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Abstract. Using almost disjoint coding we prove the consistency of
the existence of a Π1

2 definable ω-mad family of infinite subsets of ω
(resp. functions from ω to ω) together with b = 2ω = ω2.

1. Introduction

A classical result of Mathias [7] states that there exists no Σ1
1 definable

mad family of infinite subsets of ω. One of the two main results of [4] states
that there is no Σ1

1 definable ω-mad family of functions from ω to ω. It is
the purpose of this paper to analyse how low in the projective hierarchy one
can consistently find a mad subfamily of [ω]ω or ωω.

Recall that a, b ∈ [ω]ω are called almost disjoint, if a ∩ b is finite. An
infinite set A is said to be an almost disjoint family of infinite subsets of ω
(or an almost disjoint subfamily of [ω]ω) if A ⊂ [ω]ω and any two elements
of A are almost disjoint. A is called a mad family of infinite subsets of ω
(abbreviated from “maximal almost disjoint”), if it is maximal with respect
to inclusion among almost disjoint families of infinite subsets of ω. Given
an almost disjoint family A ⊂ [ω]ω, we denote by L(A) the set {b ∈ [ω]ω : b
is not covered by finitely many a ∈ A}. Following [6] we define a mad
subfamily A of [ω]ω to be ω-mad, if for every B ∈ [L(A)]ω there exists
a ∈ A such that |a ∩ b| = ω for all b ∈ B.

Two functions a, b ∈ ωω are called almost disjoint, if they are almost
disjoint as subsets of ω×ω, i.e. a(k) 6= b(k) for all but finitely many k ∈ ω.
A set A is said to be an almost disjoint family of functions (or an almost
disjoint subfamily of ωω) if A ⊂ ωω and any two elements of A are almost
disjoint. A is called a mad family of functions, if it is maximal with respect
to inclusion among almost disjoint families of functions. Given an almost
disjoint family A ⊂ ωω, we denote by L(A) the set {b ∈ ωω : b is not covered
by finitely many a ∈ A}. A mad subfamily A of ωω is ω-mad1, if for every
B ∈ [L(A)]ω there exists a ∈ A such that |a ∩ b| = ω for all b ∈ B.

The following theorems are the main results of this paper.

Theorem 1. It is consistent that 2ω = b = ω2 and there exists a Π1
2 defin-

able ω-mad family of infinite subsets of ω.
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Theorem 2. It is consistent that 2ω = b = ω2 and there exists a Π1
2 defin-

able ω-mad family of functions.

By [8, Theorem 8.23], in L there exists a mad subfamily of [ω]ω which
is Π1

1 definable. Moreover, V = L implies the existence of a Π1
1 definable

ω-mad subfamily A of ωω, see [4, § 3]. It is easy to check that A∪{{n}×ω :
n ∈ ω} is actually an ω-mad family of subsets of ω × ω for every ω-mad
subfamily A of ωω, and hence Π1

1 definable ω-mad subfamilies of [ω]ω exist
under V = L as well.

Regarding the models of ¬CH, it is known that ω-mad subfamilies of [ω]ω

remain so after adding any number of Cohen subsets, see [5] and references
therein. Combining Corollary 53 and Theorem 65 from [10], we conclude
that the ground model ω-mad families of functions remain so in forcing ex-
tensions by countable support iterations of a wide family of posets including
Sacks and Miller forcings. If A ∈ V is a Π1

1 definable almost disjoint fam-
ily whose Π1

1 definition is provided by formula ϕ(x), then ϕ(x) defines an
almost disjoint family in any extension V ′ of V (this is a straightforward
consequence of the Shoenfield’s Absoluteness Theorem). Thus if a ground
model Π1

1 definable mad family remains mad in a forcing extension, it re-
mains Π1

1 definable by means of the same formula. From the above it follows
that the Π1

1 definable ω-mad family in L of functions constructed in [4, § 3]
remains Π1

1 definable and ω-mad in L[G], where G is a generic over L for the
countable support iteration of Miller forcing of length ω2. Thus the essence
of Theorems 1 and 2 is the existence of projective ω-mad families combined
with the inequality b > ω1, which rules out all mad families of size ω1.

It is not known whether in ZFC one can prove the existence of Σ1
1 mad

families of functions or of ω-mad families of functions; see [10].

2. Preliminaries

In this section we introduce some notions and notation needed for the
proofs of Theorems 1 and 2, and collect some basic facts about T -proper
posets, see [2] for more details.

