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Introduction

These are the notes accompanying an introductory course to mea-
sure theory, with a view towards interactions with descriptive set the-
ory, at the Kurt Gödel Research Center for Mathematical Logic at the
University of Vienna in Fall 2016. I am grateful to the head of the
KGRC, Sy Friedman, for his encouragement and many useful sugges-
tions, as well as to all of the participants.
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Part I

Measures on families of sets



1. Extensions

A function µ : U ⊆ P(X) → [0,∞] is said to be monotone if
U ⊆ V =⇒ µ(U) ≤ µ(V ) for all sets U, V ∈ U , finitely subadditive
if µ(

⋃
n≤N Un) ≤

∑
n≤N µ(Un) for all finite sequences (Un)n≤N of sets

in U whose union is in U , σ-subadditive if µ(
⋃
n∈N Un) ≤

∑
n∈N µ(Un)

for all sequences (Un)n∈N of sets in U whose union is in U , finitely ad-
ditive if µ(

⋃
n≤N Un) =

∑
n≤N µ(Un) for all finite sequences (Un)n≤N

of pairwise disjoint sets in U whose union is in U , and σ-additive if
µ(
⋃
n∈N Un) =

∑
n∈N µ(Un) for all sequences (Un)n∈N of pairwise dis-

joint sets in U whose union is in U .

Proposition 1.1. Suppose that U ⊆ P(X) is closed under differ-
ences and finite intersections and µ : U → [0,∞] is finitely additive.
Then µ is monotone and finitely subadditive, and µ is σ-additive if and
only if µ is σ-subadditive.

Proof. To see that µ is monotone, note that if U ⊆ V are in U ,
then ν(V ) = ν(U)+ν(V \U) ≥ ν(U). To see that µ is finitely subaddi-
tive, note that if (Un)n≤N is a finite sequence of sets in U whose union
is in U , then µ(

⋃
n≤N Un) =

∑
n≤N µ(

⋂
m<n Un \ Um) ≤

∑
n≤N µ(Un).

The same idea can be used to show that if µ is σ-additive, then it
is σ-subadditive. To establish the converse, note that if (Un)n∈N is a
sequence of pairwise disjoint sets in U whose union U is in U , then
µ(U) = µ(

⋂
n≤N U \ Un) +

∑
n≤N µ(Un) for all N ∈ N, from which it

follows that µ(U) ≥
∑

n∈N µ(Un), thus µ(U) =
∑

n∈N µ(Un).

An outer measure on a set X is a monotone σ-subadditive function
µ : P(X) → [0,∞] for which µ(∅) = 0. In what follows, we adopt the
convention that the infimum of the empty set is ∞.

Proposition 1.2. Suppose that U ⊆ P(X) is closed under finite
intersections and µ : U → [0,∞] is a monotone σ-subadditive function
for which µ(∅) = 0. Then the function µ∗ : P(X)→ [0,∞], given by

µ∗(Y ) = inf{
∑

n∈N µ(Un) | (Un)n∈N ∈ UN and Y ⊆
⋃
n∈N Un},

is an extension of µ to an outer measure.

Proof. It is clear that µ∗ is monotone. To see that µ∗ is σ-
subadditive, suppose that (Xn)n∈N is a sequence of subsets of X for
which

∑
n∈N µ

∗(Xn) < ∞, and given ε > 0, fix positive real numbers
εn for which

∑
n∈N εn ≤ ε, as well as sequences (Um,n)m∈N ∈ UN with

the property that Xn ⊆
⋃
m∈N Um,n and

∑
n∈N µ(Um,n) ≤ εn + µ∗(Xn)

for all n ∈ N, and observe that µ∗(
⋃
n∈NXn) ≤

∑
m,n∈N µ(Um,n) ≤ ε +∑

n∈N µ
∗(Xn), from which it follows that µ∗(

⋃
n∈NXn) ≤

∑
n∈N µ

∗(Xn).
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To see that µ∗ is an extension of µ, observe that if U ∈ U , (Un)n∈N ∈ UN,
and U ⊆

⋃
n∈N Un, then µ(U) ≤

∑
n∈N µ(U ∩ Un) ≤

∑
n∈N µ(Un), so

µ(U) ≤ µ∗(U) ≤ µ(U).

