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Abstract. We prove that p = c implies the existence of a Cohen-
indestructible mad family such that the Mathias forcing associated to its
filter adds dominating reals, while b = c is consistent with the negation
of this statement as witnessed by the Laver model for the consistency of
Borel’s conjecture.

1. Introduction

Recall that an infinite A ⊂ [ω]ω is called a mad family, if |A0 ∩ A1| < ω
for any distinct A0, A1 ∈ A, and for every B ∈ [ω]ω \ A there exists A ∈ A
such that |B ∩ A| = ω. In [2, Theorem 2.1] Brendle constructed under CH
a mad family A on ω such that the Mathias forcing1 MF(A) associated to
the filter

F(A) = {F ⊂ ω : ∃A′ ∈ [A]<ω(ω \ ∪A′ ⊂∗ F )}
adds a dominating real. In the same paper Brendle asked whether such a
mad family can be constructed outright in ZFC. This question has been
answered in the affirmative in [5] and later independently also in [4] using
different methods. Since the goal of these studies was to find forcings de-
stroying a given mad family while keeping (certain subsets of) the ground
model reals unbounded (and perhaps having other useful properties), this
motivates the following version of Brendle’s question: Suppose that a mad
family A cannot be destroyed by some very “mild” forcing P, i.e., it remains
maximal in V P, must then MF(A) add dominating reals? This approach
seems natural because if A is already destroyed by P, there is no need to
use its Mathias forcing for its destruction in a hypothetic construction of a
model where, e.g., b should stay small. b as well as other notions used in
the introduction will be defined in the next section. In this note we consider
this question for P being the Cohen forcing C. Mad families A which remain
maximal in V C will be called Cohen-indestructible.

Theorem 1.1. p = c implies the existence of a Cohen-indestructible mad
family A such that MF(A) adds a dominating real.
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1Since we shall not analyze this poset directly but rather use certain topological char-
acterizations, we refer the reader to, e.g., [2] for its definition.
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Recall from [10] that a mad familyA is called ω-mad if for every sequence
〈Xn : n ∈ ω〉 of elements of F(A)+ there exists A ∈ A such that |A ∩
Xn| = ω for all n. Cohen-indestructible mad families are closely related
to ω-mad ones, see [12] or [10, Theorem 4]: Every ω-mad family is Cohen-
indestructible, and if A is Cohen-indestructible, then for every X ∈ F(A)+

there exists Y ⊂ X, Y ∈ F(A)+, such that A � Y = {A∩ Y : A ∈ A, A∩ Y
is infinite} is ω-mad as a mad family on Y .

In the proof of Theorem 1.1 we actually construct an ω-mad family. The
next theorem shows that b = c would not suffice in Theorem 1.1.

Theorem 1.2. In the Laver model for the consistency of the Borel conjec-
ture, for every ω-mad family A the poset MF(A) does not add dominating re-
als. In particular, if A is Cohen-indestructible, then there exists X ∈ F(A)+

such that MF(A)�X does not add dominating reals, where F(A) � X denotes
the filter on ω generated by the centered family {F ∩X : F ∈ F(A)}.

In our proofs of Theorems 1.1 and 1.2 we shall not work with the Mathias
forcing directly, but rather use the following characterization obtained in
[4]: For a filter F on ω the poset MF adds no dominating reals iff F has
the Menger covering property when considered with the topology inherited
from P(ω), which is identified with the Cantor space 2ω via characteristic
functions. Recall from [6] that a topological space X is said to have the
Menger property if for every sequence 〈Un : n ∈ ω〉 of open covers of X there
exists a sequence 〈Vn : n ∈ ω〉 such that each Vn is a finite subfamily of Un
and the collection {∪Vn : n ∈ ω} is a cover of X. The current name (the
Menger property) has been adopted because Hurewicz proved in [6] that
for metrizable spaces his property is equivalent to a certain basis property
considered by Menger in [13]. If in the definition above we additionally
require that {∪Vn : n ∈ ω} is a γ-cover of X (this means that the set
{n ∈ ω : x 6∈ ∪Vn} is finite for each x ∈ X), then we obtain the definition
of the Hurewicz covering property introduced in [7]. These properties are
related as follows:

σ-compact → Hurewicz → Menger → Lindelöf’
Contrary to a conjecture of Hurewicz, the class of metrizable spaces having
the Hurewicz property turned out to be wider than the class of σ-compact
spaces [8, Theorem 5.1]. Also, there are ZFC examples of non-Hurewicz
subspaces X of the real line whose all finite powers are Menger, see [3] or
[17].

