Exercise 1. Let \(\langle \kappa_i : i \in \alpha \rangle \) be a sequence of cardinals. We define the infinite sum of cardinals to be:
\[
\sum_{i \in \alpha} \kappa_i = |\bigcup_{i \in \alpha} X_i|,
\]
where \(\{X_i : i \in \alpha\} \) is a disjoint family of sets such that \(|X_i| = \kappa_i \) for each \(i \in \alpha \). Show that this definition makes sense (using AC) and show that for an infinite cardinal \(\lambda \) the following equation holds: \(\sum_{i \in \lambda} \kappa_i = \lambda \cdot \sup_{i \in \lambda} \kappa_i \).

Exercise 2. Let \(\langle \kappa_i : i \in \alpha \rangle \) be as above. We define the infinite product of cardinals as follows:
\[
\prod_{i \in \alpha} \kappa_i = |\prod_{i \in \alpha} X_i|,
\]
where the \(X_i \)'s are such that \(|X_i| = \kappa_i \) for each \(i \in \alpha \) and \(\prod_{i \in \alpha} X_i := \{f : f \text{ is a function, } \text{dom}(f) = \alpha, \text{ and } \forall i \in \alpha(f(i) \in X_i)\} \). Show that this is a well-defined notion and show that for an infinite cardinal \(\lambda \) and a non-decreasing sequence \(\langle \kappa_i : i \in \lambda \rangle \) of cardinals the following equation holds: \(\prod_{i \in \lambda} \kappa_i = (\sup_{i \in \lambda} \kappa_i)^\lambda \).

Exercise 3. Prove that if \(\langle \kappa_i : i \in \alpha \rangle \) and \(\langle \lambda_i : i \in \alpha \rangle \) are two sequences of cardinals such that for each \(i \in \alpha \), \(\kappa_i < \lambda_i \), then \(\sum_{i \in \alpha} \kappa_i < \prod_{i \in \alpha} \lambda_i \). Use this to prove Koenig’s Theorem (Kunen Theorem 1.13.12.).

Exercise 4. Prove that \(|\beth_\omega| = \prod_{n \in \omega} \beth_n = \beth_{\omega + 1} \).

Exercise 5. Let \(\kappa \) be an infinite cardinal and \(\alpha < \kappa^+ \). Prove that there exist \(X_n \subseteq \alpha, n \in \omega, \) such that \(\text{o.t.}(X_n) < \kappa^n \) (here we consider ordinal exponentiation) and \(\alpha = \bigcup_{n \in \omega} X_n \).

The last fact is known as “Milner-Rado Paradox”.

Exercise 6. Let \(\kappa \) be an infinite cardinal and \(\prec \) be a well-order on \(\kappa \). Prove that there exists \(X \in [\kappa]^\kappa \) such that \(\prec \cap X^2 = \in \cap X^2 \), i.e., \(\prec \) and \(\in \) coincide on \(X \).
Exercise 1 (Kunen I.13.34). Let W be a vector space over some field F, and let $W^* = \text{Hom}(W, F)$ be the dual vector space. Consider W as a subspace of W^{**} as usually ($x \in W$ is identified with the map $\phi \mapsto \phi(x)$ in W^{**}). Let $W_0 = W$ and $W_{n+1} = W_n^{**}$, so that $W_n \subset W_{n+1}$. Let $W_\omega = \bigcup_{n<\omega} W_n$.

Prove that if $|F| < 2^\omega$ and $\omega \leq \dim(W) < 2^\omega$, then $|W_\omega| = \dim(W_\omega) = 2^\omega$.

Exercise 2 (Kunen I.13.36). Assume CH. Prove that $\omega_n = \omega_n$ for all $n < \omega$.

Exercise 3 (Kunen I.13.39). Suppose that κ is an infinite cardinal, $\alpha = \bigcup_{n<\epsilon} X_n$ for some $c < \omega$, and the order type of each X_n is less than κ^ω (ordinal exponentiation!). Show that $\alpha < \kappa^\omega$.