Proposition 3. (1) There exists an almost disjoint family R = {r〈ζ,ξ〉 :
ζ ∈ ω · 2, ξ ∈ ωL

1 } ∈ L of infinite subsets of ω such that R ∩M =
{r〈ζ,ξ〉 : ζ ∈ ω · 2, ξ ∈ (ωL

1 )M} for every transitive model M of ZF−.
(2) There exists an almost disjoint family F = {f〈ζ,ξ〉 : ζ ∈ ω · 2, ξ ∈

ωL
1 } ∈ L of functions such that F∩M = {f〈ζ,ξ〉 : ζ ∈ ω·2, ξ ∈ (ωL

1 )M}
for every transitive model M of ZF−.

Proof sketch. Let r∗ζ,ξ be the L-least real coding the ordinal (ω2 · ξ) + ζ and
let rζ,ξ be the set of numbers coding a finite initial segment of r∗ζ,ξ. Similarly
for functions. 2

One of the main building blocks of the required ω-mad family will be
suitable sequences of stationary in L subsets of ω1 given by the following
proposition which may be proved in the same way as [1, Lemma 14].

Say that a transitive ZF− model M is suitable iff M �“ω2 exists and
ω2 = ωL

2 ”.
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Proposition 4. There exists a Σ1 definable over Lω2 tuple 〈T0, T1, T2〉 of
mutually disjoint L-stationary subsets of ω1 and Σ1 definable over Lω2 se-
quences S̄ = 〈Sα : α < ω2〉, S̄ ′ = 〈S ′

α : α < ω2〉 of pairwise almost disjoint
L-stationary subsets of ω1 such that

• Sα ⊂ T2 and S ′
α ⊂ T1 for all α ∈ ω2;

• Whenever M,N are suitable models of ZF− such that ωM
1 = ωN

1 ,
S̄M agrees with S̄N on ωM

2 ∩ ωN
2 . Similarly for S̄ ′.

The following standard fact gives an absolute way to code an ordinal
α < ω2 by a subset of ω2.

Fact 5. There exists a formula φ(x, y) and for every α < ωL
2 a set Xα ∈

([ω1]
ω1)L such that

(1) For every suitable model M containing Xα∩ωM
1 , φ(x,Xα∩ωM

1 ) has a
unique solution in M , and this solution equals α provided ωM

1 = ωL
1 ;

(2) For arbitrary suitable models M,N with ωM
1 = ωN

1 and Xα ∩ ωM
1 ∈

M ∩N , the solutions of φ(x,Xα ∩ ωM
1 ) in M and N coincide2.

Let γ be a limit ordinal and r : γ → 2. We denote by Even(r) the set
{α < γ : r(2α) = 1}. For ordinals α < β we shall denote by β−α the ordinal
γ such that α+γ = β. If B is a set of ordinals above α, then B−α stands for
{β − α : β ∈ B}. Observe that if ζ is an indecomposable ordinal (e.g., ωM

1

for some countable suitable model of ZF−), then ((α+B)∩ ζ)−α = B ∩ ζ
for all B and α < ζ. This will be often used for B = Xα.

For x, y ∈ ωω we say that y dominates x and write x ≤∗ y if x(n) ≤ y(n)
for all but finitely many n ∈ ω. The minimal size of a subset B of ωω

such that there is no y ∈ ωω dominating all elements of B is denoted by
b. It is easy to see that ω < b ≤ 2ω. We say that a forcing notion P adds
a dominating real if there exists y ∈ ωω ∩ V P dominating all elements of
ωω ∩ V .

Definition 6. Let T ⊂ ω1 be a stationary set. A poset P is T -proper, if
for every countable elementary submodel M of Hθ, where θ is a sufficiently
large regular cardinal, such that M∩ ω1 ∈ T , every condition p ∈ P ∩M
has an (M,P)-generic extension q.

The following theorem includes some basic properties of T -proper posets.

Theorem 7. Let T be a stationary subset of ω1.

(1) Every T -proper poset P preserves ω1. Moreover, P preserves the
stationarity of every stationary set S ⊂ T .

(2) Let 〈Pξ, Q̇ζ : ξ ≤ δ, ζ < δ〉 be a countable support iteration of T -
proper posets. Then Pδ is T -proper. If, in addition, CH holds in V ,
δ ≤ ω2, and the Q̇ζ’s are forced to have size at most ω1, then Pδ is
ω2-c.c. If, moreover, δ < ω2, then CH holds in V Pδ .