In light of Theorem 1.2 we would like to ask whether it is consistent that
F(A) is Hurewicz for any ω-mad family A. However, since it is unknown
whether ω-mad families exist in ZFC, we suggest the following

Question 1.3. Is it consistent that there exist ω-mad families and F(A) is
Hurewicz for any such a family A? Is this the case in the Laver model?

2. Proofs

Let us first recall the definitions of cardinal characteristics appearing in
this paper. p is the minimal cardinality of a family X ⊂ [ω]ω such that
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∩X ′ ∈ [ω]ω for any X ′ ∈ [X ]<ω, but there is no Y ∈ [ω]ω such that Y ⊂∗ X
for all X ∈ X . b is the minimal cardinality of an unbounded subset B of
ωω with respect to the following pre-order: x ≤∗ y iff {n ∈ ω : x(n) > y(n)}
is finite. Finally, cov(N ) is the minimal cardinality of a cover of R by
Lebesgue null sets. It is well-known that p ≤ min{b, cov(N )}, see, e.g., [1]
and references therein.

We shall first prove Theorem 1.1. Here we shall often use the following
easy fact without mentioning it: For any countable collection A of countable
sets, for every A ∈ A there exists B(A) ∈ [A]ω such that B(A)∩B(A′) = ∅
for any distinct A,A′ ∈ A.

Proof of Theorem 1.1. We shall first present the proof under CH, and then
indicate what should be changed to make the proof work under p = c.

Let 〈In : n ∈ ω〉 be a sequence of infinite mutually disjoint subsets of ω.
For every k ∈ ω set Pk = 2k+1\2k and note that elements of {Pk : k ∈ ω} are
mutually disjoint. Let {〈Xα

n : n ∈ ω〉 : α < ω1} be the family of all sequences
of infinite subsets of ω. Let us also fix an enumeration {fα : α < ω1} of all
increasing sequences in ωω. By transfinite induction on α we shall construct
a sequence 〈Aα : α < ω1〉 of infinite subsets of ω satisfying the following
properties:

(i) |Aβ ∩ Aγ| < ω for all β 6= γ;
(ii) |Aβ ∩ Pk| ≤ 2 for every β ∈ ω1 and k ∈ ω;

(iii) For every a ∈ [ω1]
<ω and k ∈ ω the set {n ∈ Ik :

⋃
β∈aAβ ∩ Pn = ∅}

is infinite;
(iv) For every β ∈ ω1, if |Xβ

n \
⋃
γ∈aAγ| = ω for all n ∈ ω and finite

a ⊂ β, then |Aβ ∩Xβ
n | = ω for all n ∈ ω; and

(v) Aβ ∩ Pk 6= ∅ provided that k ∈ In and Pk ⊂ fβ(n).

Assuming that conditions (i)-(v) are satisfied for all β, γ < α and a ⊂ α,
let us consider the sequence 〈Xα

n : n ∈ ω〉. Two cases are possible.

1. |Xα
n \
⋃
γ∈aAγ| = ω for all n ∈ ω and finite a ⊂ α, i.e., the premises of

(iv) hold for α. Let us note that if we shrink the sets Xα
n ’s, the property (iv)

becomes harder to fulfill. Thus passing to an infinite pseudointersection of
the countable family

{Xα
n \

⋃
γ∈a

Aγ : a ∈ [α]<ω}

of infinite subsets of Xα
n , we may assume that |Xα

n ∩ Aβ| < ω for all n ∈ ω
and β < α. Let g ∈ ωω be such that for all β < α there exists n ∈ ω with
the property Xα

m ∩ Aβ ⊂ g(m) for all m ≥ n. Letting Yn = Xα
n \ g(n), we

get that

(vi)
⋃
n∈ω Yn is almost disjoint from Aβ for all β < α.