Exercise 4 (Kunen 1.15.10). Let \mathfrak{B} be any structure for L such that

$$\max\{|L|, \omega\} \leq \kappa \leq |B|$$

for some infinite cardinal κ. Suppose that $S \subset B$ has size $|S| \leq \kappa$. Show that there exists an elementary submodel \mathfrak{A} of \mathfrak{B} such that $S \subset A$ and $|A| = \kappa$.

Hint: Use I.13.22 and I.13.21, or just look it up in some model theory book.

Exercise 5. Prove that $(\mathbb{Q}, <)$ is an elementary substructure of $(\mathbb{R}, <)$.

Hint: Use the previous exercise to find countable $X \supset \mathbb{Q}$ such that $(X, <)$ is an elementary substructure of $(\mathbb{R}, <)$. Then construct a monotone bijection $\phi : \mathbb{Q} \to X$ (this is the famous Cantor’s back and forth argument which you may find in many books or just reinvent!), and argue that it may be extended to a monotone bijection $\tilde{\phi} : \mathbb{R} \to \mathbb{R}$ by the completeness of \mathbb{R}.

There are of course other approaches.
Übungen für 02.04.2014

Exercise 1 (Kunen I.16.6). (ZF\(^{-}\)). Let \(\text{pow}(x, y)\) be \(\forall z (z \subseteq x \rightarrow z \in y)\). Let \(\gamma\) be a limit ordinal and \(a, b \in R(\gamma)\). Prove that \(R(\gamma) \models \text{pow}(a, b)\) iff \(b = \mathcal{P}(a)\), i.e., \(R(\gamma) \prec_{\text{pow}} V\).

Exercise 2 (Kunen I.16.8). (ZFC\(^{-}\)). Assume that \(0 < \gamma < \delta\) are ordinals and \(R(\gamma) < R(\delta)\). Prove that \(R(\gamma) \models ZFC\), and hence also \(R(\delta) \models ZFC\). You may use the fact that \(R(\gamma) \models ZC\) for any limit \(\gamma\).

Exercise 3 (Kunen I.16.9). Assume that \(ZFC \not\vdash \exists \gamma [R(\gamma) \models ZFC]\). Show that \(ZFC\) is inconsistent.

Exercise 4 (Kunen I.16.10). Show how to modify Definition I.15.5 to give a correct definition of \((V, \in) \models \varphi(\delta)\) in the case of \(\Delta_0\) formulas.

Exercise 5 (Kunen I.16.17). Describe a two-element non-transitive \(M\) that is isomorphic to \(\{0, 1\}\), such that \(\cap^M\) is defined but \(\cap\) is not absolute for \(M\), and such that \(\subseteq\) is not absolute for \(M\).
Work in ZF unless otherwise indicated.

Exercise 1. Which axioms of ZF are true in ON?

Exercise 2. (AC). For \(\kappa > \omega \), show that \(|H(\kappa)| = 2^{<\kappa} \).

Exercise 3. (AC). For \(\kappa > \omega \), show that \(H(\kappa) = R(\kappa) \) iff \(\kappa = \beth_\omega \).

Exercise 4. Show that in \(R(\omega + \omega) \), it is not true that every well-ordering is isomorphic to an ordinal.

Hint. Consider \(2 \times \omega \), ordered lexicographically. Track down the specific instance of Replacement which fails in \(R(\omega + \omega) \).

Exercise 5. (AC.) Recall that Zermelo set theory, Z, is ZF without Replacement. Show that for all \(\kappa > \omega \), \(H(\kappa) \) is a model for \(Z - P \). Show that the Power Set Axiom is true in \(H(\kappa) \) iff \(\kappa = \beth_\gamma \), for some limit \(\gamma \). Show that Replacement fails in \(H(\beth_\omega) \).
Exercise 1 (II.4.8). Prove that the notions “R well-orders A” and “R is well-founded on A” are absolute for $R(\gamma)$ for any limit γ.

Why can’t we use here II.4.7 directly?

