈ B : |supp(y)| ≤ n}. Clearly
B :=

⋃
n∈ω Bn. Moreover each Bn in nowhere dense. Indeed, let U

be a basic open set and pick k > n so that for all m ≥ k ,
Um = [0, 1]. Then define U ′ ⊆ U by replacing the kth of U with
(0, 1]. It is clear that U ′ ∩ Bn = ∅. Hence, we have proved that for
comeager many y , E y is meager, and that implies E is meager by
Kuratowski-Ulam theorem.
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It is not hard to show that one can generalize the previous proof in
order to obtain the following.

Proposition

Let � be a partial EPR, and
A := {(x , y) ∈ X × X : x 6� y ∧ y 6� x}. If A has the Baire
property, then A is comeager.

Question: But what about total EPR?
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Proposition

Let � be a total EPR, and A := {(x , y) ∈ X ×X : x 6� y ∧ y 6� x}.
Then A does not have the Baire property.

Proof.

Note that in this case the EPR is total and so the set
A = {(x , y) ∈ X × X : x ∼ y}. To reach a contradiction, assume
A has the Baire property. By the previous proposition, A has to be
comeager.
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Proof.

Hence, by Kuratowski-Ulam’s there is y ∈ X such that Ay is
comeager. For 0 < r < 1, define the function i : X → X such that
i(x(0)) := x(0) + r and ∀n > 0, i(x(n)) = x(n).
Note also that for every x ∈ X , i(x) � x and so in particular
x ∼ y ⇒ x 6∼ i(y). Hence, Ay ∩ i [Ay ] = ∅.
Since Ay is comeager, it should be Ay ∩ i [Ay ] 6= ∅, yielding to a
contradiction.
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non-Ramsey set without total EPR

Idea

Use Shelah’s amalgamation to build a model where all sets in
L(R, {Y }) are measurable (and so there are no total EPRs)
but Y is non-Ramsey.

Consider the L(R, {Y }) of such a forcing-extension in order to
get a model where all sets are measurable but there is a
non-Ramsey set.
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The main property

Definition ((B, Ẏ )-homogeneity)

Let B be a complete Boolean algebra, Ẏ be B-names. One says
that B is (B, Ẏ )-homogeneous if and only if for any isomorphism φ
between two complete subalgebras B1,B2 of B, such that
B1 ≈ B2 ≈ B, there exists φ∗ : B → B automorphism extending φ
such that B “ φ∗(Ẏ ) = Ẏ ”. (Intuitively, we want B-names fixed
by any automorphism constructed by the amalgamation).
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Shelah’s amalgamation

Let B0,B1 l B isomorphic complete subalgebras and φ : B0 → B1.
Let e0 : B → B × B such that e0(b) = (b, 1) (and analogously
e1(b) = (1, b)).

Step 1: define Am1(B, φ0) l B × B and φ1 : e0[B]→ e1[B] so that
φ1 is an isomorphism extending φ.

Step n: define Amn = Am(Amn−1, φn−1) and φn extends φn−1.

Step ω: define Amω(B, φ) as the direct limit of the Bn’s and φω the
limit of the φn’s.
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The main construction

Let κ be inaccessible. We recursively build a sequence of complete
Boolean algebras {Bi : i > κ} and a sequence of sets of names for
reals {Yi : i < κ} such that ∀i < j < κ, Bi l Bj and Yi ⊆ Yj as
follows:

Using a book-keeping argument we cofinally often
amalgamate over random algebras and we fix the set Yi under
the isomorphisms generated by the amalgamation. (To get
(B,Y )-homogeneity)

for cofinally many i we put Bi+1 = Bi ∗ A and Yi+1 = Yi

for cofinally many i we put Bi+1 = Bi ∗MA and Yi+1 = Yi

for cofinally many i we put Bi+1 = Bi ∗MA and
Yi+1 = Yi ∪ {xT : T ∈MA}
at limit steps j < κ put Bj = limi<j Bi and Yj =

⋃
i>j Yi .
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Two key-steps

Dominating reals are preserved under iteration with random
forcing.

Dominating reals are in a sense preserved by amalgamation.

non-Ramsey set without total EPR

Let B = limi<κ Bi , Y =
⋃

i<κ Yi and let G be B-generic over V .

L(R, {Y })V [G ] |= no total EPR and Y is non-Ramsey.
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Further questions

Egalitarian principles

Compare Paretian principles with the following:

Pigou-Dalton’s principle: For every x , y ∈ X , ε > 0,
i , j ∈ N, if yi = xi + ε < xj − ε = yj and for all k 6= i , j one
has xk = yk , then x ≺ y .

Hammond’s equity: For every x , y ∈ X , if there are i , j ∈ N
such that xi < yi < yj < xj and for all k 6= i , j one has
xk = yk , then x ≺ y .

Axiom of Determinacy

Investigate the connections with infinite games and AD.
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Thank you for your attention!
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