2In what follows the phrase “X codes an ordinal β in a suitable ZF− model M” means
that there exists α < ωL

2 such that X = ωM
1 ∩ Xα ∈ M and φ(β, X) holds in M .
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3. Proof of Theorem 1

We start with the ground model V = L. Recursively, we shall define a
countable support iteration 〈Pα, Q̇β : α ≤ ω2, β < ω2〉. The desired family A
is constructed along the iteration: for cofinally many α’s the poset Qα takes
care of some countable family B of infinite subsets of ω which might appear
in L(A) in the final model, and adds to A some aα ∈ [ω]ω almost disjoint
from all elements of Aα such that |a ∩ b| = ω for all b ∈ B (here Aα stands
for the set of all elements of A constructed up to stage α). Our forcing
construction will have some freedom allowing for further applications.

We proceed with the definition of Pω2 . For successor α let Q̇α be a
Pα-name for some proper forcing of size ω1 adding a dominating real. For
a subset s of ω and l ∈ |s| (= card(s) ≤ ω) we denote by s(l) the l’th
element of s. In what follows we shall denote by E(s) and O(s) the sets
{s(2i) : 2i ∈ |s|} and {s(2i+ 1) : 2i+ 1 ∈ |s|}, respectively. Let us consider
some limit α and a Pα-generic filter Gα. Suppose also that

(∗) ∀B ∈ [Aα]<ω ∀r ∈ R (|E(r) \ ∪B| = |O(r) \ ∪B| = ω),

where R is the family constructed in Proposition 3. Observe that equation
(∗) yields |E(r) \ ∪B| = |O(r) \ ∪B| = ω for every B ∈ [R ∪ Aα]<ω and
r ∈ R \ B. Let us fix some function F : Lim ∩ ω2 → Lω2 such that F−1(x)

is unbounded in ω2 for every x ∈ Lω2 . Unless the following holds, Q̇α is a

Pα-name for the trivial poset. Suppose that F (α) is a sequence 〈ḃi : i ∈ ω〉
of Pα-names such that bi = ḃGα

i ∈ [ω]ω and none of the bi’s is covered by

a finite subfamily of Aα. In this case Qα := Q̇Gα
α is the two-step iteration

K0
α ∗ K̇1

α defined as follows.
In V [Gα], K0

α is some T0 ∪ T2-proper poset of size ω1. Our proof will
not really depend on K0

α. K0
α is reserved for some future applications, see

section 5.
Let us fix some K0

α-generic filter hα over V [Gα] and find a limit ordinal
ηα ∈ ω1 such that there are no finite subsets J,E of (ω · 2) × (ω1 \ ηα), Aα,
respectively, and i ∈ ω, such that bi ⊂

∪
〈ζ,ξ〉∈J r〈ζ,ξ〉 ∪

∪
E. (The almost

disjointness of the r〈ζ,ξ〉’s imply that if bi ⊂
∪
R′∪

∪
A′ for some R′ ∈ [R]<ω

and A′ ∈ [Aα]<ω, then bi \
∪
A′ has finite intersection with all elements of

R\R′. Together with equation (∗) this easily yields the existence of such an
ηα.) Let zα be an infinite subset of ω coding a surjection from ω onto ηα. For
a subset s of ω we denote by s̄ the set {2k+1 : k ∈ s}∪{2k : k ∈ (sups\s)}.
In V [Gα ∗ hα], K1

α consists of sequences 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉3 satisfying
the following conditions:

(i) ck is a closed, bounded subset of ω1 \ ηα such that Sα+k ∩ ck = ∅ for
all k ∈ ω;

(ii) yk : |yk| → 2, |yk| > ηα, yk � ηα = 0, and Even(yk) = ({ηα} ∪ (ηα +
Xα)) ∩ |yk|;

3The tuples 〈s, s∗〉 and 〈ck, yk : k ∈ ω〉 will be referred to as the finite part and the
infinite part of the condition 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉, respectively.
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(iii) s ∈ [ω]<ω, s∗ ∈
[
{r〈m,ξ〉 : m ∈ s̄, ξ ∈ cm} ∪ {r〈ω+m,ξ〉 : m ∈ s̄, ym(ξ) =

1}∪Aα

]<ω
. In addition, for every 2n ∈ |s∩r〈0,0〉|, n ∈ zα if and only

if there exists m ∈ ω such that (s ∩ r〈0,0〉)(2n) = r〈0,0〉(2m); and
(iv) For all k ∈ s̄ ∪ (ω \ (max s̄)), limit ordinals ξ ∈ ω1 such that ηα <

ξ ≤ |yk|, and suitable ZF− models M containing yk � ξ and ck ∩ ξ
with ωM

1 = ξ, ξ is a limit point of ck, and the following holds in
M : (Even(yk)−min Even(yk))∩ ξ codes a limit ordinal ᾱ such that
SM

ᾱ+k is non-stationary.