Exercise 2 (II.4.6). Let γ be a limit ordinal such that $\forall \alpha < \gamma [\alpha^2 < \gamma]$. Show that ordinal sum and product are defined in $R(\gamma)$ and are absolute for $R(\gamma)$.

Exercise 3 (II.4.9). (ZFC). Prove that $R(\gamma) \models AC^+$ and $H(\kappa) \models AC^+$ for any limit γ and regular κ.

Exercise 4 (II.4.21). Let AI be “our standard” Axiom of Infinity, and let AU denote the Axiom des Undendlichen of Zermello: $\exists x (\emptyset \in x \land \forall y \in x (\{y\} \in x))$. Work in ZFC and produce transitive models for $ZC+\neg AU$ and for $ZC-\text{Inf}+AU+\neg AI$.

Exercise 5 (II.4.22). Find a transitive $M \models ZC-P$ in which $\omega \times \omega$ and $\omega^* := \{\{n\} : n \in \omega\}$ do not exist.

There are hints to almost all of these exercises in the book. Feel free to use them!
Übungen für 7.05.2014

Exercise 1 (II.4.26). Let M be a transitive class, and assume that the axioms of Extensionality, Comprehension, Pairing, Union, and Infinity hold in M. Prove that $\omega \in M$.

Exercise 2 (II.4.29). Let M be a transitive model for ZF\negP. Let $\ast, \ast \in M$ be two group operations on ω. Prove that the statement $(\omega, \ast) \cong (\omega, \ast)$ is absolute for M.

Exercise 3 (II.5.6). Assume AC. Find a formula ϕ such that every transitive M satisfying $M \prec_\phi V$ is of the form $R(\gamma)$ for some ordinal $\gamma = \beth_\gamma$.

Exercise 4 (II.5.12). Work in ZFC plus the assumption that $R(\gamma) \models \text{ZFC}$ for some γ. Prove that the minimal such γ has cofinality ω.

Exercise 5 (II.5.13). Show that there is a finite set Λ of instances of the Comprehension axiom such that Λ together with the axioms of ZF other than Comprehension, proves all instances of Comprehension.

There are hints in the book simplifying these exercises greatly!
Übungen für 14.05.2014. Mengenlehre 1

Exercise 1 (II.6.30). Convince yourself\(^1\) that the class \(L[A]\) defined in II.6.29 is a transitive model of ZFC if \(A\) consists of ordinals. Find the place in the argument where the fact that \(A \subseteq ON\) is used! Prove that \(L[A] \vDash GCH\) for \(A \subseteq \omega\).

Exercise 2 (II.6.31). Suppose that \(V = L[A]\) for some \(A \subseteq \omega_1\). Prove that \(GCH\) holds in \(L[A]\).

Later we shall show that \(V = L[A]\) is essential in the above exercise.

Exercise 3 (II.6.33). Assume \(V = L\) and prove that \(L(\alpha) = R(\alpha)\) iff \(\alpha = \aleph_\alpha\).

Exercise 4 (III.2.7). Let \(\kappa\) be singular. Show that there is a family \(A\) of \(\kappa\) two-element subsets of \(\kappa\) such that no \(B \in [A]^\kappa\) forms a delta system.

Exercise 5 (Folklore). Let \(A\) be an uncountable collection of finite subsets of \(\omega_1\) and \(M\) an elementary submodel of \(H(\omega_2)\) containing \(A\) as an element. Let \(A \in A \setminus M\) and \(D = A \cap M\). Prove that there exists an uncountable delta system \(B \subseteq A, B \in M\), with kernel \(D\).

Hint: pick in \(M\) a maximal delta subsystem of \(A\) with the kernel \(D\) and show that it is uncountable. Use the fact that if \(|X| = \omega\) and \(X \in M\) then \(X \subseteq M\).

The same ideas as in the above exercise allow to prove also more general instances of the delta system lemma.

