The Nikodym property in the Sacks model

Damian Sobota and Lyubomyr Zdomskyy

Abstract. We prove that if \mathcal{A} is a σ-complete Boolean algebra in a ground model V of set theory, then \mathcal{A} has the Nikodym property in every side-by-side Sacks forcing extension $V[G]$, i.e. every pointwise bounded sequence of measures on \mathcal{A} in $V[G]$ is uniformly bounded. This gives a consistent example of a class of infinite Boolean algebras with the Nikodym property and of cardinality strictly less than the continuum.

1. Introduction

Let \mathcal{A} be a Boolean algebra. A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is pointwise bounded if $\sup_{n \in \omega} |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$ and it is uniformly bounded if $\sup_{n \in \omega} \|\mu_n\| < \infty$. The Nikodym Boundedness Theorem states that if \mathcal{A} is σ-complete, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded. This principle, due to its numerous applications, is one of the most important results in the theory of vector measures, see Diestel and Uhl [7, Section I.3].

Since σ-completeness is rather a strong property of Boolean algebras, Schachermayer [11] made a detailed study of the Nikodym theorem and introduced the Nikodym property for general Boolean algebras.

Definition 1.1. A Boolean algebra \mathcal{A} has the Nikodym property if every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

The property has been studied by many authors, e.g. Darst [5], Seever [12], Haydon [9], Molto [10], Freniche [8], Aizpuru [1, 2] or Valdivia [14].

Let us pose the following question. Let V be a model of ZFC+CH and $\mathcal{A} \in V$ be a σ-complete Boolean algebra of cardinality equal to the continuum c. Let \mathbb{P} be a notion of forcing preserving ω_1 and G its generic filter over V. Assume that in the extension $V[G]$ the CH does not hold. Then, \mathcal{A} will have cardinality ω_1 in $V[G]$, and hence it will no longer be σ-complete. However, will \mathcal{A} still have the Nikodym property?

Brech [4, Theorem 3.1] proved that if \mathbb{P} is the side-by-side Sacks forcing S^κ for some regular cardinal number κ, then \mathcal{A} will have the Grothendieck property in $V[G]$, i.e. every sequence of measures in $V[G]$ which is weak* convergent on \mathcal{A} is also weakly convergent. The Nikodym and Grothendieck properties are closely related to each other, see e.g. Schachermayer [11]. Thus, motivated by Brech’s result, we studied the preservation of the Nikodym property by the Sacks forcing S^κ and proved that if \mathcal{A} is a σ-complete Boolean algebra in V, then \mathcal{A} has the Nikodym property in the S^κ-generic extension $V[G]$ (Theorem 3.3).

Our result has one important consequence. In Sobota [13], the first author studied the relation between the Nikodym property and cardinal characteristics of the continuum. In particular, a construction of a Boolean algebra with the

2010 Mathematics Subject Classification. Primary: 28A33, 03E75. Secondary: 28E15.

Key words and phrases. Nikodym property, Sacks model, convergence of measures, uniform boundedness.

The authors were supported by the Austrian Science Fund FWF, Grant I 2374-N35.
The Stone duality theorem states that the dual space of a measure space is isometrically isomorphic with the space of all measures on a Boolean algebra. Every measure has a unique Borel extension (denoted also by \(\mu \)) onto the space \(K_A \), preserving the variation of \(\mu \). This theorem is a cornerstone in the study of Boolean algebras and measures, providing a bridge between algebraic and measure-theoretic properties. For more information concerning measure theory and Banach spaces, see the book of Diestel [6].

V always denotes the set-theoretic universum. By \(S^\kappa \) we denote the side-by-side product of \(\kappa \) many Sacks forcings \(S \) for some uncountable regular cardinal number \(\kappa \). Regarding all other notions related to the Sacks forcing, we follow the paper of Baumgartner [3]. If \(s \in S \) and \(p \in s \), then \(s[p] = \{ q \in s : q \subseteq p \text{ or } p \subseteq q \} \subseteq S \). If \(n \in \omega \), then \(l(n,s) \) denotes the \(n \)-th forking level of \(s \).

Let \(s, s' \in S^\kappa \), \(F \in [\text{dom}(s)]^{<\omega} \) and \(n \in \omega \). We put \(l(F,n,s) = \{ \sigma : \text{dom}(\omega) = F \text{ and } \forall \alpha \in F : \sigma(\alpha) \in l(n,s(\alpha)) \} \). Note that \(|l(F,n,s)| = 2^{\omega |F|} \). We write \(s' \leq_F n \) \(s \) if \(s' \leq s \) and \(l(F,n,s') = l(F,n,s) \). If \(\sigma : F \to 2^{<\omega} \) is such that \(\sigma(\alpha) \in s(\alpha) \) for every \(\alpha \in F \), then we write \(s|F \) for a condition defined as \((s|F)(\alpha) = \sigma(\alpha) \).

