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Abstract. We prove that in the Laver model for the consistency of the
Borel’s conjecture, the product of any two metrizable spaces with the
Hurewicz property has the Menger property.

1. Introduction

A topological space X has the Menger property (or, alternatively, is a
Menger space) if for every sequence 〈Un : n ∈ ω〉 of open covers of X there
exists a sequence 〈Vn : n ∈ ω〉 such that each Vn is a finite subfamily of
Un and the collection {∪Vn : n ∈ ω} is a cover of X. This property was
introduced by Hurewicz, and the current name (the Menger property) is
used because Hurewicz proved in [5] that for metrizable spaces his property
is equivalent to one property of a base considered by Menger in [9]. If in
the definition above we additionally require that {∪Vn : n ∈ ω} is a γ-
cover of X (this means that the set {n ∈ ω : x 6∈ ∪Vn} is finite for each
x ∈ X), then we obtain the definition of the Hurewicz property introduced
in [6]. Each σ-compact space is obviously a Hurewicz space, and Hurewicz
spaces have the Menger property. Contrary to a conjecture of Hurewicz
the class of metrizable spaces having the Hurewicz property appeared to
be much wider than the class of σ-compact spaces [7, Theorem 5.1]. The
properties of Menger and Hurewicz are classical examples of combinatorial
covering properties of topological spaces which are nowadays called selection
principles. This is a rapidly growing area of general topology, see, e.g., [14].
For instance, Menger and Hurewicz spaces found applications in such areas
as forcing [4], Ramsey theory in algebra [15], and the combinatorics of
discrete subspaces [1].

This paper is devoted to the preservation of the Hurewicz property by
finite products. This topic is perhaps as old as the properties themselves
because the preservation by products is one of the central questions in topol-
ogy. There are two reasons why a product of Hurewicz spaces X,Y may fail
to be Hurewicz. In the first place, X × Y may simply fail to be a Lindelöf
space, i.e., it might have an open cover U without countable subcover. Then
X × Y is not even a Menger space. This may indeed happen: in ZFC there
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are two normal spaces X, Y with a covering property much stronger than
the Hurewicz one such that X × Y does not have the Lindelöf property,
see [13, §3]. However, the above situation becomes impossible if we restrict
our attention to metrizable spaces. This second case, on which our paper
concentrates, turned out to be sensitive to the ambient set-theoretic uni-
verse: under CH there exists a Hurewicz space whose square is not Menger,
see [7, Theorem 2.12]. The above result has been achieved by a transfinite
construction of length ω1, using the combinatorics of the ideal of measure
zero subsets of reals. This combinatorics turned out [12, Theorem 43] to re-
quire much weaker set-theoretic assumptions than CH. In particular, under
the Martin Axiom there are Hurewicz subspaces of the irrationals whose
product is not Menger.

The following theorem, which is the main result of this paper, shows
that an additional assumption in the results from [7, 12] mentioned above
is really needed. In addition, it implies that the affirmative answer to [7,
Problem 2] is consistent, see [14, § 2] for the discussion of this problem.

Theorem 1.1. In the Laver model for the consistency of the Borel’s con-
jecture, the product of any two Hurewicz spaces has the Menger property
provided that it is a Lindelöf space. In particular, the product of any two
Hurewicz metrizable spaces has the Menger property.

This theorem seems to be the first “positive” consistency result related
to the preservation by products of selection principles weaker than the σ-
compactness, in which no further restrictions1 on the spaces are assumed.
The proof is based on the analysis of continuous maps and names for reals
in the model of set theory constructed in [8]. The question whether the
product of Hurewicz metrizable spaces is a Hurewicz space in this model
remains open. It is worth mentioning here that in the Cohen model there
are Hurewicz subsets of R whose product has the Menger property but fails
to have the Hurewicz one, see [11, Theorem 6.6].

