PROJECTIVE MAD FAMILIES

SY-DAVID FRIEDMAN, LYUBOMYR ZDOMSKYY

ABSTRACT. Using almost disjoint coding we prove the consistency of the existence of a Π_2^1 definable ω -mad family of infinite subsets of ω (resp. functions from ω to ω) together with $\mathfrak{b} = 2^{\omega} = \omega_2$.

1. Introduction

A classical result of Mathias [7] states that there exists no Σ_1^1 definable mad family of infinite subsets of ω . One of the two main results of [4] states that there is no Σ_1^1 definable ω -mad family of functions from ω to ω . It is the purpose of this paper to analyse how low in the projective hierarchy one can consistently find a mad subfamily of $[\omega]^{\omega}$ or ω^{ω} .

Recall that $a, b \in [\omega]^{\omega}$ are called almost disjoint, if $a \cap b$ is finite. An infinite set A is said to be an almost disjoint family of infinite subsets of ω (or an almost disjoint subfamily of $[\omega]^{\omega}$) if $A \subset [\omega]^{\omega}$ and any two elements of A are almost disjoint. A is called a mad family of infinite subsets of ω (abbreviated from "maximal almost disjoint"), if it is maximal with respect to inclusion among almost disjoint families of infinite subsets of ω . Given an almost disjoint family $A \subset [\omega]^{\omega}$, we denote by $\mathcal{L}(A)$ the set $\{b \in [\omega]^{\omega} : b \text{ is not covered by finitely many } a \in A\}$. Following [6] we define a mad subfamily A of $[\omega]^{\omega}$ to be ω -mad, if for every $B \in [\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b| = \omega$ for all $b \in B$.

Two functions $a, b \in \omega^{\omega}$ are called almost disjoint, if they are almost disjoint as subsets of $\omega \times \omega$, i.e. $a(k) \neq b(k)$ for all but finitely many $k \in \omega$. A set A is said to be an almost disjoint family of functions (or an almost disjoint subfamily of ω^{ω}) if $A \subset \omega^{\omega}$ and any two elements of A are almost disjoint. A is called a mad family of functions, if it is maximal with respect to inclusion among almost disjoint families of functions. Given an almost disjoint family $A \subset \omega^{\omega}$, we denote by $\mathcal{L}(A)$ the set $\{b \in \omega^{\omega} : b \text{ is not covered by finitely many } a \in A\}$. A mad subfamily A of ω^{ω} is ω -mad¹, if for every $B \in [\mathcal{L}(A)]^{\omega}$ there exists $a \in A$ such that $|a \cap b| = \omega$ for all $b \in B$.

The following theorems are the main results of this paper.

Theorem 1. It is consistent that $2^{\omega} = \mathfrak{b} = \omega_2$ and there exists a Π_2^1 definable ω -mad family of infinite subsets of ω .

²⁰⁰⁰ Mathematics Subject Classification. Primary: 03E15, 03E35; Secondary: 03E17, 03E45.

Key words and phrases. Almost disjoint coding, mad families, projective sets and wellorders.

The authors would like to acknowledge the support of FWF grant P19898-N18.

¹Such families of functions are called *strongly maximal* in [4, 10]. We call them ω -mad just to keep the analogy with the case of subsets of $[\omega]^{\omega}$.

Theorem 2. It is consistent that $2^{\omega} = \mathfrak{b} = \omega_2$ and there exists a Π_2^1 definable ω -mad family of functions.

By [8, Theorem 8.23], in L there exists a mad subfamily of $[\omega]^{\omega}$ which is Π_1^1 definable. Moreover, V=L implies the existence of a Π_1^1 definable ω -mad subfamily A of ω^{ω} , see [4, § 3]. It is easy to check that $A \cup \{\{n\} \times \omega : n \in \omega\}$ is actually an ω -mad family of subsets of $\omega \times \omega$ for every ω -mad subfamily A of ω^{ω} , and hence Π_1^1 definable ω -mad subfamilies of $[\omega]^{\omega}$ exist under V=L as well.

Regarding the models of $\neg CH$, it is known that ω -mad subfamilies of $[\omega]^{\omega}$ remain so after adding any number of Cohen subsets, see [5] and references therein. Combining Corollary 53 and Theorem 65 from [10], we conclude that the ground model ω -mad families of functions remain so in forcing extensions by countable support iterations of a wide family of posets including Sacks and Miller forcings. If $A \in V$ is a Π_1^1 definable almost disjoint family whose Π_1^1 definition is provided by formula $\varphi(x)$, then $\varphi(x)$ defines an almost disjoint family in any extension V' of V (this is a straightforward consequence of the Shoenfield's Absoluteness Theorem). Thus if a ground model Π_1^1 definable mad family remains mad in a forcing extension, it remains Π_1^1 definable by means of the same formula. From the above it follows that the Π_1^1 definable ω -mad family in L of functions constructed in [4, § 3] remains Π_1^1 definable and ω -mad in L[G], where G is a generic over L for the countable support iteration of Miller forcing of length ω_2 . Thus the essence of Theorems 1 and 2 is the existence of projective ω -mad families combined with the inequality $\mathfrak{b} > \omega_1$, which rules out all mad families of size ω_1 .

It is not known whether in ZFC one can prove the existence of Σ_1^1 mad families of functions or of ω -mad families of functions; see [10].

2. Preliminaries

In this section we introduce some notions and notation needed for the proofs of Theorems 1 and 2, and collect some basic facts about T-proper posets, see [2] for more details.

Proposition 3. (1) There exists an almost disjoint family $R = \{r_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in \omega_1^L\} \in L$ of infinite subsets of ω such that $R \cap M = \{r_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^L)^M\}$ for every transitive model M of ZF^- . (2) There exists an almost disjoint family $\mathcal{F} = \{f_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in \omega \}$

2) There exists an almost disjoint family $\mathcal{F} = \{f_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in \omega_1^L\} \in L$ of functions such that $\mathcal{F} \cap M = \{f_{\langle \zeta, \xi \rangle} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^L)^M\}$ for every transitive model M of ZF^- .