Claim 2.1. For every m ∈ ω there exists Bm ∈ [Ym]ω such that B =⋃
m∈ω Bn has the following properties:

∀k ∈ ω ∀a ∈ [α]<ω
(
{n ∈ Ik : Pn ∩ (B ∪

⋃
β∈a

Aβ) = ∅} is infinite
)
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and |B ∩ Pn| ≤ 1 for all n ∈ ω.

Proof. For every k ∈ ω and a ∈ [α]<ω set Nk
a = {n ∈ Ik : Pn∩

⋃
β∈aAβ = ∅}

and note that by our assumptions {Nk
a : a ∈ [α]<ω} is a countable centered

family of infinite subsets of Ik, and hence there exists Nk ∈ [Ik]
ω such that

Nk ⊂∗ Nk
a for all a as above. Let

M∞ = {m ∈ ω : ∃∞k∃n ∈ Nk(Ym ∩ Pn) 6= ∅}
and for every m ∈ M∞ set Jm = {k ∈ ω : ∃n ∈ Nk(Ym ∩ Pn) 6= ∅} ∈ [ω]ω.
Pick J ′m ∈ [Jm]ω for all m ∈ M∞ such that J ′m0

∩ J ′m1
= ∅ for arbitrary

m0 6= m1 in M∞. Given m ∈ M∞, for every k ∈ J ′m pick nm,k ∈ Nk such
that Ym ∩ Pnm,k 6= ∅, and fix lm,k ∈ Pnm,k ∩ Ym. For every m ∈ M∞ set
Bm = {lm,k : k ∈ J ′m}.

Suppose now that m ∈ ω \M∞. Two cases are possible.
a) There exists km ∈ ω such that Lm := {n ∈ Nkm : Ym ∩ Pn 6= ∅}

is infinite. Given k ∈ ω, for every m such that k = km find Qm ∈ [Lm]ω,
and Rk ∈ [Nk]ω such that Qm0 ∩Qm1 = ∅ for any distinct m0,m1 such that
k = km0 = km1 , and Rk ∩ Qm = ∅ for all m with k = km. Now for every
n ∈ Qm pick qm,n ∈ Ym ∩ Pn and set Bm = {qm,n : n ∈ Qm}.

b) The set

Sm := {〈k, n〉 : k ∈ ω, n ∈ Nk, Ym ∩ Pn 6= ∅}
is finite. Then let

Bm ∈
[
Ym \

⋃{
Pn : ∃k(〈k, n〉 ∈ Sm)

}]ω
be such that for each n we have |Bm ∩ Pn| ≤ 1.

Thus we have already constructed the sequence 〈Bm : m ∈ ω〉. We claim
that B =

⋃
m∈ω Bm is as required. By the choice of Nk it suffices to prove

that
∀k ∈ ω

(
{n ∈ Nk : Pn ∩B = ∅} is infinite

)
.

We shall show that if k = km for some m, then Pn ∩ B = ∅ for all but
maybe one n ∈ Rk. Otherwise Pn ∩ B = ∅ for all but maybe one n ∈ Nk.
Indeed, by the construction (more precisely, since all J ′m, m ∈ M∞ are
mutually disjoint), the union B∞ :=

⋃
m∈M∞

Bm has the property that for

every k ∈ ω there exists at most one n ∈ Nk such that B∞ ∩ Pn 6= ∅.
Now if m ∈ ω \M∞ and case b) takes place, then Bm intersects no Pn for
n ∈

⋃
k∈ωN

k. And finally, if m ∈ ω \M∞ and a) takes place with k = km,
then Bm ⊂

⋃
n∈Nk Pn and Bm ∩

⋃
n∈Rk Pn = ∅. Since the Ik’s (and hence

also the Nk’s) are mutually disjoint, this completes our proof. �

Claim 2.2. Let 〈ni : i ∈ ω〉 be the increasing enumeration of the set {n ∈ ω :
∃k(n ∈ Ik ∧ Pn ⊂ fα(k))}. Then there exists C ⊂ ω such that |C ∩Aβ| < ω
for all β < α, |C ∩ Pni | = 1 for all i, and C ∩ Pn = ∅ if n 6∈ {ni : i ∈ ω}.