For conditions ~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 and ~q = 〈〈t, t∗〉, 〈dk, zk : k ∈
ω〉〉 in K1

α, we let ~q ≤ ~p (by this we mean that ~q is stronger than ~p) if and
only if

(v) (t, t∗) extends (s, s∗) in the almost disjoint coding, i.e. t is an end-
extension of s and t \ s has empty intersection with all elements of
s∗;

(vi) If m ∈ t̄ ∪ (ω \ (max t̄)), then dm is an end-extension of cm and
ym ⊂ zm.

This finishes our definition of Pω2 . Before proving that the statement of
our theorem holds in V Pω2 we shall establish some basic properties of K1

α.
In Claims 8, 9, 10, 11, and Corollary 12 below we work in L[Gα ∗ hα].

Claim 8. (Fischer, Friedman [1, Lemma 1].) For every condition ~p =
〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 ∈ K1

α and every γ ∈ ω1 there exists a sequence
〈dk, zk : k ∈ ω〉 such that 〈〈s, s∗〉, 〈dk, zk : k ∈ ω〉〉 ∈ K1

α, 〈〈s, s∗〉, 〈dk, zk :
k ∈ ω〉〉 ≤ ~p, and |zk|,max dk ≥ γ for all k ∈ ω.

Claim 9. For every ~p ∈ K1
α and open dense D ⊂ K1

α there exists ~q ≤ ~p
with the same finite part as ~p such that whenever ~p1 is an extension of ~q
meeting D with finite part 〈r1, r∗1〉, then already some condition ~p2 with the
same infinite part as ~q and finite part 〈r1, r∗2〉 for some r∗2 meets D.

Proof. Let ~p = 〈〈t0, t∗0〉, 〈d0
k, z

0
k : k ∈ ω〉〉 and let M be a countable el-

ementary submodel of Hθ containing K1
α, ~p, Xα, and D, and such that

j := M∩ ω1 6∈
∪

k∈t̄0∪(ω\(max t̄0)) Sα+k.

Let {〈~rn, sn〉 : n ∈ ω} be a sequence in which every pair 〈~r, s〉 ∈ (K1
α ∩

M) × [ω]<ω with ~p ≥ ~r appears infinitely often. Let 〈jn : n ∈ ω〉 be
increasing and cofinal in j. Using Claim 8, by induction on n construct
sequences 〈dn

k , z
n
k : k ∈ ω〉 ∈ M as follows:

If there exists ~r1,n ∈ D∩M below both ~rn and 〈〈t0, t∗0〉, 〈dn
k , z

n
k : k ∈ ω〉〉

and with finite part of the form 〈sn, s
∗
n〉 for some s∗n, then let 〈dn+1

k , zn+1
k :

k ∈ ω〉 be the infinite part of ~r1,n, extended further in such a way that
〈〈t0, t∗0〉; 〈dn+1

k , zn+1
k : k ∈ ω〉〉 ∈ K1

α and |zn+1
k |,max dn+1

k ≥ jn for all
n ∈ ω and k ∈ t̄0 ∪ (ω \ (max t̄0)). If there is no such ~r1,n, then let dn+1

k

be an arbitrary end-extension of dn
k and zn+1

k be an extension of zn
k such

that |zn+1
k |,max dn+1

k ≥ jn for all n ∈ ω and k ∈ t̄0 ∪ (ω \ (max t̄0)), and
〈〈t0, t∗0〉; 〈dn+1

k , zn+1
k : k ∈ ω〉〉 ∈ K1

α.
Set dk =

∪
n∈ω d

n
k ∪ {j} and zk =

∪
n∈ω z

n
k for all k ∈ ω \ F , dk = zk = ∅

for k ∈ F , and ~q = 〈〈t0, t∗0〉, 〈dk, zk : k ∈ ω〉〉. We claim that ~q is as required.
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Let us show first that ~q ∈ K1
α. Only item (iv) of the definition of K1

α

for k ∈ t̄0 ∪ (ω \ (max t̄0)) and ξ = j must be verified. Fix such a k
and suitable ZF− model M containing zk and dk with ωM