Proof sketch. Let $r_{\zeta,\xi}^*$ be the *L*-least real coding the ordinal $(\omega^2 \cdot \xi) + \zeta$ and let $r_{\zeta,\xi}$ be the set of numbers coding a finite initial segment of $r_{\zeta,\xi}^*$. Similarly for functions.

One of the main building blocks of the required ω -mad family will be suitable sequences of stationary in L subsets of ω_1 given by the following proposition which may be proved in the same way as [1, Lemma 14].

Say that a transitive ZF⁻ model M is *suitable* iff $M \models "\omega_2$ exists and $\omega_2 = \omega_2^L$ ".

Proposition 4. There exists a Σ_1 definable over L_{ω_2} tuple $\langle T_0, T_1, T_2 \rangle$ of mutually disjoint L-stationary subsets of ω_1 and Σ_1 definable over L_{ω_2} sequences $\bar{S} = \langle S_{\alpha} : \alpha < \omega_2 \rangle$, $\tilde{S}' = \langle S'_{\alpha} : \alpha < \omega_2 \rangle$ of pairwise almost disjoint L-stationary subsets of ω_1 such that

- $S_{\alpha} \subset T_2$ and $S'_{\alpha} \subset T_1$ for all $\alpha \in \omega_2$; Whenever M, N are suitable models of ZF^- such that $\omega_1^M = \omega_1^N$, \bar{S}^M agrees with \bar{S}^N on $\omega_2^M \cap \omega_2^N$. Similarly for \bar{S}' .

The following standard fact gives an absolute way to code an ordinal $\alpha < \omega_2$ by a subset of ω_2 .

Fact 5. There exists a formula $\phi(x,y)$ and for every $\alpha < \omega_2^L$ a set $X_\alpha \in$ $([\omega_1]^{\omega_1})^L$ such that

- (1) For every suitable model M containing $X_{\alpha} \cap \omega_1^M$, $\phi(x, X_{\alpha} \cap \omega_1^M)$ has a unique solution in M, and this solution equals α provided $\omega_1^{\overline{M}} = \omega_1^L$;
- (2) For arbitrary suitable models M, N with $\omega_1^M = \omega_1^N$ and $X_\alpha \cap \omega_1^M \in M \cap N$, the solutions of $\phi(x, X_\alpha \cap \omega_1^M)$ in M and N coincide².

Let γ be a limit ordinal and $r:\gamma\to 2$. We denote by Even(r) the set $\{\alpha < \gamma : r(2\alpha) = 1\}$. For ordinals $\alpha < \beta$ we shall denote by $\beta - \alpha$ the ordinal γ such that $\alpha + \gamma = \beta$. If B is a set of ordinals above α , then $B - \alpha$ stands for $\{\beta - \alpha : \beta \in B\}$. Observe that if ζ is an indecomposable ordinal (e.g., ω_1^M for some countable suitable model of ZF⁻), then $((\alpha + B) \cap \zeta) - \alpha = B \cap \zeta$ for all B and $\alpha < \zeta$. This will be often used for $B = X_{\alpha}$.

For $x, y \in \omega^{\omega}$ we say that y dominates x and write $x \leq^* y$ if $x(n) \leq y(n)$ for all but finitely many $n \in \omega$. The minimal size of a subset B of ω^{ω} such that there is no $y \in \omega^{\omega}$ dominating all elements of B is denoted by \mathfrak{b} . It is easy to see that $\omega < \mathfrak{b} \leq 2^{\omega}$. We say that a forcing notion \mathbb{P} adds a dominating real if there exists $y \in \omega^{\omega} \cap V^{\mathbb{P}}$ dominating all elements of $\omega^{\omega} \cap V$.

Definition 6. Let $T \subset \omega_1$ be a stationary set. A poset \mathbb{P} is T-proper, if for every countable elementary submodel \mathcal{M} of H_{θ} , where θ is a sufficiently large regular cardinal, such that $\mathcal{M} \cap \omega_1 \in T$, every condition $p \in \mathbb{P} \cap \mathcal{M}$ has an $(\mathcal{M}, \mathbb{P})$ -generic extension q.

The following theorem includes some basic properties of T-proper posets.

Theorem 7. Let T be a stationary subset of ω_1 .

- (1) Every T-proper poset \mathbb{P} preserves ω_1 . Moreover, \mathbb{P} preserves the stationarity of every stationary set $S \subset T$.
- (2) Let $\langle \mathbb{P}_{\xi}, \mathbb{Q}_{\zeta} : \xi \leq \delta, \zeta < \delta \rangle$ be a countable support iteration of Tproper posets. Then \mathbb{P}_{δ} is T-proper. If, in addition, CH holds in V, $\delta \leq \omega_2$, and the $\dot{\mathbb{Q}}_{\zeta}$'s are forced to have size at most ω_1 , then \mathbb{P}_{δ} is ω_2 -c.c. If, moreover, $\delta < \omega_2$, then CH holds in $V^{\mathbb{P}_{\delta}}$.

²In what follows the phrase "X codes an ordinal β in a suitable ZF⁻ model M" means that there exists $\alpha < \omega_2^L$ such that $X = \omega_1^M \cap X_\alpha \in M$ and $\phi(\beta, X)$ holds in M.

3. Proof of Theorem 1

We start with the ground model V=L. Recursively, we shall define a countable support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \omega_2, \beta < \omega_2 \rangle$. The desired family A is constructed along the iteration: for cofinally many α 's the poset \mathbb{Q}_{α} takes care of some countable family B of infinite subsets of ω which might appear in $\mathcal{L}(A)$ in the final model, and adds to A some $a_{\alpha} \in [\omega]^{\omega}$ almost disjoint from all elements of A_{α} such that $|a \cap b| = \omega$ for all $b \in B$ (here A_{α} stands for the set of all elements of A constructed up to stage α). Our forcing construction will have some freedom allowing for further applications.