2. Anti-Nikodym sequences in the Sacks model

In this section, assuming in a forcing extension the existence of sequences of measures on a ground model Boolean algebra \(A \) which are pointwise bounded but not uniformly bounded, we build (Proposition 2.9) in the ground model a special antichain in \(A \) which will be crucial in proving the main theorem of the paper — Theorem 3.3.

Definition 2.1. A sequence \(\langle \mu_n : n \in \omega \rangle \) of measures on a Boolean algebra \(A \) is called anti-Nikodym if it is pointwise bounded but not uniformly bounded.

Lemma 2.2. If a sequence \(\langle \mu_n : n \in \omega \rangle \) of measures on a Boolean algebra \(A \) is anti-Nikodym, then there exists a point \(t \in K_A \) such that for every clopen neighborhood \(U \subseteq A \) of \(t \) we have \(\sup_{n \in \omega} \| \mu_n \downharpoonright U \| = \infty \).

The point \(t \) will be called a Nikodym concentration point of the sequence \(\langle \mu_n : n \in \omega \rangle \).

Proof. Assume that for every point \(t \in K_A \) there exists \(A_t \subseteq A \) such that \(t \in [A_t] \) and \(\langle \mu_n \downharpoonright A_t : n \in \omega \rangle \) is uniformly bounded. Then, by compactness of \(K_A \) there exist \(t_1, \ldots, t_n \in K_A \) such that \(A_{t_1} \vee \ldots \vee A_{t_n} = 1_A \). This in turn implies that

\[
\sup_{n \in \omega} \| \mu_n \| = \sup_{n \in \omega} |\mu_n| (1_A) \leq \sup_{n \in \omega} |\mu_n| (A_{t_1}) + \ldots + \sup_{n \in \omega} |\mu_n| (A_{t_n}) = \sup_{n \in \omega} \| \mu_n \downharpoonright A_{t_1} \| + \ldots + \sup_{n \in \omega} \| \mu_n \downharpoonright A_{t_n} \| < \infty,
\]
which is a contradiction, since $\langle \mu_n: \ n \in \omega \rangle$ is not uniformly bounded.

(Nota that in the above proof we did not use the pointwise boundedness of $\langle \mu_n: \ n \in \omega \rangle$.)

\textbf{Lemma 2.3.} Let $\langle \mu_n: \ n \in \omega \rangle$ be an anti-Nikodym sequence on \mathcal{A} and let $t \in K_\mathcal{A}$ be its Nikodym concentration point. Assume that $t \in [A]$ for some $A \in \mathcal{A}$. Then, for every positive real number ρ and natural number M there exist an element $B \in \mathcal{A}$ and a natural number $n > M$ such that:

- $B \leq A$ and $t \in [A \setminus B]$,
- $|\mu_n(B)| > \rho$.

\textbf{Proof.} Since $\langle \mu_n: \ n \in \omega \rangle$ is anti-Nikodym and $t \in [A]$, there exist $C \leq A$ and $n > M$ such that

$$|\mu_n(C)| > \sup_{m \in \omega} |\mu_m(A)| + \rho$$

and hence

$$|\mu_n(A \setminus C)| = |\mu_n(C) - \mu_n(A)| \geq |\mu_n(C)| - |\mu_n(A)| > \rho.$$

If $t \in [C]$, then put $B = A \setminus C$, otherwise put $B = C$. \hfill \Box

To the end of this section let \mathcal{A} be a ground model infinite Boolean algebra.

\textbf{Lemma 2.4.} Let $A_0, \ldots, A_k \in \mathcal{A}$, K, M, $N \in \omega$. Let $\langle \mu_n: \ n \in \omega \rangle$ be a sequence of names for measures on \mathcal{A} and i a name for a point in $K_\mathcal{A}$. Let $s \in \mathcal{S}$ force that $\langle \mu_n: \ n \in \omega \rangle$ is anti-Nikodym, i is its Nikodym concentration point and $i \notin \bigcup_{j=0}^k [A_j]$.