2. Proofs

We shall first prove Proposition 2.4 below, a formally more general state-
ment than the second part of Theorem 1.1. It involves the following

Definition 2.1. A topological space X is called weakly concentrated if for
every collection Q ⊂ [X]ω which is cofinal with respect to inclusion, and
for every function R : Q → P(X) assigning to each Q ∈ Q a Gδ-set R(Q)
containing Q, there exists Q1 ∈ [Q]ω1 such that X ⊂

⋃
Q∈Q1

R(Q).

The following lemma is the key part of the proof of Theorem 1.1. Its
proof is reminiscent of that of [10, Theorem 3.2]. We will use the notation
from [8] with only differences being that smaller conditions in a forcing
poset are supposed to carry more information about the generic filter, and
the ground model is denoted by V .

1The requirement that the product must be Lindelöf is vacuous for metrizable spaces.
Let us note that nowadays the study of selection principles concentrates mainly on sets
of reals.



HUREWICZ SPACES IN THE LAVER MODEL 3

A subset C of ω2 is called an ω1-club if it is unbounded and for every
α ∈ ω2 of cofinality ω1, if C ∩ α is cofinal in α then α ∈ C.

Lemma 2.2. In the Laver model every Hurewicz subspace of P(ω) is weakly
concentrated.

Proof. We work in V [Gω2 ], where Gω2 is Pω2-generic and Pω2 is the iteration
of length ω2 with countable supports of the Laver forcing, see [8] for details.

It is well-known that a space X ⊂ P(ω) is Hurewicz if and only if f [X]
is bounded with respect to ≤∗ for every continuous f : X → ωω, see [7,
Theorem 4.4] or [6]. Let us fix a Hurewicz space X ⊂ P(ω). The Hurewicz
property is preserved by Fσ-subspaces because it is obviously preserved by
closed subspaces and countable unions. Therefore by a standard argument
(see, e.g., the proof of [3, Lemma 5.10]) there exists an ω1-club C ⊂ ω2 such
that for every α ∈ C and continuous f : F → ωω (coded) in V [Gα], where
F is an Fσ-subspace of X (coded) in V [Gα], there exists b ∈ ωω ∩ V [Gα]
such that f(x) ≤∗ b for all x ∈ F .

Let Q ⊂ [X]ω be cofinal with respect to inclusion. Fix a functionR : Q →
P(X) assigning to each Q ∈ Q a Gδ-set R(Q) containing Q. By the same
argument there exists an ω1-club D ⊂ ω2 such that Q∩V [Gα] ∈ V [Gα], R �
(Q∩V [Gα]) ∈ V [Gα] for

2 all α ∈ D, and for every Q0 ∈ [X∩V [Gα]]
ω∩V [Gα]

there exists Q ∈ Q ∩ V [Gα] such that Q0 ⊂ Q.
Let us fix α ∈ C ∩ D. We claim that X ⊂ W , where W =

⋃
{R(Q) :

Q ∈ Q ∩ V [Gα]}. Suppose that, contrary to our claim, there exists p ∈ Gω2

and a Pω2-name ẋ such that p  ẋ ∈ Ẋ \ Ẇ . By [8, Lemma 11] there is
no loss of generality in assuming that α = 0. Applying [8, Lemma 14] to
a sequence 〈ȧi : i ∈ ω〉 such that ȧi = ẋ for all i ∈ ω, we get a condition
p′ ≤ p such that p′(0) ≤0 p(0), and a finite set Us of reals for every s ∈ p′(0)
with p′(0)〈0〉 ≤ s, such that for each ε > 0, s ∈ p′(0) with p′(0)〈0〉 ≤ s, and
for all but finitely many immediate successors t of s in p′(0) we have

p′(0)tˆp
′ � [1, ω2)  ∃u ∈ Us (|ẋ− u| < ε).