We proceed with the definition of \mathbb{P}_{ω_2} . For successor α let \mathbb{Q}_{α} be a \mathbb{P}_{α} -name for some proper forcing of size ω_1 adding a dominating real. For a subset s of ω and $l \in |s|$ (= card(s) $\leq \omega$) we denote by s(l) the l'th element of s. In what follows we shall denote by E(s) and O(s) the sets $\{s(2i): 2i \in |s|\}$ and $\{s(2i+1): 2i+1 \in |s|\}$, respectively. Let us consider some limit α and a \mathbb{P}_{α} -generic filter G_{α} . Suppose also that

$$(*) \qquad \forall B \in [A_{\alpha}]^{<\omega} \ \forall r \in R \ (|E(r) \setminus \cup B| = |O(r) \setminus \cup B| = \omega),$$

where R is the family constructed in Proposition 3. Observe that equation (*) yields $|E(r) \setminus \cup B| = |O(r) \setminus \cup B| = \omega$ for every $B \in [R \cup A_{\alpha}]^{<\omega}$ and $r \in R \setminus B$. Let us fix some function $F: Lim \cap \omega_2 \to L_{\omega_2}$ such that $F^{-1}(x)$ is unbounded in ω_2 for every $x \in L_{\omega_2}$. Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\langle \dot{b}_i : i \in \omega \rangle$ of \mathbb{P}_{α} -names such that $b_i = \dot{b}_i^{G_{\alpha}} \in [\omega]^{\omega}$ and none of the b_i 's is covered by a finite subfamily of A_{α} . In this case $\mathbb{Q}_{\alpha} := \dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$ is the two-step iteration $\mathbb{K}_{\alpha}^0 * \dot{\mathbb{K}}_{\alpha}^1$ defined as follows.

In $V[G_{\alpha}]$, \mathbb{K}^{0}_{α} is some $T_{0} \cup T_{2}$ -proper poset of size ω_{1} . Our proof will not really depend on \mathbb{K}^{0}_{α} . \mathbb{K}^{0}_{α} is reserved for some future applications, see section 5.

Let us fix some \mathbb{K}^0_{α} -generic filter h_{α} over $V[G_{\alpha}]$ and find a limit ordinal $\eta_{\alpha} \in \omega_1$ such that there are no finite subsets J, E of $(\omega \cdot 2) \times (\omega_1 \setminus \eta_{\alpha}), A_{\alpha}$, respectively, and $i \in \omega$, such that $b_i \subset \bigcup_{\langle \zeta, \xi \rangle \in J} r_{\langle \zeta, \xi \rangle} \cup \bigcup E$. (The almost disjointness of the $r_{\langle \zeta, \xi \rangle}$'s imply that if $b_i \subset \bigcup R' \cup \bigcup A'$ for some $R' \in [R]^{<\omega}$ and $A' \in [A_{\alpha}]^{<\omega}$, then $b_i \setminus \bigcup A'$ has finite intersection with all elements of $R \setminus R'$. Together with equation (*) this easily yields the existence of such an η_{α} .) Let z_{α} be an infinite subset of ω coding a surjection from ω onto η_{α} . For a subset s of ω we denote by \bar{s} the set $\{2k+1: k \in s\} \cup \{2k: k \in (\sup s \setminus s)\}$. In $V[G_{\alpha} * h_{\alpha}]$, \mathbb{K}^1_{α} consists of sequences $\langle \langle s, s^* \rangle, \langle c_k, y_k: k \in \omega \rangle \rangle^3$ satisfying the following conditions:

- (i) c_k is a closed, bounded subset of $\omega_1 \setminus \eta_\alpha$ such that $S_{\alpha+k} \cap c_k = \emptyset$ for all $k \in \omega$;
- (ii) $y_k : |y_k| \to 2$, $|y_k| > \eta_\alpha$, $y_k \upharpoonright \eta_\alpha = 0$, and Even $(y_k) = (\{\eta_\alpha\} \cup (\eta_\alpha + X_\alpha)) \cap |y_k|$;

³The tuples $\langle s, s^* \rangle$ and $\langle c_k, y_k : k \in \omega \rangle$ will be referred to as the *finite part* and the *infinite part* of the condition $\langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$, respectively.

- (iii) $s \in [\omega]^{<\omega}$, $s^* \in [\{r_{\langle m,\xi \rangle} : m \in \bar{s}, \xi \in c_m\} \cup \{r_{\langle \omega+m,\xi \rangle} : m \in \bar{s}, y_m(\xi) = 1\} \cup A_{\alpha}]^{<\omega}$. In addition, for every $2n \in |s \cap r_{\langle 0,0 \rangle}|$, $n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $(s \cap r_{\langle 0,0 \rangle})(2n) = r_{\langle 0,0 \rangle}(2m)$; and
- (iv) For all $k \in \bar{s} \cup (\omega \setminus (\max \bar{s}))$, limit ordinals $\xi \in \omega_1$ such that $\eta_{\alpha} < \xi \leq |y_k|$, and suitable ZF⁻ models M containing $y_k \upharpoonright \xi$ and $c_k \cap \xi$ with $\omega_1^M = \xi$, ξ is a limit point of c_k , and the following holds in M: (Even (y_k) min Even (y_k)) $\cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+k}^M$ is non-stationary.

For conditions $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ and $\vec{q} = \langle \langle t, t^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$ in \mathbb{K}^1_{α} , we let $\vec{q} \leq \vec{p}$ (by this we mean that \vec{q} is stronger than \vec{p}) if and only if

- (v) (t, t^*) extends (s, s^*) in the almost disjoint coding, i.e. t is an end-extension of s and $t \setminus s$ has empty intersection with all elements of s^* ;
- (vi) If $m \in \bar{t} \cup (\omega \setminus (\max \bar{t}))$, then d_m is an end-extension of c_m and $y_m \subset z_m$.