Then, there exist a sequence B_1, \ldots, B_K of pairwise disjoint elements of \mathcal{A} disjoint with $1_\mathcal{A} \setminus \bigcup_{j=0}^k A_j$, a sequence $n_K > \ldots > n_1 > M$ of natural numbers and a condition $s^* \leq s$ forcing for every $1 \leq i \leq K$ that $i \notin [B_i]$ and

$$|\hat{\mu}_{n_i}(B_i)| > \sum_{j=0}^k |\hat{\mu}_{n_i}(A_j)| + N + 2.$$

\textbf{Proof.} Use Lemma 2.3 inductively K times to obtain sequences $B_1, \ldots, B_K \in \mathcal{A}$, $n_K > \ldots > n_1 > M$ and $s_K \leq \ldots \leq s_1 \leq s$ such that for every $1 \leq i \leq K$ the element B_i is disjoint with $\bigcup_{j=0}^i A_j$ and the condition s_i forces that $i \notin [B_i]$ and

$$|\hat{\mu}_{n_i}(B_i)| > \sum_{j=0}^i |\hat{\mu}_{n_i}(A_j)| + N + 2.$$

Let $s^* = s_K$. \hfill \Box

\textbf{Lemma 2.5.} Let $K, P \in \omega$. Let μ_1, \ldots, μ_K be a sequence of K measures on \mathcal{A}. Assume that $K \cdot \|\mu_j\| < P$ for every $1 \leq j \leq K$. Then, for every $Q > K \cdot P$ and every pairwise disjoint elements C_1, \ldots, C_Q of \mathcal{A} there exist natural numbers $k_1 < \ldots < k_{Q - K \cdot P}$ such that

$$|\mu_j|(C_{k_l}) < 1/K$$

for every $1 \leq j \leq K$ and $1 \leq l \leq Q - K \cdot P$.

\textbf{Proof.} Let $Q > K \cdot P$ and C_1, \ldots, C_Q be an antichain in \mathcal{A}. Assume that there exist $k_1 < \ldots < k_P$ such that

$$|\mu_j|(C_{k_l}) \geq 1/K$$
for some $1 \leq j \leq K$ and every $1 \leq l \leq P$. Then, we have:

$$\|\mu_j\| \geq \sum_{l=1}^{P} |\mu_j| (C_k) \geq P \cdot 1/K > K \cdot \|\mu_j\| \cdot 1/K = \|\mu_j\|,$$

a contradiction, so for every $1 \leq j \leq K$ there must exist at most $P - 1$ elements B_i’s such that

$$|\mu_j| (C_k) \geq 1/K.$$

Hence, the thesis of the lemma holds for some $Q - K \cdot (P - 1) \geq Q - K \cdot P$ elements B_i’s. □

The following lemma is standard, cf. Baumgartner [3, Lemmas 1.5–1.8].

Lemma 2.6. Let $s \in S^\kappa$, $N \in \omega$ and $F_N \in [\text{dom}(s)]^{<\omega}$.

a) $\{s(\sigma): \sigma \in l(F_N, N, s)\}$ is an antichain in S^κ and $s = \bigcup_{\sigma \in l(F_N, N, s)} s|\sigma$.

b) If $\sigma \in l(F_N, N, s)$ and $p \leq s|\sigma$, then there exists $q \leq_F N s$ such that $q|\sigma = p$.

c) If $D \subseteq S^\kappa$ is open dense below s, then there exists $q \leq_F N s$ such that $q|\sigma \in D$ for every $\sigma \in l(F_N, N, s)$.

□

Lemma 2.7. Let $A_0, \ldots, A_k, M, N, (\tilde{\mu}_n: n \in \omega), l$ and s be as in the assumptions of Lemma 2.4. Let $F_N \in [\text{dom}(s)]^{<\omega}$. Put $K = |l(F_N, N, s)|$ and enumerate $l(F_N, N, s) = \langle \sigma_i: 1 \leq i \leq K \rangle$.

Then, there exist a condition $s^* \leq_{F_N, N} s$, a sequence B_1, \ldots, B_K of pairwise disjoint elements of A disjoint with $1_A \setminus \bigcup_{j=0}^{k} A_j$ and a sequence $n_K > \ldots > n_1 > M$ such that for every $1 \leq i \leq K$ the condition $s^*|\sigma_i$ forces that:

- $|\tilde{\mu}_{n_i}(B_i)| > \sum_{j=0}^{k} |\tilde{\mu}_{n_i}(\tilde{A}_j)| + \sum_{j=1}^{i-1} |\tilde{\mu}_{n_i}(\tilde{B}_j)| + \check{N} + 2$,

- $|\tilde{\mu}_{n_i}| \bigg(\bigvee_{i=1}^{n_K} \tilde{B}_i\bigg) < 1$,

- $i \notin \bigcup_{i=1}^{K} [\tilde{B}_i]$.