Fix Q ∈ Q ∩ V containing X ∩
⋃
{Us : s ∈ p′(0), s ≥ p′(0)〈0〉} and set

F = X \ R(Q). Note that F is an Fσ-subset of X coded in V . It follows
that p′  ẋ ∈ Ḟ because p′ is stronger than p that forces ẋ 6∈ Ẇ ⊃ Ẋ \ Ḟ .
Consider the map f : F → ωS, where S = {s ∈ p′(0) : s ≥ p′(0)〈0〉}, defined
as follows:

f(y)(s) = [1/min{|y − u| : u ∈ Us}] + 1

for3 all s ∈ S and y ∈ F . Since F is disjoint from Q which contains all
the Us’s, f is well-defined. Since both F and f are coded in V , there exists
b ∈ ωS ∩ V such that f(y) ≤∗ b for all y ∈ F .

It follows from p′  ẋ ∈ Ḟ that p′  ḟ(ẋ) ≤∗ b, and hence there exists

p′′ ≤ p and a finite subset S0 of S such that p′′  ḟ(ẋ)(s) ≤ b(s) for all S\S0.
By replacing p′′ with p′′(0)sˆp

′′ � [1, ω2) for some s ∈ p′′(0), if necessary, we

2Here by R � (Q ∩ V [Gα]) we mean the map which assigns to a Q ∈ Q ∩ V [Gα] the
code of R(Q).

3Here [a] is the largest integer not exceeding a.
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may additionally assume that p′′(0)〈0〉 ∈ S \ S0. Letting s′′ = p′′(0)〈0〉, we
conclude from the above that p′′  ḟ(ẋ)(s′′) ≤ b(s′′), which means that

p′′  min{|ẋ− u| : u ∈ Us′′} ≥ 1/b(s′′).

On the other hand, by our choice of p′ and p′′ ≤ p′ we get that for all but
finitely many immediate successors t of s′′ in p′′(0) we have

p′′(0)tˆp
′′ � [1, ω2)  ∃u ∈ Us′′ |ẋ− u| < 1/b(s′′)

which means p′′(0)tˆp
′′ � [1, ω2)  min{|ẋ − u| : u ∈ Us′′} < 1/b(s′′) and

thus leads to a contradiction. �
The next lemma may probably be considered as folklore. We present its

proof for the sake of completeness.

Lemma 2.3. Let Y ⊂ P(ω) be Hurewicz and Q ⊂ P(ω) countable. Then
for every Gδ-subset O of P(ω)2 containing Q × Y there exists a Gδ-subset
R ⊃ Q such that R× Y ⊂ O.

Proof. Without loss of generality we shall assume that O is open. Let us
write Q in the form {qn : n ∈ ω} and set On = {z ∈ P(ω) : 〈qn, z〉 ∈
O} ⊃ Y . For every n find a cover Un of Y consisting of clopen subsets of
P(ω) contained in On. Let 〈U ′

k : k ∈ ω〉 be a sequence of open covers of
Y such that each Un appears in it infinitely often. Applying the Hurewicz
property of Y we can find a sequence 〈Vk : k ∈ ω〉 such that Vk ∈ [Uk]

<ω

and Y ⊂
⋃

k∈ω Zk, where Zk =
⋂

m≥k ∪Vm. Note that each Zk is compact
and Zk ⊂ On for all n ∈ ω (because there exists m ≥ k such that U ′

m = Un,
and then Zk ⊂ ∪Vm ⊂ On). Thus Q×Y ⊂ Q× (

⋃
k∈ω Zk) ⊂ O. Since Zk is

compact, there exists for every k an open Rk ⊃ Q such that Rk × Zk ⊂ O.
Set R =

⋂
k∈ω Rk and note that R ⊃ Q and R×Y ⊂ R×

⋃
k∈ω Zk ⊂ O. �

Let A be a countable set and x, y ∈ ωA. As usually, x ≤∗ y means that
{a ∈ A : x(a) > y(a)} is finite. The smallest cardinality of an unbounded
with respect to ≤∗ subset of ωω is denoted by b. It is well-known that ω1 < b
in the Laver model, see [2] for this fact as well as systematic treatment of
cardinal characteristics of reals.