This finishes our definition of \mathbb{P}_{ω_2} . Before proving that the statement of our theorem holds in $V^{\mathbb{P}_{\omega_2}}$ we shall establish some basic properties of \mathbb{K}^1_{α} . In Claims 8, 9, 10, 11, and Corollary 12 below we work in $L[G_{\alpha} * h_{\alpha}]$.

Claim 8. (Fischer, Friedman [1, Lemma 1].) For every condition $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha}$ and every $\gamma \in \omega_1$ there exists a sequence $\langle d_k, z_k : k \in \omega \rangle$ such that $\langle \langle s, s^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha}$, $\langle \langle s, s^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle \leq \vec{p}$, and $|z_k|$, max $d_k \geq \gamma$ for all $k \in \omega$.

Claim 9. For every $\vec{p} \in \mathbb{K}^1_{\alpha}$ and open dense $D \subset \mathbb{K}^1_{\alpha}$ there exists $\vec{q} \leq \vec{p}$ with the same finite part as \vec{p} such that whenever \vec{p}_1 is an extension of \vec{q} meeting D with finite part $\langle r_1, r_1^* \rangle$, then already some condition \vec{p}_2 with the same infinite part as \vec{q} and finite part $\langle r_1, r_2^* \rangle$ for some r_2^* meets D.

Proof. Let $\vec{p} = \langle \langle t_0, t_0^* \rangle, \langle d_k^0, z_k^0 : k \in \omega \rangle \rangle$ and let \mathcal{M} be a countable elementary submodel of H_{θ} containing \mathbb{K}^1_{α} , \vec{p} , X_{α} , and D, and such that $j := \mathcal{M} \cap \omega_1 \notin \bigcup_{k \in \bar{t_0} \cup (\omega \setminus (\max \bar{t_0}))} S_{\alpha + k}$.

Let $\{\langle \vec{r}_n, s_n \rangle : n \in \omega\}$ be a sequence in which every pair $\langle \vec{r}, s \rangle \in (\mathbb{K}^1_\alpha \cap \mathcal{M}) \times [\omega]^{<\omega}$ with $\vec{p} \geq \vec{r}$ appears infinitely often. Let $\langle j_n : n \in \omega \rangle$ be increasing and cofinal in j. Using Claim 8, by induction on n construct sequences $\langle d_k^n, z_k^n : k \in \omega \rangle \in \mathcal{M}$ as follows:

If there exists $\vec{r}_{1,n} \in D \cap \mathcal{M}$ below both \vec{r}_n and $\langle \langle t_0, t_0^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle$ and with finite part of the form $\langle s_n, s_n^* \rangle$ for some s_n^* , then let $\langle d_k^{n+1}, z_k^{n+1} : k \in \omega \rangle$ be the infinite part of $\vec{r}_{1,n}$, extended further in such a way that $\langle \langle t_0, t_0^* \rangle; \langle d_k^{n+1}, z_k^{n+1} : k \in \omega \rangle \rangle \in \mathbb{K}_{\alpha}^1$ and $|z_k^{n+1}|, \max d_k^{n+1} \geq j_n$ for all $n \in \omega$ and $k \in \bar{t}_0 \cup (\omega \setminus (\max \bar{t}_0))$. If there is no such $\vec{r}_{1,n}$, then let d_k^{n+1} be an arbitrary end-extension of d_k^n and z_k^{n+1} be an extension of z_k^n such that $|z_k^{n+1}|, \max d_k^{n+1} \geq j_n$ for all $n \in \omega$ and $k \in \bar{t}_0 \cup (\omega \setminus (\max \bar{t}_0))$, and $\langle \langle t_0, t_0^* \rangle; \langle d_k^{n+1}, z_k^{n+1} : k \in \omega \rangle \rangle \in \mathbb{K}_{\alpha}^1$.

Set $d_k = \bigcup_{n \in \omega} d_k^n \cup \{j\}$ and $z_k = \bigcup_{n \in \omega} z_k^n$ for all $k \in \omega \setminus F$, $d_k = z_k = \emptyset$ for $k \in F$, and $\vec{q} = \langle \langle t_0, t_0^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$. We claim that \vec{q} is as required.

Let us show first that $\vec{q} \in \mathbb{K}^1_{\alpha}$. Only item (iv) of the definition of \mathbb{K}^1_{α} for $k \in \bar{t}_0 \cup (\omega \setminus (\max \bar{t}_0))$ and $\xi = j$ must be verified. Fix such a k and suitable ZF⁻ model M containing z_k and d_k with $\omega_1^M = j$. Let \bar{M} be the Mostowski collapse of \mathcal{M} and $\pi : \mathcal{M} \to \bar{M}$ be the corresponding isomorphism. Let us note that $j = \omega_1^M = \omega_1^{\bar{M}}$. Since $X_{\alpha} \in \mathcal{M}$, and \mathcal{M} is elementary submodel of H_{θ} , α is the unique solution of $\phi(x, X_{\alpha})$ in \mathcal{M} , and hence $\bar{\alpha} := \pi(\alpha)$ is the unique solution of $\phi(x, X_{\alpha} \cap j = \pi(X_{\alpha}))$ in \bar{M} . In addition, $S_{\bar{\alpha}+k}^{\bar{M}} = \pi(S_{\alpha+k}) = S_{\alpha+k} \cap j$ for all $k \in \omega$. Applying Fact 5(2) and Proposition 4, we conclude that $\phi(\bar{\alpha}, X_{\alpha} \cap j)^M$ holds and $S_{\bar{\alpha}+k}^{\bar{M}} = S_{\bar{\alpha}+k}^{\bar{M}} = S_{\alpha+k} \cap j$. Since $d_k \in M$, $d_k \cap S_{\alpha+k} = \emptyset$, and $d_k \setminus \{j\}$ is unbounded in $j = \omega_1^M$ by the construction of d_k , we conclude that $S_{\bar{\alpha}+k}^{\bar{M}}$ is not stationary in M. This proves that $\bar{q} \in \mathbb{K}_{\alpha}^{\bar{M}}$.