1 = j. Let M̄
be the Mostowski collapse of M and π : M → M̄ be the corresponding
isomorphism. Let us note that j = ωM

1 = ωM̄
1 . Since Xα ∈ M, and M

is elementary submodel of Hθ, α is the unique solution of φ(x,Xα) in M,
and hence ᾱ := π(α) is the unique solution of φ(x,Xα ∩ j = π(Xα)) in
M̄ . In addition, SM̄

ᾱ+k = π(Sα+k) = Sα+k ∩ j for all k ∈ ω. Applying
Fact 5(2) and Proposition 4, we conclude that φ(ᾱ, Xα ∩ j)M holds and
SM

ᾱ+k = SM̄
ᾱ+k = Sα+k ∩ j. Since dk ∈ M , dk ∩ Sα+k = ∅, and dk \ {j} is

unbounded in j = ωM
1 by the construction of dk, we conclude that SM

ᾱ+k is
not stationary in M . This proves that ~q ∈ K1

α.
Now suppose that ~p1 = 〈〈r1, r∗1〉, 〈d′k, z′k : k ∈ ω〉〉 ≤ ~q and ~p1 ∈ D. Since

r1, r
∗
1 are finite, there exists m ∈ ω such that ~r := 〈〈r1, r∗1 ∩M〉, 〈dm

k , z
m
k :

k ∈ ω〉〉 ∈ K1
α ∩M. Let n ≥ m be such that ~rn = ~r and sn = r1. Since ~p1

is obviously a lower bound of ~rn and 〈〈t0, t∗0〉, 〈dn
k , z

n
k : k ∈ ω〉〉 with finite

part 〈sn, r
∗
1〉, there exists ~p ′

2 ∈ M∩D below both ~rn and 〈〈t0, t∗0〉, 〈dn
k , z

n
k :

k ∈ ω〉〉 with finite part 〈sn, r
∗
2〉 for some suitable r∗2 ∈ M. Thus the

first (nontrivial) alternative of the construction of dn+1
k , zn+1

k ’s took place.
Without loss of generality, ~r1,n = ~p ′

2. A direct verification shows that ~p2 =
〈〈sn = r1, r

∗
2〉, 〈dk, zk : k ∈ ω〉〉 is as required. �

Claim 10. Let M be a countable elementary submodel of Hθ for sufficiently
large θ containing all relevant objects with i = M ∩ ω1 and ~p ∈ M ∩ K1

α.
If i 6∈

∪
n∈s̄∪(ω\(max s̄)) Sα+n, then there exists an (M,K1

α)-generic condition

~q ≤ ~p with the same finite part as ~p.

Proof. Let ~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 and 〈Dn : n ∈ ω〉 be the collection
of all open dense subsets of K1

α which are elements of M, and 〈in : n ∈ ω〉
be an increasing sequence of ordinals converging to i. Using Claims 8 and
9, inductively construct a sequence 〈~qn : n ∈ ω〉 ⊂ M ∩ K1

α, where ~qn =
〈〈s, s∗〉, 〈dn

k , z
n
k : k ∈ ω〉〉 and ~q0 = ~p, such that

(i) dn+1
k is an end-extension of dn

k and zn+1
k is an extension of zn

k for all
n ∈ ω and k ∈ s̄ ∪ (ω \ (max s̄));

(ii) |zn
k |,max dn

k ≥ in for all n ≥ 1 and k ∈ s̄ ∪ (ω \ (max s̄)); and
(iii) For every n ≥ 1 and ~r = 〈〈r, r∗〉, 〈d′k, z′k : k ∈ ω〉〉 ≤ ~qn, ~r ∈ Dn,

there exists r∗2 such that ~r2 := 〈〈r, r∗2〉, 〈dn
k , z

n
k : k ∈ ω〉〉 ∈ Dn and

~r2 ≤ ~qn.

Set dk =
∪

n∈ω d
n
k ∪ {i} and zk =

∪
n∈ω z

n
k for all k ∈ s̄ ∪ (ω \ (max s̄)),

dk = zk = ∅ for all other k ∈ ω, and ~q = 〈〈t0, t∗0〉, 〈dk, zk : k ∈ ω〉〉. We claim
that ~q is as required, i.e., ~q ∈ K1

α and Dn∩M is pre-dense below ~q for every
n ∈ ω. The fact that ~q ∈ K1

α can be shown in the same way as in the proof
of Claim 9.