The second part of Theorem 1.1 is a direct consequence of Lemma 2.2
and the following

Proposition 2.4. Suppose that b > ω1. Let Y ⊂ P(ω) be a Hurewicz space
and X ⊂ P(ω) weakly concentrated. Then X × Y is Menger.

Proof. Fix a sequence 〈Un : n ∈ ω〉 of covers of X × Y by clopen subsets of
P(ω)2. For every Q ∈ [X]ω fix a sequence 〈WQ

n : n ∈ ω〉 such that WQ
n ∈

[Un]
<ω and Q×Y ⊂

⋂
n∈ω

⋃
m≥n ∪WQ

m. Letting OQ =
⋂

n∈ω
⋃

m≥n ∪WQ
m and

using Lemma 2.3, we can find a Gδ-subset RQ ⊃ Q such that RQ×Y ⊂ OQ.
Since X is weakly concentrated, there exists Q ⊂ [X]ω of size |Q| = ω1 such
that R =

⋃
{RQ : Q ∈ Q} contains X as a subset. Let us fix x ∈ X and

find Q ∈ Q such that x ∈ RQ. Then {x} × Y ⊂ RQ × Y ⊂ OQ. Therefore
for every 〈x, y〉 ∈ X × Y there exists Q ∈ Q such that 〈x, y〉 ∈ OQ =⋂

n∈ω
⋃

m≥n ∪WQ
m. Let us write Un in the form {Un

k : k ∈ ω} and for every
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Q ∈ Q fix a real bQ ∈ ωω with the property WQ
n ⊂ {Un

k : k ≤ bQ(n)}. Since
|Q| = ω1 < b, there exists b ∈ ωω such that bQ ≤∗ b for all Q ∈ Q. It
follows from the above that X×Y ⊂

⋃
n∈ω

⋃
k≤b(n) U

n
k , which completes our

proof. �

A family F ⊂ [ω]ω is called a semifilter if for every F ∈ F and X∗ ⊃ F
we have X ∈ F , where F ⊂∗ X means |F \X| < ω.

The proof of the first part of Theorem 1.1 uses characterizations of the
properties of Hurewicz and Menger obtained in [16]. Let u = 〈Un : n ∈ ω〉 be
a sequence of subsets of a set X. For every x ∈ X let Is(x, u,X) = {n ∈ ω :
x ∈ Un}. If every Is(x, u,X) is infinite (the collection of all such sequences
u will be denoted by Λs(X)), then we shall denote by Us(u,X) the smallest
semifilter on ω containing all Is(x, u,X). By [16, Theorem 3], a Lindelöf
topological space X is Menger (Hurewicz) if and only if for every u ∈ Λs(X)
consisting of open sets, the semifilter Us(u,X) is Menger (Hurewicz). The
proof given there also works if we consider only those 〈Un : n ∈ ω〉 ∈ Λs(X)
such that all Un’s belong to a given base of X.

Proof of Theorem 1.1. Suppose that X,Y are Hurewicz spaces such that
X × Y is Lindelöf and fix w = 〈Un × Vn : n ∈ ω〉 ∈ Λs(X × Y ) consisting of
open sets. Set u = 〈Un : n ∈ ω〉, v = 〈Vn : n ∈ ω〉, and note that u ∈ Λs(X)
and v ∈ Λs(Y ). It is easy to see that

Us(w,X × Y ) = {A ∩B : A ∈ Us(u,X), B ∈ Us(v, Y )},

and hence Us(w,X × Y ) is a continuous image of Us(u,X) × Us(v, Y ). By
[16, Theorem 3] both of latter ones are Hurewicz, considered as subspaces
of P(ω), and hence their product is a Menger space by Proposition 2.4 and
Lemma 2.2. Thus Us(w,X × Y ) is Menger, being a continuous image of a
Menger space. It suffices to use [16, Theorem 3] again. 2
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[5] Hurewicz, W., Über die Verallgemeinerung des Borellschen Theorems, Math.
Z. 24 (1925), 401–421.
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