Now suppose that $\vec{p}_1 = \langle \langle r_1, r_1^* \rangle, \langle d'_k, z'_k : k \in \omega \rangle \rangle \leq \vec{q}$ and $\vec{p}_1 \in D$. Since r_1, r_1^* are finite, there exists $m \in \omega$ such that $\vec{r} := \langle \langle r_1, r_1^* \cap \mathcal{M} \rangle, \langle d_k^m, z_k^m : k \in \omega \rangle \rangle \in \mathbb{K}_{\alpha}^1 \cap \mathcal{M}$. Let $n \geq m$ be such that $\vec{r}_n = \vec{r}$ and $s_n = r_1$. Since \vec{p}_1 is obviously a lower bound of \vec{r}_n and $\langle \langle t_0, t_0^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle$ with finite part $\langle s_n, r_1^* \rangle$, there exists $\vec{p}'_2 \in \mathcal{M} \cap D$ below both \vec{r}_n and $\langle \langle t_0, t_0^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle$ with finite part $\langle s_n, r_2^* \rangle$ for some suitable $r_2^* \in \mathcal{M}$. Thus the first (nontrivial) alternative of the construction of d_k^{m+1}, z_k^{n+1} 's took place. Without loss of generality, $\vec{r}_{1,n} = \vec{p}'_2$. A direct verification shows that $\vec{p}_2 = \langle \langle s_n = r_1, r_2^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$ is as required.

Claim 10. Let \mathcal{M} be a countable elementary submodel of H_{θ} for sufficiently large θ containing all relevant objects with $i = \mathcal{M} \cap \omega_1$ and $\vec{p} \in \mathcal{M} \cap \mathbb{K}^1_{\alpha}$. If $i \notin \bigcup_{n \in \overline{s} \cup (\omega \setminus (\max \overline{s}))} S_{\alpha+n}$, then there exists an $(\mathcal{M}, \mathbb{K}^1_{\alpha})$ -generic condition $\vec{q} \leq \vec{p}$ with the same finite part as \vec{p} .

Proof. Let $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ and $\langle D_n : n \in \omega \rangle$ be the collection of all open dense subsets of \mathbb{K}^1_{α} which are elements of \mathcal{M} , and $\langle i_n : n \in \omega \rangle$ be an increasing sequence of ordinals converging to i. Using Claims 8 and 9, inductively construct a sequence $\langle \vec{q}_n : n \in \omega \rangle \subset \mathcal{M} \cap \mathbb{K}^1_{\alpha}$, where $\vec{q}_n = \langle \langle s, s^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle$ and $\vec{q}_0 = \vec{p}$, such that

- (i) d_k^{n+1} is an end-extension of d_k^n and z_k^{n+1} is an extension of z_k^n for all $n \in \omega$ and $k \in \bar{s} \cup (\omega \setminus (\max \bar{s}))$;
- (ii) $|z_k^n|$, max $d_k^n \ge i_n$ for all $n \ge 1$ and $k \in \bar{s} \cup (\omega \setminus (\max \bar{s}))$; and
- (iii) For every $n \geq 1$ and $\vec{r} = \langle \langle r, r^* \rangle, \langle d'_k, z'_k : k \in \omega \rangle \rangle \leq \vec{q}_n, \ \vec{r} \in D_n$, there exists r_2^* such that $\vec{r}_2 := \langle \langle r, r_2^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle \in D_n$ and $\vec{r}_2 \leq \vec{q}_n$.

Set $d_k = \bigcup_{n \in \omega} d_k^n \cup \{i\}$ and $z_k = \bigcup_{n \in \omega} z_k^n$ for all $k \in \bar{s} \cup (\omega \setminus (\max \bar{s}))$, $d_k = z_k = \emptyset$ for all other $k \in \omega$, and $\vec{q} = \langle \langle t_0, t_0^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$. We claim that \vec{q} is as required, i.e., $\vec{q} \in \mathbb{K}^1_\alpha$ and $D_n \cap \mathcal{M}$ is pre-dense below \vec{q} for every $n \in \omega$. The fact that $\vec{q} \in \mathbb{K}^1_\alpha$ can be shown in the same way as in the proof of Claim 9.

Let us fix $n \in \omega$ and $\vec{r}_1 = \langle \langle t_1, t_1^* \rangle, \langle d_k', z_k' : k \in \omega \rangle \rangle \leq \vec{q}$. Without loss of generality, $\vec{r}_1 \in D_n$. Since $\vec{r}_1 \leq \vec{q}_n$, (iii) yields the existence of t_2^* such that $\vec{r}_2 := \langle \langle t_1, t_2^* \rangle, \langle d_k^n, z_k^n : k \in \omega \rangle \rangle \leq \vec{q}_n$ and $\vec{r}_2 \in D_n$. It is

clear that $\vec{r}_2 \in \mathcal{M}$. We claim that \vec{r}_2 and \vec{r}_1 are compatible. Indeed, set $\vec{r}_3 = \langle \langle t_1, t_2^* \cup t_1^* \rangle, \langle d_k', z_k' : k \in \omega \rangle \rangle$ and note that $\vec{r}_3 \leq \vec{r}_1, \vec{r}_2$.

Let H_{α} be a \mathbb{K}_{α}^{1} -generic filter over $L[G_{\alpha} * h_{\alpha}]$. Set $Y_{k}^{\alpha} = \bigcup_{\vec{p} \in H_{\alpha}} y_{k}$, $C_{k}^{\alpha} = \bigcup_{\vec{p} \in H_{\alpha}} c_{k}$, $a_{\alpha} = \bigcup_{\vec{p} \in H_{\alpha}} s$, $A_{\alpha+1} = A_{\alpha} \cup \{a_{\alpha}\}$, and $S^{*} = \bigcup_{\vec{p} \in H_{\alpha}} s^{*}$, where $\vec{p} = \langle \langle s, s^{*} \rangle, \langle c_{k}, y_{k} : k \in \omega \rangle \rangle$. The following statement is a consequence of the definition of \mathbb{K}_{α}^{1} and the genericity of H_{α} .