Let us fix n ∈ ω and ~r1 = 〈〈t1, t∗1〉, 〈d′k, z′k : k ∈ ω〉〉 ≤ ~q. Without
loss of generality, ~r1 ∈ Dn. Since ~r1 ≤ ~qn, (iii) yields the existence of
t∗2 such that ~r2 := 〈〈t1, t∗2〉, 〈dn

k , z
n
k : k ∈ ω〉〉 ≤ ~qn and ~r2 ∈ Dn. It is
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clear that ~r2 ∈ M. We claim that ~r2 and ~r1 are compatible. Indeed, set
~r3 = 〈〈t1, t∗2 ∪ t∗1〉, 〈d′k, z′k : k ∈ ω〉〉 and note that ~r3 ≤ ~r1, ~r2. �

Let Hα be a K1
α-generic filter over L[Gα ∗ hα]. Set Y α

k =
∪

~p∈Hα
yk,

Cα
k =

∪
~p∈Hα

ck, aα =
∪

~p∈Hα
s, Aα+1 = Aα∪{aα}, and S∗ =

∪
~p∈Hα

s∗, where

~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉. The following statement is a consequence of
the definition of K1

α and the genericity of Hα.

Claim 11. (1) S∗ = {r〈m,ξ〉 : m ∈ aα, ξ ∈ Cα
m} ∪ {r〈ω+m,ξ〉 : m ∈

aα, Y
α
m(ξ) = 1} ∪ Aα;

(2) aα ∈ [ω]ω;
(3) If m ∈ aα, then dom(Y α

m) = ω1 and Cα
m is a club in ω1 disjoint from

Sα+m;
(4) aα is almost disjoint from all elements of Aα;
(5) If m ∈ aα, then |aα ∩ r〈m,ξ〉| < ω if and only if ξ ∈ Cα

m;
(6) If m ∈ aα, then |aα ∩ r〈ω+m,ξ〉| < ω if and only if Y α

m(ξ) = 1;
(7) |aα ∩ bi| = ω for all i ∈ ω;
(8) For every n ∈ ω, n ∈ zα if and only if there exists m ∈ ω such that

(aα ∩ r〈0,0〉)(2n) = r〈0,0〉(2m); and
(9) Equation (∗) holds for α + 1, i.e. for every r ∈ R and a finite

subfamily B of Aα+1, B covers neither a cofinite part of E(r) nor of
O(r).

Proof. Items (1), (2), (4), and (9) are straightforward. Items (2), (5), (6),
and (8) follow from the inductive assumption (∗). Item (3) is a consequence
of Claim 8.

We are left with the task to prove (7). Let us fix l, i ∈ ω and denote
by Dl,i the set of conditions 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 ∈ K1

α such that (s \
l) ∩ bi 6= ∅. It suffices to show that Dl,i is dense in K1

α. Fix a condition
~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 ∈ K1

α and set x = bi \ ∪s∗. Note that x ∈ [ω]ω

by our choice of ηα and items (i), (ii) of the definition of K1
α. Two cases are

possible.
1. |x \ r〈0,0〉| = ω. Then

~q := 〈〈s ∪ {min(x \ (r〈0,0〉 ∪ l ∪ max s))}, s∗〉, 〈ck, yk : k ∈ ω〉〉

is an element of Dl,i and is stronger than ~p.
2. x ⊂∗ r〈0,0〉. Without loss of generality, x \ r〈0,0〉 ⊂ l. Suppose that

|s ∩ r〈0,0〉| = 2j − 1 for some j ∈ ω (the case of even |s ∩ r〈0,0〉| is analogous
and simpler). Let y = r〈0,0〉 \ ∪s∗ and note that x ⊂∗ y. By (∗), |y ∩
E(r〈0,0〉)| = |y ∩ O(r〈0,0〉)| = ω. Denote by me and mo the minima of the
sets (y ∩E(r〈0,0〉)) \ (l ∪ (max s+ 1)) and (y ∩O(r〈0,0〉)) \ (l ∪ (max s+ 1)),
respectively. Set

~r := 〈〈s ∪ {me} ∪ {min(x \ (me + 1))}, s∗〉, 〈ck, yk : k ∈ ω〉〉

if j ∈ zα and

~r := 〈〈s ∪ {mo} ∪ {min(x \ (mo + 1))}, s∗〉, 〈ck, yk : k ∈ ω〉〉

otherwise. A direct verification shows that ~r ∈ Dl,i and ~r ≤ ~p. �
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Corollary 12. Q̇α is T0-proper. Consequently, Pω2 is T0-proper and hence
preserves cardinals.