Proof. The proof basically goes by induction in K steps — each step for one σ_i ($1 \leq i \leq K$). We start as follows — by Lemmas 2.4 and 2.6.b) there exist a sequence of conditions $s_1 \leq_{F_N, N} s$, a family $\mathcal{R}_1 = \{B_1, \ldots, B_K\}$ of pairwise disjoint elements of A disjoint with $1_A \setminus \bigcup_{j=0}^{k} A_j$, a sequence $n^1_K > \ldots > n^1_1 > M$ of natural numbers and a natural number $\check{P}_1 > 0$ such that for every $1 \leq j \leq K$ we have:

- $s_1|\sigma_1 \models |\tilde{\mu}_{n^1_1}(\tilde{B}^1_1)| > \sum_{l=0}^{k} |\tilde{\mu}_{n^1_1}(\tilde{A}_l)| + \check{N} + 2$,

- $s_1|\sigma_1 \models \check{K} \cdot \|\tilde{\mu}_{n^1_1}\| < \check{P}_1$, and

- $s_1|\sigma_1 \models i \notin \bigcup_{i \in \mathcal{R}^1} [B_i]$.

Assume now that for some $1 \leq L < K$ we have found:

- a sequence of conditions $s_L \leq_{F_N, N} \ldots \leq_{F_N, N} s_1 \leq_{F_N, N} s$, for every $1 \leq i \leq L$ a sequence of families $\mathcal{R}^i_L \subseteq \ldots \subseteq \mathcal{R}^i_1 \subseteq \mathcal{P}^i \subseteq A$ of pairwise disjoint non-zero elements of A with $\mathcal{R}^i_L \neq \emptyset$ and $\mathcal{R}^i = \{B^i_1, \ldots, B^i_K\}$,

- a sequence of natural numbers $n^L_K > \ldots > n^L_1 > n^{L-1}_K > \ldots > n^{L-1}_1 > \ldots > n^1_K > \ldots > n^1_1 > M$, and

- a sequence of natural numbers $P_L > \ldots > P_1 > 0$,

such that:
(i) for every $1 \leq i \leq L$ and $1 \leq j \leq K$ we have:

$$s_i | \sigma_i | \not\vdash | \mu_{n_j} (\hat{B}_j) | > \sum_{l=0}^{k} | \mu_{n_j} (\hat{A}_l) | + \sum_{l=1}^{i-1} \sum_{B \in \mathcal{B}_i} | \mu_{n_j} (B) | + \hat{N} + 2, \text{ and}$$

$$s_i | \sigma_i | \not\vdash \hat{K} \cdot | \mu_{n_j} | < \hat{P}_i;$$

(ii) for every $1 \leq j \leq i \leq L$ we have:

$$s_{i} | \sigma_{j} | \not\vdash i \notin \bigcup_{l=1}^{i} \bigcup_{B \in \mathcal{B}_i} [B];$$

(iii) for every $1 \leq l < i \leq L, 1 \leq j \leq K$ and $B \in \mathcal{B}_i$ we have:

$$s_{i} | \sigma_{l} | \not\vdash | \mu_{n_j} (B) | < 1/\hat{K}.$$

Let us now construct $s_{L+1} \leq_{F_{N,N}} s_{L}, \mathcal{B}_{L+1}^1 \subseteq \mathcal{B}_L^1, \ldots, \mathcal{B}_{L+1}^L \subseteq \mathcal{B}_L^L, \mathcal{B}_{L+1} \subseteq \mathcal{B}_{L+1} \subseteq A, n_{K}^{L+1} > \ldots > n_{1}^{L+1} > n_{K}^{L+1}$ and $P_{L+1} > P_L$ satisfying also the properties (i)–(iii).