\(^1\)I will not ask you to present this near blackboard because this is analogous to the case of \(L\) and lengthy.
Recall from III.3.23 that a subset C of a poset P is centered, if for any $n \in \omega$ and all $p_1, \ldots, p_n \in C$ there exists $q \in P$ such that $q \leq p_i$ for all $i \leq n$. If, moreover, q may be found in C, then C is called a filter. A poset P is called σ-centered if it can be written as a countable union of its centered subsets.

Exercise 1 (III.3.27(part 1)). If X is a compact Hausdorff space, then X is separable if O_X is σ-centered if O_X is a countable union of filters. Here O_X is ordered by inclusion, i.e., $U \leq V$ means $U \subset V$.

The standard base for the topology on 2^A consists of sets $[s]$, $s \in Fn(A, 2)$, where $[s] = \{x \in 2^A : x \upharpoonright \text{dom}(s) = s\}$. Thus $U \subset 2^A$ is open iff it is a union of a collection of sets of the form $[s]$.

Exercise 2 (III.3.27(part 2)). Let κ be a cardinal and $X = 2^\kappa$. Show that O_X is ccc. Show that O_X is σ-centered iff $\kappa \leq 2^\omega$.

Hint: If $\kappa \leq 2^\omega$, then take any metrizable separable topology on κ (e.g., via some bijection with a subset of \mathbb{R}), fix a countable base B for this topology, and look at characteristic functions of finite unions of elements of B. For the case $\kappa > 2^\omega$ show that a separable space cannot have more than 2^ω mutually different clopen subsets.

Exercise 3 (IV.2.8). Let $\tau = \{\langle \emptyset, p\rangle, \{\langle \emptyset, q\rangle\}, r\}$. Compute τ_G for each of the 8 possibilities for p, q, r being \in or $\notin G$.

Exercise 4 (IV.2.16). Using the notation of Lemma IV.2.15, replace the definition of π by: $\pi = \{\langle v, p\rangle : \exists \langle \sigma, q\rangle \in \tau \exists r[\langle v, r\rangle \in \sigma \land p \leq r \land p \leq q]\}$. Let $b = \pi_G$ and show that $\cup a = b$.

Exercise 5 (IV.2.28). Let M be a ctm for ZFC. Find a poset P and a sentence $\psi \in \mathcal{FL}_P \cap M$ and two different generic filters G, H with $M[G] = M[H]$ and $M[G] \models \psi$ and $M[H] \not\models \psi$ because some τ_G differs from τ_H.

Übungen für 28.05.2014. Mengenlehre 1

Exercise 1. Let M be a ctm for ZFC and $\mathbb{P} \in M$ be a poset. Let also $G \subseteq \mathbb{P}$ be a filter. Show that the following conditions are equivalent:

1. $G \cap D \neq \emptyset$, whenever $D \in M$ and D is dense in \mathbb{P};
2. $G \cap A \neq \emptyset$, whenever $A \in M$ and A is a maximal antichain in \mathbb{P};
3. $G \cap E \neq \emptyset$, whenever $E \in M$ and for every $p \in \mathbb{P}$ there exists $q \in E$ such that p and q are compatible.

Furthermore, show that in all these items, if we assume that G is just a centered subset of \mathbb{P}, then it is automatically a filter.

Exercise 2 (IV.2.46). Assume that M is a ctm for ZFC, and let $\mathbb{P} = Fn(\omega, 2)$. Then there is a filter G on \mathbb{P} such that there is no transitive $N \supset M$ such that $G \in N$, $N \modelsZF - P$, and $\omega(N) = \omega(M)$.

Exercise 3. Let M be a ctm for ZFC and $\mathbb{P} \in M$ be a poset. Suppose that $\tau \in M^\mathbb{P}$ and $\text{dom}(\tau) \subset \{\bar{n} : n \in \omega\}$. Let

$$\sigma = \{\langle \bar{n}, p \rangle : \forall q \in \mathbb{P}(\langle \bar{n}, q \rangle \in \tau \rightarrow p \perp q\}.$$

Show that $\sigma_G = \omega \setminus \tau_G$, where G is a \mathbb{P}-generic over M.