Claim 11. (1) $S^* = \{r_{\langle m,\xi \rangle} : m \in \overline{a_{\alpha}}, \xi \in C_m^{\alpha}\} \cup \{r_{\langle \omega+m,\xi \rangle} : m \in \overline{a_{\alpha}}, Y_m^{\alpha}(\xi) = 1\} \cup A_{\alpha};$

- (2) $a_{\alpha} \in [\omega]^{\omega}$;
- (3) If $m \in \overline{a_{\alpha}}$, then $dom(Y_m^{\alpha}) = \omega_1$ and C_m^{α} is a club in ω_1 disjoint from $S_{\alpha+m}$;
- (4) a_{α} is almost disjoint from all elements of A_{α} ;
- (5) If $m \in \overline{a_{\alpha}}$, then $|a_{\alpha} \cap r_{\langle m, \xi \rangle}| < \omega$ if and only if $\xi \in C_m^{\alpha}$;
- (6) If $m \in \overline{a_{\alpha}}$, then $|a_{\alpha} \cap r_{\langle \omega + m, \xi \rangle}| < \omega$ if and only if $Y_m^{\alpha}(\xi) = 1$;
- (7) $|a_{\alpha} \cap b_i| = \omega$ for all $i \in \omega$;
- (8) For every $n \in \omega$, $n \in z_{\alpha}$ if and only if there exists $m \in \omega$ such that $(a_{\alpha} \cap r_{(0,0)})(2n) = r_{(0,0)}(2m)$; and
- (9) Equation (*) holds for $\alpha + 1$, i.e. for every $r \in R$ and a finite subfamily B of $A_{\alpha+1}$, B covers neither a cofinite part of E(r) nor of O(r).

Proof. Items (1), (2), (4), and (9) are straightforward. Items (2), (5), (6), and (8) follow from the inductive assumption (*). Item (3) is a consequence of Claim 8.

We are left with the task to prove (7). Let us fix $l, i \in \omega$ and denote by $D_{l,i}$ the set of conditions $\langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha}$ such that $(s \setminus l) \cap b_i \neq \emptyset$. It suffices to show that $D_{l,i}$ is dense in \mathbb{K}^1_{α} . Fix a condition $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha}$ and set $x = b_i \setminus \cup s^*$. Note that $x \in [\omega]^{\omega}$ by our choice of η_{α} and items (i), (ii) of the definition of \mathbb{K}^1_{α} . Two cases are possible.

1. $|x \setminus r_{(0,0)}| = \omega$. Then

$$\vec{q} := \langle \langle s \cup \{ \min(x \setminus (r_{\langle 0,0 \rangle} \cup l \cup \max s)) \}, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$$

is an element of $D_{l,i}$ and is stronger than \vec{p} .

2. $x \subset^* r_{\langle 0,0 \rangle}$. Without loss of generality, $x \setminus r_{\langle 0,0 \rangle} \subset l$. Suppose that $|s \cap r_{\langle 0,0 \rangle}| = 2j-1$ for some $j \in \omega$ (the case of even $|s \cap r_{\langle 0,0 \rangle}|$ is analogous and simpler). Let $y = r_{\langle 0,0 \rangle} \setminus \cup s^*$ and note that $x \subset^* y$. By (*), $|y \cap E(r_{\langle 0,0 \rangle})| = |y \cap O(r_{\langle 0,0 \rangle})| = \omega$. Denote by m_e and m_o the minima of the sets $(y \cap E(r_{\langle 0,0 \rangle})) \setminus (l \cup (\max s + 1))$ and $(y \cap O(r_{\langle 0,0 \rangle})) \setminus (l \cup (\max s + 1))$, respectively. Set

$$\vec{r} := \langle \langle s \cup \{m_e\} \cup \{\min(x \setminus (m_e + 1))\}, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$$

if $j \in z_{\alpha}$ and

$$\vec{r} := \langle \langle s \cup \{m_o\} \cup \{\min(x \setminus (m_o + 1))\}, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$$

otherwise. A direct verification shows that $\vec{r} \in D_{l,i}$ and $\vec{r} \leq \vec{p}$.

Corollary 12. $\dot{\mathbb{Q}}_{\alpha}$ is T_0 -proper. Consequently, \mathbb{P}_{ω_2} is T_0 -proper and hence preserves cardinals.

More precisely, for every condition $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in \mathbb{K}^1_{\alpha}$ the poset $\{\vec{r} \in \mathbb{K}^1_{\alpha} : \vec{r} \leq \vec{p}\}$ is $\omega_1 \setminus \bigcup_{n \in \bar{s} \cup (\omega \setminus (\max \bar{s}))} S_{\alpha+n}$ -proper. Consequently, $S_{\alpha+n}$ remains stationary in $V^{\mathbb{P}_{\omega_2}}$ for all $n \in \omega \setminus \overline{a_{\alpha}}$.

Let G be a \mathbb{P}_{ω_2} -generic filter over L. The following lemma shows that A is a Π_2^1 definable subset of $[\omega]^{\omega}$ in L[G] and thus finishes the proof of Theorem 1.

Lemma 13. In L[G] the following conditions are equivalent:

- (1) $a \in A$:
- (2) For every countable suitable model M of ZF^- containing a as an element there exists $\bar{\alpha} < \omega_2^M$ such that $S_{\bar{\alpha}+k}^M$ is nonstationary in M for all $k \in \bar{a}$.