First, we modify a bit the condition s_{L}. By density, there exists $p \leq s_{L} | \sigma_{L+1}$ such that for every $1 \leq i \leq L$ either there exists unique $1 \leq j \leq K$ such that $p \vdash i \in [\hat{B}_j^i]$, or for every $B \in \mathcal{B}_L^L$ we have $p \vdash i \notin [\hat{B}]$. In the former case put $\mathcal{B}_{L+1}^i = \{ \hat{B}_j^i \}$, in the latter $\mathcal{B}_{L+1} = \mathcal{B}_L$. By Lemma 2.6.b), there exists $q \leq_{F_{N,N}} s_{L} \text{ such that } q | \sigma_{L+1} = p$. Note that

$$q | \sigma_{L+1} \vdash i \notin \bigcup_{j=0}^{k} [\hat{A}_j] \cup \bigcup_{l=1}^{L} \bigcup_{B \in \mathcal{B}_L^L} [B].$$

By Lemmas 2.4 and 2.6.b), there exist a condition $r \leq_{F_{N,N}} q$, a family $\mathcal{C} = \{ C_1, \ldots, C_Q \}$ of pairwise disjoint elements of A disjoint with $1_A \setminus \left(\bigvee_{j=1}^{k} A_j \right. \vee \bigvee_{l=1}^{L} \bigvee_{B \in \mathcal{B}_L^L} [B], \right)$ where $Q = K \cdot L \cdot P_L + K$, a sequence $m_0 > \ldots > m_1 > n_{K}^{L+1}$ of natural numbers and a natural number P_{L+1} such that for every $1 \leq j \leq Q$ we have:

$$r | \sigma_{L+1} \vdash | \mu_{m_j} (C_j) | > \sum_{l=0}^{k} | \mu_{m_j} (\hat{A}_l) | + \sum_{l=1}^{i} \sum_{B \in \mathcal{B}_{L+1}} | \mu_{m_j} (B) | + \hat{N} + 2, \text{ and}$$

$$r | \sigma_{L+1} \vdash \hat{K} \cdot | \mu_{m_j} | < \hat{P}_{L+1}, \text{ and}$$

$$r | \sigma_{L+1} \vdash i \notin \bigcup_{j=1}^{Q} [C_j].$$

We now define s_{L+1} out of r in two steps. In the first step, by induction, the inequality (2) and Lemmas 2.5 and 2.6.b), we get a sequence $\mathcal{C}_L \subseteq \ldots \subseteq \mathcal{C}_1 \subseteq \mathcal{C}$ with $\mathcal{C}_L = K$, a sequence $k_K > \ldots > k_1$ of natural numbers and a sequence of conditions $p_L \leq_{F_{N,N}} \ldots \leq_{F_{N,N}} p_1 \leq_{F_{N,N}} r$ such that $\mathcal{C}_L = \{ C_{k_1}, \ldots, C_{k_K} \}$ and for every $1 \leq i \leq L, 1 \leq j \leq K$ and $C \in \mathcal{C}_i$ we have:

$$p_i | \sigma_i | \not\vdash | \mu_{n_j} (C) | < 1/\hat{K}.$$

For every $1 \leq j \leq K$ write $B_{j}^{L+1} = C_{k_j}$ and $n_{j}^{L+1} = m_{k_j}$, and put $\mathcal{B}_{L+1}^{K} = \{ B_{j}^{L+1}, \ldots, B_{K}^{L+1} \}$.

In the second step, by induction and again Lemma 2.6.b), we get a sequence $t_L \leq_{F_{N,N}} \ldots \leq_{F_{N,N}} t_1 \leq_{F_{N,N}} p_L$ such that for every $1 \leq i \leq L$ either there
exists $1 \leq j_i \leq K$ such that $t_i|\sigma_i \models i \in [\bar{B}_{j_i}^{L+1}]$, or for every $1 \leq j \leq K$ we have $t_i|\sigma_i \models i \notin [\bar{B}_{j_i}^{L+1}]$. Put:

$B_{L+1}^T = \mathcal{B} \setminus \{B_{j_i}^{L+1}: t_i|\sigma_i \models i \in [\bar{B}_{j_i}^{L+1}], 1 \leq i \leq L\}$ and

$s_{L+1} = t_L$.

Note that by (7) and (9), for every $1 \leq i \leq L + 1$ we have:

$s_{L+1} \models i \notin \bigcup_{B \in B_{L+1}^T} \bar{B}_i^T$.

After the K-th step of the induction has been finished, we are left with the non-empty collections $\mathcal{B}_1^K, \ldots, \mathcal{B}_K^K$ (some of them may be singletons), the sequence $n_i^K > n_i^{K-1} > \ldots > n_i^1 > n_i^0 > M$ and the conditions $s_K \leq F_N, \ldots \leq F_N, N < s_1 \leq F_N, N$. From each \mathcal{B}_i^K pick one element B_i^i. Then, for every $1 \leq i \leq K$ by (1) and (6) we have:

$s_K|\sigma_i \models |\bar{\mu}_{n_i}^i (\bar{B}_i^i)| > \sum_{j=0}^{k} |\bar{\mu}_{n_i}^j (\bar{A}_j)| + \sum_{j=1}^{i-1} |\bar{\mu}_{n_i}^j (\bar{B}_j^T)| + \bar{N} + 2$,

and by (4) and (8):

$s_K|\sigma_i \models |\bar{\mu}_{n_i}^i (\bigvee_{j=i+1}^K \bar{B}_j^i) = \sum_{j=i+1}^K |\bar{\mu}_{n_i}^j (\bar{B}_j^i)| < K : 1/K = 1$,

and finally by (3), (5) and (10):

$s_K|\sigma_i \models i \notin \bigcup_{j=1}^K \bar{B}_j^i$.