A set B ⊆ X is Carathéodory measurable with respect to an outer
measure µ on X if µ(Y ) = µ(Y \B) + µ(Y ∩B) for all Y ⊆ X.

Proposition 1.3. Suppose that µ is an outer measure on a set X.
Then the corresponding family of Carathéodory measurable sets is a
σ-algebra on which the restriction of µ is σ-additive.

Proof. It is clear that the family of Carathéodory measurable sets
is closed under complements.

Lemma 1.4. Suppose that (Bn)n<N is a finite sequence of Carath-
éodory measurable sets and Y ⊆ X. Then µ(Y ) =

∑
s∈2N µ(Y ∩ Bs),

where Bs =
⋂
n∈supp(s) Bn \

⋃
n∈N\supp(s) Bn.

Proof. By a straightforward induction.

To obtain closure under finite unions, note that if A,B ⊆ X are
Carathéodory measurable and Y ⊆ X, then Lemma 1.4 ensures that
µ(Y ) = µ(Y \(A∪B))+µ(Y ∩(A\B))+µ(Y ∩(B\A))+µ(Y ∩(A∩B)) ≤
µ(Y \(A∪B))+µ(Y ∩(A∪B)), so µ(Y ) = µ(Y \(A∪B))+µ(Y ∩(A∪B)),
thus A ∪B is Carathéodory measurable.

To obtain closure under countable disjoint unions, note that if
(Bn)n∈N is a sequence of pairwise disjoint Carathéodory measurable
sets and Y ⊆ X, then one more application of Lemma 1.4 ensures
that µ(Y ) = µ(Y \

⋃
n≤N Bn) +

∑
n≤N µ(Y ∩ Bn) for all N ∈ N, so

µ(Y ) ≥ µ(Y \
⋃
n∈NBn) +

∑
n∈N µ(Y ∩ Bn), from which it follows

that µ(Y ) ≥ µ(Y \
⋃
n∈NBn) + µ(Y ∩

⋃
n∈NBn), and therefore that

µ(Y ) = µ(Y \
⋃
n∈NBn) + µ(Y ∩

⋃
n∈NBn), hence

⋃
n∈NBn is Carath-

éodory measurable.
By Proposition 1.1, it only remains to show that the restriction

of µ to the set of Carathéodory measurable sets is finitely additive.
But if B ⊆ X is Carathéodory measurable and A ⊆ X \ B, then
µ(A ∪B) = µ((A ∪B) \B) + µ((A ∪B) ∩B) = µ(A) + µ(B).

A finitely-additive measure on U ⊆ P(X) is a finitely-additive func-
tion µ : U → [0,∞] for which µ(∅) = 0, and a measure on U ⊆ P(X)
is a σ-additive function µ : U → [0,∞] for which µ(∅) = 0. A finitely-
additive measure µ on U ⊆ P(X) is finite if µ(X) <∞, and σ-finite if
X is the union of countably-many sets U ∈ U for which µ(U) <∞.

Theorem 1.5 (Carathéodory). Suppose that U ⊆ P(X) is closed
under differences and finite intersections. Then every measure on U
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has an extension to a measure on the σ-algebra generated by U . More-
over, every σ-finite measure on U has a unique such extension.

Proof. Propositions 1.2 and 1.3 ensure that in order to obtain the
desired extension, it is sufficient to check that every set U ∈ U is Car-
athéodory measurable with respect to µ∗. Towards this end, suppose
that Y ⊆ X. If µ∗(Y ) = ∞, then µ∗(Y \ U) = ∞ or µ∗(Y ∩ U) = ∞,
thus µ∗(Y ) = µ∗(Y \ U) + µ∗(Y ∩ U). Otherwise, given ε > 0, fix
(Un)n∈N ∈ UN with Y ⊆

⋃
n∈N Un and µ∗(Y ) + ε ≥

∑
n∈N µ(Un). As the

latter quantity can be expressed as
∑

n∈N µ(Un \U) +
∑

n∈N µ(Un∩U),
and is therefore bounded below by µ∗(Y \U)+µ∗(Y ∩U), it follows that
µ∗(Y ) ≥ µ∗(Y \U) + µ∗(Y ∩U), thus µ∗(Y ) = µ∗(Y \U) + µ∗(Y ∩U),
hence U is Carathéodory measurable.