Proof. By (ii) we can find a countable family G of functions in
∏

i∈ω Pni
such that Aβ ∩ (

⋃
i∈ω Pni) is covered by graphs of at most 2 elements of G,

for all β < α. Now it is easy to construct h ∈
∏

i∈ω Pni eventually different
from each element of G. It follows that C := range(h) is as required. �
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Set Aα = B ∪ C, where B,C are such as in Claims 2.1 and 2.2, respec-
tively. Since {ni : i ∈ ω} ∩ Ik is finite for all k ∈ ω, it is easy to see that all
conditions (i)-(v) are also satisfied for β, γ ≤ α and a ∈ [α + 1]<ω.

2. There exists n ∈ ω and a finite a ⊂ α such that Xα
n ⊂∗

⋃
γ∈aAγ. Set

Aα = C, where C is such as in Claim 2.2. Again, all conditions (i)-(v) are
satisfied for β, γ ≤ α and a ∈ [α + 1]<ω.

This completes our construction of a sequence 〈Aα : α < ω1〉 satisfying
(i)-(v). By (i) and (iv), A = {Aα : α < ω1} is an ω-mad family. By (iii)
the family Uk = {On : n ∈ Ik} is an open cover of F(A) for all k ∈ ω,
where On = {X ⊂ ω : Pn ⊂ X}. We claim that the sequence 〈Uk : k ∈ ω〉
witnesses that F(A) is not Menger. Indeed, otherwise there exists α such
that

U := {On : ∃k ∈ ω(n ∈ Ik ∧ Pn ⊂ fα(k))}
covers F(A). However, Pn ∩ Aα 6= ∅ for all n ∈ Ik such that Pn ⊂ fα(k)
for some k ∈ ω, which means that F(A) 3 ω \ Aα 6∈ ∪U . This leads to a
contradiction and thus finishes our proof under CH.

Except for the proof of Claim 2.2, we have used CH to produce at stage
α a pseudointersection of a centered family of infinite subsets of ω of size
|α|, and p = c suffices for finding such pseudointersections by the definition
of p.

Regarding Claim 2.2, we shall show2 that for any family G ⊂
∏

i∈ω Pni
of size < p there exists h ∈

∏
i∈ω Pni eventually different from all elements

of H (here we use the same notation as in the formulation of Claim 2.2).
Indeed, let µ be the Borel measure on

∏
i∈ω Pni such that for every i ∈ ω

and s ∈
∏

j≤i Pnj we have µ([s]) =
∏

j≤i 2
−nj , where

[s] = {x ∈
∏
i∈ω

Pni : x � (i+ 1) = s}.

By [9, Theorem 17.41] the measurable space 〈
∏

i∈ω Pni , µ〉 is isomorphic to
R equipped with the standard Lebesgue measure λ. A simple calculation
shows that

µ{x ∈
∏
i∈ω

Pni : ∃∞i ∈ ω(x(i) = g(i))} = 0

for every g ∈
∏

i∈ω Pni . Since R cannot be covered by fewer than p many null
subsets, neither 〈

∏
i∈ω Pni , µ〉 can, and hence Claim 2.2 holds for families G

of size < p. This completes our proof. 2

Every filter F on ω gives rise to the filter F (<ω) on Fin := [ω]<ω \ {∅}
generated by sets [F ]<ω \ {∅}, where F ∈ F . For a family B of infinite
subsets of a countable set X we denote by B+ the family {Z ⊂ X : ∀B ∈
B(|Z ∩ B| = ω)}. For every E ⊂ Fin let us denote by K(E) the family
{K ⊂ ω : ∀e ∈ E(e ∩ K 6= ∅)}. It is easy to see that K(E) is always
compact and K(E) ⊂ [ω]ω if for every n ∈ ω there exists e ∈ E such that

2We believe that this straightforward argument is well-known, but we were unable to
locate it in the literature.



6 LEANDRO AURICHI AND LYUBOMYR ZDOMSKYY

min e > n. It is a straightforward exercise to check that E ∈ (F (<ω))+ iff
K(E) ⊂ F+.

In the next proof, we will use the notation ω↑ω for the set of the increasing
functions from ω to ω. Also, we will use the fact that b = ω2 holds in the
Laver model.