Put:

$s^* = s_K$

and for every $1 \leq i \leq K$:

$B_i = B_i^i$ and $n_i = n_i^i$.

By Lemma 2.6.a) we immediately obtain the following corollary.

Corollary 2.8. Let A_0, \ldots, A_K, K, M, N, $\langle \bar{\mu}_n: n \in \omega \rangle$, i, s and F_N be as in the assumptions of Lemma 2.7.

Then, there exist a condition $s^* \leq F_N, N$ such, a sequence B_1, \ldots, B_K of pairwise disjoint elements of A disjoint with $1_A \setminus \bigcup_{j=0}^{K} A_j$ and a sequence $n_i^K > \ldots > n_i^1 > M$ such that s^* forces that $i \notin \bigcup_{i=1}^K \bar{B}_i$ and that there exists $1 \leq i \leq K$ for which it holds:

$|\bar{\mu}_n (\bar{B}_i)| > \sum_{j=0}^{k} |\bar{\mu}_n (\bar{A}_j)| + \sum_{j=1}^{i-1} |\bar{\mu}_n (\bar{B}_j)| + \bar{N} + 2$

and

$|\bar{\mu}_n (\bigvee_{j=i+1}^K \bar{B}_j) < 1$.

□
Proposition 2.9. Let \(\langle \mu_n : n \in \omega \rangle \) be a sequence of names for measures on \(A \).
Let \(s \in S^* \) force that \(\langle \hat{\mu}_n : n \in \omega \rangle \) is anti-Nikodym.
Then, there exists:

- an increasing sequence \(\langle K_N : N \in \omega \rangle \) of natural numbers,
- a sequence \(\langle B_i^N : 1 \leq i \leq K_N, N \in \omega \rangle \) of pairwise disjoint elements of \(A \),
- a sequence \(\langle n_i^N : 1 \leq i \leq K_N, N \in \omega \rangle \) in \(\omega \) such that \(n_i^N > M_{K_N} > \ldots > n_i^N \)
for every \(N > M \), and
- a condition \(s^* \leq s \) forcing for every \(N \in \omega \) that there exist \(1 \leq i \leq K_N \) such that:

\[
|\hat{\mu}_{n_i^N}(B_i^N)| > \sum_{M=0}^{N-1} \sum_{j=1}^{K_M} |\hat{\mu}_{n_i^N}(B_j^M)| + \sum_{j=1}^{i-1} |\hat{\mu}_{n_i^N}(B_j^N)| + \hat{N} + 2
\]
and

\[
|\hat{\mu}_{n_i^N}(\bigvee_{j=i+1}^{K_N} B_j^N)| < 1.
\]

Proof. The conclusion follows by the inductive use of Corollary 2.8 (to obtain an appropriate fusion sequence \(\langle s_N : N \in \omega \rangle \) of conditions in \(S^* \)) and the ultimate use of the fusion lemma (to obtain a fusion condition \(s^* \in S^* \) such that \(s^* \leq s_{F_N,N} \)) for every \(N \in \omega \); see Baumgartner [3, Lemma 1.8]).

3. Main result

Throughout this section \(A \) is a ground model \(\sigma \)-complete Boolean algebra, i.e. \(A \in V \) and \(A \) is \(\sigma \)-complete in \(V \).

Lemma 3.1. Let \(X \in [\omega]^\omega \) and \(X = \bigcup_{k \in \omega} X_k \) be an infinite partition of \(X \) into infinite subsets. For every measure \(\mu \) on \(A \) and an antichain \(\langle B_N : N \in \omega \rangle \) in \(A \) there exists \(L \in \omega \) such that

\[
|\mu|\left(\bigvee_{N \in X_k} B_N \right) < 1
\]
for every \(k > L \).