Exercise 4. Let M be a ctm for ZFC and $\mathbb{P} = (2^{<\omega_1})_M$, where $p \leq q$ means that p is an extension of q. Let G be a \mathbb{P}-generic over M. Show that in $M[G]$ there exists a bijection between $(\omega_1)_M$ and $(2^{<\omega})_M$.

Hint: Look at the restrictions of $\bigcup G$ to intervals $[\alpha, \alpha + \omega)$ for $\alpha < (\omega_1)_M$.

Exercise 5 (IV.2.47). Assume that M is a ctm for ZFC. Give an example of $\mathbb{P} \in M$ and a (non-generic) filter G on \mathbb{P} for which $\mathbb{P} \setminus G \notin M[G]$.
UBungen fr 4.06.2014. Mengenlehre 1

In the following, unless we state otherwise: \(M \) represents a c.t.m. for ZFC, \(\mathbb{P} \in M \) is a p.o., and \(G \) is a filter which is \(\mathbb{P} \)-generic over \(M \).

Exercise 1. Assume that \(\mathbb{P} \) doesn’t have the largest element. For an element \(x \in M \) redefine the name \(\dot{x} \) so that \(\dot{x}_G = x \).

Exercise 2. Suppose \(\langle \mathbb{P}, \leq \rangle \) is a partial order in \(M \) which may or may not have a largest element. In \(M \), fix \(1 \notin \mathbb{P} \), and define the p.o. \(\langle \mathbb{Q}, \leq, 1 \rangle \) by: \(\mathbb{Q} = \mathbb{P} \cup \{1\} \) where \(\mathbb{P} \) retains the same order and \(\forall p \in \mathbb{P}(p < 1) \). Show that if \(G \subset \mathbb{P} \) is a filter, \(G \) is \(\mathbb{P} \)-generic over \(M \) iff \(G \cup \{1\} \) is \(\mathbb{Q} \)-generic over \(M \), and \(M[G] \) (defined as a \(\mathbb{P} \)-extension) is the same as \(M[G \cup \{1\}] \) (defined as a \(\mathbb{Q} \)-extension).

Exercise 3. Assume \(f : A \to M \) and \(f \in M[G] \). Show that there is a set \(B \in M \) such that \(f : A \to B \).

Hint. Let \(B = \{ b : \exists p \in \mathbb{P}(p \models b \in \text{ran}(\tau)) \} \), where \(f = \tau_G \).

Exercise 4. Assume \(\alpha \) is a cardinal of \(M \). Show that the following are equivalent.

1. Whenever \(B \in M \), \(^\alpha B \cap M = ^\alpha B \cap M[G] \);
2. \(^\alpha M \cap M = ^\alpha M \cap M[G] \);
3. In \(M \): The intersection of \(\alpha \) many dense open subsets of \(\mathbb{P} \) is dense.

Recall that a subset \(O \) of \(\mathbb{P} \) is open if for every \(p \in O \) and \(q \leq p \) we have \(q \in O \) (i.e., \(O \) is downwards closed).

A p.o. satisfying (3) is called \(\alpha^+ \)-Baire. \(\kappa \)-Baire means that the intersection of less than \(\kappa \) dense open sets is dense.

Exercise 5. Let \(\mathbb{P} \in M \) be non-atomic. Let \(M = M_0 \subset M_1 \subset \cdots \subset M_n \subset \cdots \) (\(n \in \omega \)) be such that \(M_{n+1} = M_n[G_n] \) for some \(G_n \) which is \(\mathbb{P} \)-generic over \(M_n \). Show that \(\bigcup_{n \in \omega} M_n \) cannot satisfy the Power Set Axiom. Furthermore, show that the \(G_n \) may be chosen so that there is no c.t.m. \(N \) for ZFC with \(\langle G_n : n \in \omega \rangle \in N \) and \(o(N) = o(M) \).

Hint, \(\{ n : p \in G_n \} \) can code \(o(M) \).
In the following, unless we state otherwise: M represents a c.t.m. for ZFC, $P \in M$ is a p.o., and G is a filter which is P-generic over M.