Proof of Theorem 1.2. Let F = F(A). By [4, Corollary 2.2] it suffices
to prove that for every decreasing sequence 〈Sn : n ∈ ω〉 of elements of
(F (<ω))+ there exists f ∈ ωω such that Sf :=

⋃
n∈ω(Sn ∩ P(f(n))) belongs

to (F (<ω))+, i.e., K(Sf ) ⊂ F+. Without loss of generality we may assume
that min s > n for all s ∈ Sn.

Since A is ω-mad, for every countable family

{〈X i
n : n ∈ ω〉 : i ∈ ω} ⊂

∏
n∈ω

K(Sn)

there exists A ∈ A such that |A ∩X i
n| = ω for all i, n ∈ ω. We claim that

there are actually ω2-many A ∈ A as above. Indeed, suppose that for some
A′ ∈ [A]ω1 there is no A ∈ A \ A′ such that |A ∩X i

n| = ω for all i, n ∈ ω.
Fix a sequence 〈An : n ∈ ω〉 of mutually different elements of A \ A′ and
find h ∈ ω↑ω such that

〈max(A ∩ An) + 1 : n ∈ ω〉 ≤∗ h

for all A ∈ A′. Such an h exists because |A′| < b = ω2. Set X =
⋃
n∈ω(An \

h(n)) and note that X ∈ F+ and |X ∩ A| < ω for all A ∈ A′. It follows
that there is no A ∈ A which intersects infinitely often all elements of the
family {X i

n : i, n ∈ ω} ∪ {X}, a contradiction.
Let f ∈ ωω be increasing and such that A ∩ X i

n ∩ f(n) 6= ∅ for every i
and all but finitely many n ∈ ω. Set

GA,f =
{
〈Xn : n ∈ ω〉 ∈

∏
n∈ω

K(Sn) : ∃∞n(A ∩Xn ∩ f(n) 6= ∅)
}

and note that GA,f is a Gδ-subset of
∏

n∈ω K(Sn) containing 〈X i
n : n ∈ ω〉 for

all i ∈ ω. Thus we have proven that for every countable Q ⊂
∏

n∈ω K(Sn)
there exists A ∈ A and f ∈ ω↑ω such that Q ⊂ GA,f . Moreover, there are
ω2-many such pairs 〈A, f〉 with mutually different first coordinates. Let us
fix A′ ∈ [A]ω1 . Applying [14, Lemma 2.2] we conclude that there exists a
family {〈Aα, fα〉 : α < ω1} ⊂ A×ω↑ω such that

∏
n∈ω K(Sn) ⊂

⋃
α<ω1

GAα,fα

and A′ ∩ {Aα : α < ω1} = ∅. Since A′ was chosen arbitrarily, it follows
from the above that we can additionally assume that each 〈Xn : n ∈ ω〉 ∈∏

n∈ω K(Sn) is contained in GAα,fα for infinitely many α. Pick f ∈ ω↑ω such
that fα ≤∗ f for all α. We claim that K(Sf ) ⊂ F+. Indeed, for every n ∈ ω
and s ∈ Sn ∩ P(f(n)) select ks,n ∈ s. We are left with the task to prove
that X = {ks,n : s ∈ Sn ∩ P(f(n))} ∈ F+. In order to do this for every
n and s ∈ Sn \ P(f(n)) select ls,n ∈ s \ f(n) and consider the sequence
〈Xn : n ∈ ω〉 ∈

∏
n∈ω K(Sn), where

Xn =
{
ks,n : s ∈ Sn ∩ P(f(n))

}
∪
{
ls,n : s ∈ Sn \ P(f(n))

}
.
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Our proof will be completed as soon as we show that X ∩Aα is infinite for
all α such that 〈Xn : n ∈ ω〉 ∈ GAα,fα . So let us fix such an α and m0 ∈ ω.
Let m ≥ m0 be such that fα(n) ≤ f(n) for all n ≥ m. By the definition
of GAα,fα there exists n ≥ m such that ∅ 6= Xn ∩ Aα ∩ fα(n), and hence
∅ 6= Xn∩Aα∩f(n). Fix j in the latter intersection. It follows that j cannot
be of the form ls,n for s ∈ Sn \ P(f(n)) because j ∈ f(n), an hence j = ks,n
for some s ∈ Sn ∩ P(f(n)), which yields j ∈ X. This completes our proof.
2
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