Proof. Since \(\mu \) is finitely additive and bounded, we have:

\[
\sum_{k \in \omega} |\mu|\left(\bigvee_{N \in X_k} B_N \right) \leq |\mu|\left(\bigvee_{N \in \omega} B_N \right) \leq |\mu|(1_A) < \infty.
\]

Lemma 3.2. Let \(\langle B_N : N \in \omega \rangle \in V \) be an antichain in \(A \) and \(X \in [\omega]^\omega \cap V \).
Let \(s \in S^* \) be a condition, \(N \in \omega \), \(F_N \subseteq [\text{dom}(s)]^{<\omega} \) and \(\hat{\mu}_1, \ldots, \hat{\mu}_K \) names for measures on \(A \). Assume that \(s \) forces that \(\hat{\mu}_1, \ldots, \hat{\mu}_K \) are measures. Then, there exists a condition \(s^* \leq s_{F_N,N} \) and a set \(X' \in [X]^\omega \cap V \) such that for every \(1 \leq i \leq K \) we have:

\[
s^* \models |\hat{\mu}_i|\left(\bigvee_{M \in X'} B_M \right) < 1.
\]

Proof. Let \(X = \bigcup_{k \in \omega} X_k \) be an infinite partition of \(X \) into infinite sets. By Lemma 3.1 the following set is open dense below \(s \):

\[
D = \left\{ p \leq s : \forall 1 \leq i \leq K \exists L \in \omega \forall k > L : p \models |\hat{\mu}_i|\left(\bigvee_{M \in X_k} B_M \right) < 1 \right\}.
\]
By Lemma 2.6.c) there exists \(s^* \leq_{F_N,N} s \) such that \(s^*|\sigma \in D \) for every \(\sigma \in l(F_N,N,s) \). Hence, for every \(\sigma \in l(F_N,N,s) \) there exists \(L_\sigma \) \(\omega \) such that for every \(k > L_\sigma \) the condition \(s^*|\sigma \) forces that:
\[
|\bar{\mu}_k|\left(\bigvee_{M \in X_k} \bar{B}_M \right) < 1.
\]

Let \(L = \max \{ L_\sigma : \sigma \in l(F_N,N,s) \} + 1 \). Put \(X' = X_L \) and appeal to Lemma 2.6.a).

We are now in the position to prove the main theorem of this paper.

Theorem 3.3. Let \(G \) be an \(S^* \)-generic filter over \(V \). Then, in \(V[G] \) the Boolean algebra \(A \) has the Nikodym property.

Proof. Working in \(V[G] \) assume that \(A \) does not have the Nikodym property. Then, there exists an anti-Nikodym sequence \(\langle \mu_n : n \in \omega \rangle \) of measures on \(A \). Let \(t \in K_A \) be its Nikodym concentration point.

Now and to the end of the proof, let us work in the ground model \(V \). Let \(\langle \mu_n : n \in \omega \rangle \) be a sequence of names for measures in the sequence \(\langle \mu_n : n \in \omega \rangle \) and \(t \) a name for \(t \). There exists a condition \(s \in G \) forcing that \(\langle \mu_n : n \in \omega \rangle \) is anti-Nikodym on \(A \) and \(t \) is its Nikodym concentration point.

Let \(\langle K_N : N \in \omega \rangle, \langle B_i^N : 1 \leq i \leq K_N, N \in \omega \rangle, \langle n_i^N : 1 \leq i \leq K_N, N \in \omega \rangle \) and \(s^* \leq s \) be given by Proposition 2.9. We will find a condition \(s^{**} \leq s^* \) and a set \(Y \in [\omega]^{\omega} \cap V \) such that \(s^{**} \) forces that
\[
\bar{B} = \bigvee_{N \in Y} B_i^N \in \bar{A}
\]
and
\[
\sup_{n \in \omega} |\bar{\mu}_n(\bar{B})| = \infty,
\]
which will contradict the fact that \(s \) forces that \(\langle \mu_n : n \in \omega \rangle \) is pointwise bounded.

To obtain \(s^{**} \) and \(Y \) we follow by induction and use Lemma 3.2 to construct a fusion sequence \(\langle s_N : N \in \omega \rangle \) of conditions such that \(s_0 = s^* \) and for every \(N \in \omega \) we have \(s_{N+1} \leq_{F_N,N} s_N \), where \(F_N = \{ \alpha_i^k : i, k < N \} \) and \(\text{dom}(s_N) = \{ \alpha_i^k : k \in \omega \} \), and a decreasing sequence \(\langle X_N : N \in \omega \rangle \) of infinite subsets of \(\omega \) such that:

- \(X_0 = \omega \) and for every \(N \in \omega \) we have \(\min X_N < \min X_{N+1} \), and
- for every \(N \in \omega \) and \(L = \min X_N \) the condition \(s_N \) forces that:
\[
|\bar{\mu}_n|\left(\bigvee_{M \in X_{N+1}} B_j^M \right) < 1
\]
for every \(1 \leq i \leq K_L \).