A poset P is called λ-closed, where λ is a cardinal, if every decreasing sequence $\langle p_\xi : \xi < \alpha \rangle$ of elements of P of length $\alpha < \lambda$ has a lower bound.

Exercise 1. Prove that every λ-closed poset is λ-Baire (see the definition on the previous exercise sheet). Show that if P is λ-closed and λ is singular then P is λ^+-closed.

Exercise 2. Suppose that P is countable and non-atomic. Show that there is a dense embedding from $\{ p \in Fn(\omega,\omega) : \text{dom}(p) \in \omega \}$ into P.

Hint. Map $\{ p : \text{dom}(p) = 1 \}$ onto an infinite antichain in P, now handle $\{ p : \text{dom}(p) = 2 \}$, etc.

It follows from the exercise above that all countable non-atomic posets yield the same generic extensions.

Observe that for every forcing poset P, each map $i : P \to P$ gives rise to a natural map $i^* : M^P \to M^P$ defined as follows: $i^*(\tau) = \{ \langle i^*(\sigma), i(p) \rangle : (\sigma, p) \in \tau \}$.

Exercise 3. If P (i.e., $\langle P, \leq, 1_P \rangle$) is a p.o., an automorphism of P is a 1-1 map i from P onto P which preserves \leq and satisfies $i(1_P) = 1_P$; thus also $i^*(\bar{x}) = \bar{x}$ for each x. P is called almost homogeneous iff for all $p,q \in P$, there is an automorphism i of P such that $i(p)$ and q are compatible. Suppose that $P \in M$ and P is almost homogeneous in M. Show that if $p \Vdash \phi(\bar{x}_1,\ldots,\bar{x}_n)$, then $1_P \Vdash \phi(\bar{x}_1,\ldots,\bar{x}_n)$; thus, either $1_P \Vdash \phi(\bar{x}_1,\ldots,\bar{x}_n)$ or $1_P \Vdash \neg \phi(\bar{x}_1,\ldots,\bar{x}_n)$.

Exercise 4. Show that any $Fn(I,J,k)$ is almost homogeneous.

For $P = Fn(\omega,2)$ give an example showing that the conclusion of the previous exercise is not any more true for arbitrary names.

Exercise 5. Let κ be a cardinal of uncountable cofinality and $f : \kappa \to \kappa$. Show that there exists a closed and unbounded $C \subset \kappa$ such that for all $\alpha \in C$ and $\beta \in \alpha$ we have that $f(\beta) \in \alpha$ (i.e., range($f \upharpoonright \alpha$) $\subset \alpha$).
Übungen für 18.06.2014.

In the following, unless we state otherwise: M represents a c.t.m. for ZFC, $\mathbb{P} \in M$ is a p.o., and G is a filter which is \mathbb{P}-generic over M.

Exercise 1. κ is called strongly Mahlo iff κ is strongly inaccessible and \(\{ \alpha < \kappa : \alpha \text{ is regular} \} \) is stationary in κ. Show that for such κ, \(\{ \alpha < \kappa : \alpha \text{ is strongly inaccessible} \} \) is stationary in κ.

Exercise 2. Let \((\mathbb{P} = Fn(I, 2, \omega_1))^M \), where \((|I| \geq \omega_1)^M \). Show that $M[G]$ satisfies CH, regardless of whether M does.

Exercise 3. Suppose, in M, $\omega = \text{cf}(\lambda) < \lambda$. Show that $Fn(\lambda, 2, \lambda)^M$ adds a map from ω onto λ^+.

Exercise 4. Assume in M that $\kappa > \omega$, κ is regular, and \mathbb{P} has the κ-c.c. In $M[G]$, let $C \subset \kappa$ be c.u.b. Show that there exists $C' \subset C$ such that $C' \in M$ and C' is c.u.b. in κ.

Exercise 5. Suppose that in M: $S \subset \omega_1$ is stationary and \mathbb{P} is either c.c.c. or ω_1-closed. Show that S remains stationary in $M[G]$.