Proof. (1) \to (2). Fix $a \in A$ and find $\alpha < \omega_2$ such that $a = a_\alpha$. Fix also a countable suitable model M of ZF^- containing a_α as an element. By Claim $11(5,6,8),\ z_\alpha \in M$ and $C_k^\alpha \cap \omega_1^M, Y_k^\alpha \upharpoonright \omega_1^M \in M$ for all $k \in \overline{a_\alpha}$. Therefore $\eta_\alpha < \omega_1^M$. Since $\langle \langle \emptyset, \emptyset \rangle, \langle C_k^\alpha \cap (\omega_1^M + 1), Y_k^\alpha \upharpoonright \omega_1^M : k \in \omega \rangle \rangle$ is a condition in \mathbb{K}^1_α , item (iv) of the definition of \mathbb{K}^1_α ensures that for every $k \in \overline{a_\alpha}$, $\mathrm{Even}(Y_k^\alpha \upharpoonright \omega_1^M) - \min \mathrm{Even}(Y_k^\alpha \upharpoonright \omega_1^M)$ codes a limit ordinal $\bar{\alpha}_k \in \omega_2^M$ such that $S_{\bar{\alpha}_k+k}^M$ is nonstationary in M. By item (ii) of the definition of \mathbb{K}^1_α ,

$$\mathrm{Even}(Y_k^\alpha \upharpoonright \omega_1^M) - \min \mathrm{Even}(Y_k^\alpha \upharpoonright \omega_1^M) = X_\alpha \cap \omega_1^M$$

for every $k \in \bar{a_{\alpha}}$, and hence \bar{a}_k 's do not depend on k.

 $(2) \to (1)$. Let us fix a fulfilling (2) and observe that by Löwenheim-Skolem, (2) holds for arbitrary (not necessarily countable) suitable model of ZF⁻ containing a. In particular, it holds in $M = L_{\omega_8}[G]$. Observe that $\omega_2^M = \omega_2^{L[G]} = \omega_2^L$, $\vec{S}^M = \vec{S}$, and the notions of stationarity of subsets of ω_1 coincide in M and L[G]. Thus there exists $\alpha < \omega_2$ such that $S_{\alpha+k}$ is nonstationary for all $k \in \overline{a}$. Since the stationarity of some $S_{\alpha+k}$'s has been destroyed, Corollary 12 together with the T_2 -properness of \mathbb{K}^0_{ξ} 's implies that \mathbb{Q}_{α} is not trivial. Now, the last assertion of Corollary 12 easily imples that $a = a_{\alpha}$.

4. Proof of Theorem 2

The proof is completely analogous to that of Theorem 1. Therefore we just define the corresponding poset \mathbb{P}_{ω_2} , the use of the poset \mathbb{M}^1_{α} defined below instead of \mathbb{K}^1_{α} at the α th stage of iteration being the only significant change. We leave it to the reader to verify that the proof of Theorem 1 can be carried over.

For successor α let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α} -name for some proper forcing of size ω_1 adding a dominating real. Let us consider some limit α and a \mathbb{P}_{α} -generic filter G_{α} . Suppose also that we have already constructed an almost disjoint family $A_{\alpha} \subset \omega^{\omega}$ such that

$$(**) \qquad \forall E \in [A_{\alpha}]^{<\omega} \ \forall f \in \mathcal{F} \left(|f \upharpoonright (2\omega) \setminus \cup E| = |f \upharpoonright (2\omega + 1) \setminus \cup E| = \omega \right)$$

Equation (**) yields

$$\forall E \in [\mathcal{F} \cup A_{\alpha}]^{<\omega} \, \forall f \in \mathcal{F} \setminus E \, (|f \upharpoonright (2\omega) \setminus \cup E| = |f \upharpoonright (2\omega + 1) \setminus \cup E| = \omega).$$

Let $F: Lim \cap \omega_2 \to L_{\omega_2}$ be the same as in the proof of Theorem 1. Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\langle b_i : i \in \omega \rangle$ of \mathbb{P}_{α} -names such that $b_i = b_i^{G_{\alpha}} \in \omega^{\omega}$ and none of the b_i 's is covered by a finite subfamily of A_{α} . In this case $\mathbb{Q}_{\alpha} := \dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$ is the two-step iteration $\mathbb{K}_{\alpha}^{0} * \dot{\mathbb{M}}_{\alpha}^{1}$ defined as follows. In $V^{\mathbb{P}_{\alpha}}$, \mathbb{K}_{α}^{0} is some $T_{0} \cup T_{2}$ -proper poset of size ω_{1} .

Let us fix a recursive bijection $\psi: \omega \times \omega \to \omega$ and $s \in \omega^{<\omega}$. Set $sq(s) = dom(s) \times (dom(s) + ran(s))$ and

$$\bar{\bar{s}} = \{2k+1 : k \in \psi(s)\} \cup \{2k : k \in \psi(\operatorname{sq}(s) \setminus s)\}.$$

In $V^{\mathbb{P}_{\alpha}*\mathbb{K}^0_{\alpha}}$ find an ordinal $\eta_{\alpha} \in \omega_1$ such that there are no finite subsets $J, E \text{ of } (\omega \cdot 2) \times (\omega_1 \setminus \eta_{\alpha}), A_{\alpha}, \text{ respectively, and } i \in \omega, \text{ such that } b_i \subset \bigcup_{\langle \zeta, \xi \rangle \in J} f_{\langle \zeta, \xi \rangle} \cup \bigcup E. \quad \mathbb{M}^1_{\alpha} \text{ consists of sequences } \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ satisfying the following conditions:

- $(i)_f$ Conditions (i)-(ii) from the definition of \mathbb{K}^1_{α} in the proof of Theorem 1 hold;
- $(ii)_f \ s \in \omega^{<\omega}, \ s^* \in \left[\{ f_{\langle m,\xi \rangle} : m \in \bar{s}, \xi \in c_m \} \cup \{ f_{\langle \omega+m,\xi \rangle} : m \in \bar{s}, y_m(\xi) = 0 \right]$ 1\} \cup A_\alpha\]^{<\omega}. In addition, for every $2n \in |s \cap f_{(0,0)}|, n \in z_\alpha$ if and only if there exists $m \in \omega$ such that $s(j) = f_{(0,0)}(2m)$, where j is the 2n'th element of the domain of $s \cap f_{(0,0)}$; and
- $(iii)_f$ For all $m \in \bar{s} \cup \{2k, 2k+1 : k \in \psi((\omega \setminus dom(s)) \times \omega)\}$, limit ordinals $\xi \in \omega_1$ such that $\eta_{\alpha} < \xi \leq |y_m|$, and suitable ZF⁻ models M containing $y_m \upharpoonright \xi$ and $c_m \cap \xi$ with $\omega_1^M = \xi$, ξ is a limit point of c_m , and the following holds in M: $(\text{Even}(y_m) - \min \text{Even}(y_m)) \cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S_{\bar{\alpha}+m}^M$ is non-stationary.