Let \(s^{**} \in S^* \) be such a condition that \(s^{**} \leq_{F_N,N} s_N \) for every \(N \in \omega \) (see Baumgartner [3, Lemma 1.8]). Put:
\[
Y = \{ \min X_N : N \in \omega \}
\]
and
\[
B = \bigvee_{N \in Y} B_i^N.
\]
Then, $B \in \mathcal{A}$ and, since $(X_N : N \in \omega)$ is decreasing, s^{**} forces that for every $N \in Y$ and $1 \leq i \leq K_N$ the following inequality holds:

$$|\hat{\mu}_{n,N}(\bigvee_{M \in Y}^{K_M} \hat{B}^M_j)| < 1.$$

Finally, since $s^{**} \leq s^*$, s^{**} forces for every $N \in Y$ that there exists $1 \leq i \leq K_N$ such that

$$|\hat{\mu}_{n,N}(B^N_i)| > \sum_{M \in N}^{K_M} \sum_{j=1}^{K_N} |\hat{\mu}_{n,N}(\hat{B}^M_j)| + \sum_{j=1}^{i-1} |\hat{\mu}_{n,N}(\hat{B}^N_j)| + N + 2$$

and hence:

$$|\hat{\mu}_{n,N}(\hat{B})| = |\hat{\mu}_{n,N}(\bigvee_{M \in Y}^{K_M} \hat{B}^M_j) + \hat{\mu}_{n,N}(\bigvee_{j=1}^{i-1} \hat{B}^N_j) + \hat{\mu}_{n,N}(\bigvee_{j=1}^{K_N} \hat{B}^N_j)| \geq$$

$$\geq |\hat{\mu}_{n,N}(B^N_i)| - \sum_{M \in N}^{K_M} \sum_{j=1}^{K_N} |\hat{\mu}_{n,N}(\hat{B}^M_j)| - \sum_{j=1}^{i-1} |\hat{\mu}_{n,N}(\hat{B}^N_j)| -$$

$$- |\hat{\mu}_{n,N}(\bigvee_{j=1}^{K_N} \hat{B}^N_j)| - |\hat{\mu}_{n,N}(\bigvee_{M \in Y}^{K_M} \hat{B}^M_j)| \geq$$

$$\geq N + 2 - 1 - 1 = N.$$

Thus, s^{**} forces that for every $N \in \omega$ there exists n such that $|\hat{\mu}_{n}(\hat{B})| > N$ and hence s^{**} forces that $\sup_{n \in \omega} |\hat{\mu}_{n}(\hat{B})| = \infty$. □

Since the forcing S^\ast preserves ω_1 and $\kappa = \varepsilon$ in any S^\ast-generic extension (see Baumgartner [3, Theorems 1.11 and 1.14]), we immediately obtain the following corollary.

Corollary 3.4. Assume that V is a model of ZFC+CH. If G is an S^\ast-generic filter, then in $V[G]$ the relations $\omega_1 < \kappa = \varepsilon$ hold and \mathcal{A} is an example of a Boolean algebra with the Nikodym property and of cardinality ω_1.

Schachermayer [11, Theorem 2.5] proved that if a Boolean algebra \mathcal{A} has simultaneously the Nikodym property and the Grothendieck property, then \mathcal{A} has the Vitali–Hahn–Saks property, i.e. every pointwise convergent sequence of measures on \mathcal{A} is uniformly exhaustive. Thus, Theorem 3.3 and Breč’s result [4, Theorem 3.1] imply together that if \mathcal{A} is a σ-complete Boolean algebra in the ground model V, then it has the Vitali–Hahn–Saks property in the S^\ast-generic extension $V[G]$. In particular, as in Corollary 3.4, this yields a simple consistent example of a Boolean algebra with the Vitali–Hahn–Saks property and of cardinality strictly less than ε.
References

Kurt Gödel Research Center for Mathematical Logic, Universität Wien, Währinger Strasse 25, 1090 Wien, Austria

E-mail address: damian.sobota@univie.ac.at
URL: www.logic.univie.ac.at/~dsobota

E-mail address: lzdomsky@gmail.com
URL: www.logic.univie.ac.at/~lzdomsky