More precisely, for every condition ~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 ∈ K1
α the

poset {~r ∈ K1
α : ~r ≤ ~p} is ω1 \

∪
n∈s̄∪(ω\(max s̄)) Sα+n-proper. Consequently,

Sα+n remains stationary in V Pω2 for all n ∈ ω \ aα.

Let G be a Pω2-generic filter over L. The following lemma shows that
A is a Π1

2 definable subset of [ω]ω in L[G] and thus finishes the proof of
Theorem 1.

Lemma 13. In L[G] the following conditions are equivalent:

(1) a ∈ A;
(2) For every countable suitable model M of ZF− containing a as an

element there exists ᾱ < ωM
2 such that SM

ᾱ+k is nonstationary in M
for all k ∈ a.

Proof. (1) → (2). Fix a ∈ A and find α < ω2 such that a = aα. Fix also
a countable suitable model M of ZF− containing aα as an element. By
Claim 11(5, 6, 8), zα ∈ M and Cα

k ∩ ωM
1 , Y

α
k � ωM

1 ∈ M for all k ∈ aα.
Therefore ηα < ωM

1 . Since 〈〈∅, ∅〉, 〈Cα
k ∩ (ωM

1 + 1), Y α
k � ωM

1 : k ∈ ω〉〉 is
a condition in K1

α, item (iv) of the definition of K1
α ensures that for every

k ∈ aα, Even(Y α
k � ωM

1 )−min Even(Y α
k � ωM

1 ) codes a limit ordinal ᾱk ∈ ωM
2

such that SM
ᾱk+k is nonstationary in M . By item (ii) of the definition of K1

α,

Even(Y α
k � ωM

1 ) − min Even(Y α
k � ωM

1 ) = Xα ∩ ωM
1

for every k ∈ āα, and hence ᾱk’s do not depend on k.

(2) → (1). Let us fix a fulfilling (2) and observe that by Löwenheim-
Skolem, (2) holds for arbitrary (not necessarily countable) suitable model
of ZF− containing a. In particular, it holds in M = Lω8 [G]. Observe that

ωM
2 = ω

L[G]
2 = ωL

2 , ~SM = ~S, and the notions of stationarity of subsets of
ω1 coincide in M and L[G]. Thus there exists α < ω2 such that Sα+k is
nonstationary for all k ∈ a. Since the stationarity of some Sα+k’s has been
destroyed, Corollary 12 together with the T2-properness of K0

ξ ’s implies that

Q̇α is not trivial. Now, the last assertion of Corollary 12 easily imples that
a = aα. �

4. Proof of Theorem 2

The proof is completely analogous to that of Theorem 1. Therefore we
just define the corresponding poset Pω2 , the use of the poset M1

α defined
below instead of K1

α at the αth stage of iteration being the only significant
change. We leave it to the reader to verify that the proof of Theorem 1 can
be carried over.

For successor α let Q̇α be a Pα-name for some proper forcing of size ω1

adding a dominating real. Let us consider some limit α and a Pα-generic
filter Gα. Suppose also that we have already constructed an almost disjoint
family Aα ⊂ ωω such that

(∗∗) ∀E ∈ [Aα]<ω ∀f ∈ F (|f � (2ω) \ ∪E| = |f � (2ω + 1) \ ∪E| = ω)
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Equation (∗∗) yields

∀E ∈ [F ∪ Aα]<ω ∀f ∈ F \ E (|f � (2ω) \ ∪E| = |f � (2ω + 1) \ ∪E| = ω).

Let F : Lim ∩ ω2 → Lω2 be the same as in the proof of Theorem 1.
Unless the following holds, Q̇α is a Pα-name for the trivial poset. Suppose
that F (α) is a sequence 〈ḃi : i ∈ ω〉 of Pα-names such that bi = ḃGα

i ∈ ωω

and none of the bi’s is covered by a finite subfamily of Aα. In this case
Qα := Q̇Gα

α is the two-step iteration K0
α ∗ Ṁ1

α defined as follows.
In V Pα , K0

α is some T0 ∪ T2-proper poset of size ω1.
Let us fix a recursive bijection ψ : ω × ω → ω and s ∈ ω<ω. Set

sq(s) = dom(s) × (dom(s) + ran(s)) and

¯̄s = {2k + 1 : k ∈ ψ(s)} ∪ {2k : k ∈ ψ(sq(s) \ s)}.