For conditions $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ and $\vec{q} = \langle \langle t, t^* \rangle, \langle d_k, z_k : k \in \omega \rangle$ $|\omega\rangle$ in \mathbb{M}^1_{α} , $\vec{q} \leq \vec{p}$ if and only if

- $(iv)_f \ s \subset t, \ s^* \subset t^*, \ {\rm and} \ t \setminus s$ has empty intersection with all elements of
- $(v)_f$ If $m \in \bar{s} \cup \{2k, 2k+1 : k \in \psi((\omega \setminus dom(s)) \times \omega)\}$, then d_m is an end-extension of c_m and $y_m \subset z_m$.

5. Final remarks

The fact that $S'_{\alpha} \cap S_{\beta} = \emptyset$ for all $\alpha, \beta < \omega_2$ together with the freedom to choose \mathbb{K}^0_{α} to be an arbitrary $T_0 \cup T_2$ -proper forcing of size ω_1 allow for combining the proofs of Theorems 1, 2 and [1, Theorem 1]. In addition, we could take $\dot{\mathbb{K}}^0_{\alpha}$ to be a name for a two-step iteration with second component equal to the poset used in the proof of [1, Theorem 1] at stage α , and first component equal to a name of a c.c.c. poset of size ω_1 (Theorem 7(2) allows us to arrange a suitable bookkeeping of such names). This gives us the following statements.

Theorem 14. It is consistent with Martin's Axiom that there exists a Δ_3^1 definable wellorder of the reals and a Π_2^1 definable ω -mad family of infinite subsets of ω .

Theorem 15. It is consistent with Martin's Axiom that there exists a Δ_3^1 definable wellorder of the reals and a Π_2^1 definable ω -mad family of functions.

The following questions remain open. In all questions we are interested in families of infinite subsets of ω as well as in families of functions from ω to ω .

Question 16. Is it consistent to have $\mathfrak{b} > \omega_1$ with a Σ_2^1 definable mad family?

The answer to Question 16 is "no" for the case of ω -mad families. This follows from Corollary 38 of [10] (it talks only about ω^{ω} , but its proof works for $[\omega]^{\omega}$ as well). Indeed, suppose that $\mathfrak{b} > \omega_1$ and A is a Σ_2^1 definable ω -mad family. Every Σ_2^1 definable set either contains a perfect set or has size at most ω_1 , see [9, Theorem 21.2]. Since the size of A is at least $\mathfrak{b} > \omega_1$, A must contain a perfect set. But this cannot happen for an ω -mad family by [10, Corollary 38].

Question 17. Is it consistent to have $\omega_1 < \mathfrak{b} < 2^{\omega}$ with a Π_2^1 definable $(\omega$ -)mad family?

In the proofs of Theorems 1 and 2 we ruled out all mad families of size ω_1 by making \mathfrak{b} big. Alternatively, one could use the methods developed in [1] and prove the consistency of $\omega_1 = \mathfrak{b} < \mathfrak{a} = \omega_2$ together with a Δ_3^1 definable ω -mad family. This suggests the following

Question 18. Is it consistent to have $\mathfrak{b} < \mathfrak{a}$ and a Π_2^1 definable $(\omega$ -)mad family?

Question 19. Is a projective $(\omega$ -)mad family consistent with $\mathfrak{b} \geq \omega_3$?

Acknowledgments. The authors would like to thank the anonymous referee for the discussion following Question 16.

References

- [1] Fischer, V., Friedman, S.D., Cardinal characteristics and projective wellorders, Annals of Pure and Applied Logic 161 (2010), 916–922.
- [2] Goldstern, M., A taste of proper forcing, in: Set Theory, (Curacao, 1995; Barcelona, 1996), 71–82, Kluwer Acad. Publ., Dordrecht, 1998.
- [3] Jensen, R.B., Solovay, R.M., Some applications of almost disjoint sets, in: Mathematical Logic and Foundations of Set Theory (Y. Bar-Hillel, ed.), Jerusalem 1968, pp. 84–104.
- [4] Kastermans, B., Steprāns, J., Zhang, Y., Analytic and coanalytic families of almost disjoint functions, Journal of Symbolic Logic **73** (2008), 1158–1172.
- [5] Kurilić, M.S., Cohen-stable families of subsets of integers, Journal of Symbolic Logic 66 (2001), 257–270.
- [6] Malykhin, V.I., Topological properties of Cohen generic extensions, Trudy Moskovskogo Matematicheskogo Obshchestva 52 (1989), 3–33. (In Russian)

- [7] Mathias, A.R.D., *Happy families*, Annals of Mathematical Logic **12** (1977), 59–111.
- [8] Miller, A.W., *Infinite combinatorics and definability*, Annals of Pure and Applied Logic **41** (1989), 179–203.
- [9] Miller, A. W. Descriptive set theory and forcing. How to prove theorems about Borel sets the hard way. Lecture Notes in Logic, 4. Springer-Verlag, Berlin, 1995
- [10] Raghavan, D., Maximal almost disjoint families of functions, Fundamenta Mathematicae **204** (2009), 241-282.

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: sdf@logic.univie.ac.at URL: http://www.logic.univie.ac.at/~sdf/

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: lzdomsky@logic.univie.ac.at URL: http://www.logic.univie.ac.at/~lzdomsky/