In V Pα∗K0
α find an ordinal ηα ∈ ω1 such that there are no finite subsets

J,E of (ω · 2) × (ω1 \ ηα), Aα, respectively, and i ∈ ω, such that bi ⊂∪
〈ζ,ξ〉∈J f〈ζ,ξ〉 ∪

∪
E. M1

α consists of sequences 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉
satisfying the following conditions:

(i)f Conditions (i)-(ii) from the definition of K1
α in the proof of Theo-

rem 1 hold;
(ii)f s ∈ ω<ω, s∗ ∈

[
{f〈m,ξ〉 : m ∈ ¯̄s, ξ ∈ cm} ∪ {f〈ω+m,ξ〉 : m ∈ ¯̄s, ym(ξ) =

1} ∪ Aα

]<ω
. In addition, for every 2n ∈ |s ∩ f〈0,0〉|, n ∈ zα if and

only if there exists m ∈ ω such that s(j) = f〈0,0〉(2m), where j is the
2n’th element of the domain of s ∩ f〈0,0〉; and

(iii)f For all m ∈ ¯̄s ∪ {2k, 2k + 1 : k ∈ ψ((ω \ dom(s)) × ω)}, limit
ordinals ξ ∈ ω1 such that ηα < ξ ≤ |ym|, and suitable ZF− models
M containing ym � ξ and cm ∩ ξ with ωM

1 = ξ, ξ is a limit point of
cm, and the following holds in M : (Even(ym) − min Even(ym)) ∩ ξ
codes a limit ordinal ᾱ such that SM

ᾱ+m is non-stationary.

For conditions ~p = 〈〈s, s∗〉, 〈ck, yk : k ∈ ω〉〉 and ~q = 〈〈t, t∗〉, 〈dk, zk : k ∈
ω〉〉 in M1

α, ~q ≤ ~p if and only if

(iv)f s ⊂ t, s∗ ⊂ t∗, and t \ s has empty intersection with all elements of
s∗;

(v)f If m ∈ ¯̄s ∪ {2k, 2k + 1 : k ∈ ψ((ω \ dom(s)) × ω)}, then dm is an
end-extension of cm and ym ⊂ zm.

5. Final remarks

The fact that S ′
α ∩ Sβ = ∅ for all α, β < ω2 together with the freedom

to choose K0
α to be an arbitrary T0 ∪ T2-proper forcing of size ω1 allow for

combining the proofs of Theorems 1, 2 and [1, Theorem 1]. In addition, we

could take K̇0
α to be a name for a two-step iteration with second component

equal to the poset used in the proof of [1, Theorem 1] at stage α, and
first component equal to a name of a c.c.c. poset of size ω1 (Theorem 7(2)
allows us to arrange a suitable bookkeeping of such names). This gives us
the following statements.
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Theorem 14. It is consistent with Martin’s Axiom that there exists a ∆1
3

definable wellorder of the reals and a Π1
2 definable ω-mad family of infinite

subsets of ω.

Theorem 15. It is consistent with Martin’s Axiom that there exists a ∆1
3

definable wellorder of the reals and a Π1
2 definable ω-mad family of functions.

The following questions remain open. In all questions we are interested
in families of infinite subsets of ω as well as in families of functions from ω
to ω.

Question 16. Is it consistent to have b > ω1 with a Σ1
2 definable mad

family?

The answer to Question 16 is “no” for the case of ω-mad families. This
follows from Corollary 38 of [10] (it talks only about ωω, but its proof works
for [ω]ω as well). Indeed, suppose that b > ω1 and A is a Σ1

2 definable
ω-mad family. Every Σ1

2 definable set either contains a perfect set or has
size at most ω1, see [9, Theorem 21.2]. Since the size of A is at least b > ω1,
A must contain a perfect set. But this cannot happen for an ω-mad family
by [10, Corollary 38].

Question 17. Is it consistent to have ω1 < b < 2ω with a Π1
2 definable

(ω-)mad family?

In the proofs of Theorems 1 and 2 we ruled out all mad families of size
ω1 by making b big. Alternatively, one could use the methods developed
in [1] and prove the consistency of ω1 = b < a = ω2 together with a ∆1

3

definable ω-mad family. This suggests the following

Question 18. Is it consistent to have b < a and a Π1
2 definable (ω-)mad

family?

Question 19. Is a projective (ω-)mad family consistent with b ≥ ω3?

Acknowledgments. The authors would like to thank the anonymous ref-
eree for the discussion following Question 16.
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