Observe now that if ν is an extension of µ to a measure on the
σ-algebra generated by U and B is in this σ-algebra, then Proposition
1.1 ensures that ν ≤ µ∗. To see that ν ≥ µ∗ when µ is σ-finite, it is
sufficient to show that if µ(U) < ∞, then ν(B) ≥ µ∗(B) for every set
B ⊆ U in the σ-algebra generated by U . But this can be seen by noting
that ν(B) = ν(U)− ν(U \B) ≥ µ∗(U)− µ∗(U \B) = µ∗(B).

Remark 1.6. Suppose that C is a countably-infinite set and D is
an uncountably-infinite set disjoint from C, let U denote the algebra of
subsets of C∪D generated by singletons, and let µ denote the measure
on U given by µ(B) = |B ∩ C|. Then for each r ∈ [0,∞], there is a
unique extension of µ to a measure ν on the σ-algebra generated by U
with the property that ν(D) = r.

One typically applies Theorem 1.5 in conjunction with a simpler
extension theorem.

Proposition 1.7. Suppose that U ⊆ P(X) is closed under finite
intersections. Then every measure on U has a unique extension to a
measure on the closure of U under countable disjoint unions.

Proof. Suppose that µ is a measure on U , and note that if ν
is an extension of µ to a measure on the closure of U under count-
able disjoint unions, then ν(

⋃
n∈N Un) =

∑
n∈N µ(Un) for all sequences

(Un)n∈N of pairwise disjoint sets in U . To see that this constraint yields
a well-defined extension of µ, suppose that (Um)m∈N and (Vn)n∈N are
sequences of pairwise disjoint sets in U whose unions coincide, and ob-
serve that

∑
m∈N µ(Um) =

∑
m,n∈N µ(Um ∩ Vn) =

∑
n∈N µ(Vn). To see

that the resulting extension ν is a measure, suppose that (Un)n∈N is a
sequence of pairwise disjoint sets in the closure of U under countable
disjoint unions, fix sequences (Um,n)n∈N of pairwise disjoint sets in U
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with the property that Un =
⋃
m∈N Um,n for all n ∈ N, and observe that

ν(
⋃
n∈N Un) = ν(

⋃
m,n∈N Um,n) =

∑
m,n∈N µ(Um,n) =

∑
n∈N ν(Un).

Remark 1.8. Suppose that U ⊆ P(X). Given finite sequences
(Um)m≤M and (Vn)n≤N of pairwise disjoint sets in U , the fact that⋃
m≤M Um ∩

⋃
n≤N Vn =

⋃
m≤M,n≤N Um ∩ Vn ensures that if U is closed

under finite intersections, then the closure of U under finite disjoint
unions is also closed under finite intersections. Similarly, the fact that⋃
m≤M Um\

⋃
n≤N Vn =

⋃
m≤M

⋂
n≤N Um \ Vn ensures that if U is closed

under finite intersections and differences of sets in U are in the closure
of U under finite disjoint unions, then the closure of U under finite
disjoint unions is closed under differences. So by combining Theorem
1.5 with Proposition 1.7, we obtain the generalization of Theorem 1.5 in
which we merely require that differences of sets in U are in the closure
of U under finite disjoint unions, rather than in U itself.

Suppose that µ is a measure on a σ-algebra B ⊆ P(X). A set
Y ⊆ X is µ-null if there exists B ∈ B with Y ⊆ B and µ(B) = 0,
and µ-measurable if there exists B ∈ B such that Y ⊆ B and B \ Y is
µ-null, or equivalently, if there exists B ∈ B such that B 4 Y is µ-null
(since B 4 Y ⊆ A =⇒ (Y ⊆ A ∪B and (A ∪B) \ Y ⊆ A \ Y )).

Proposition 1.9. Suppose that B ⊆ P(X) is a σ-algebra and µ is
a measure on B. Then the family of µ-measurable sets is a σ-algebra
on which there is a unique measure extending µ.

Proof. To see that the family C of µ-measurable subsets of X is
closed under complements, suppose that C ∈ C, fix B ∈ B for which
B 4 C is µ-null, and observe that (X \B) 4 (X \C) = B 4 C, and is
therefore also µ-null. To see that C is closed under countable unions,
given a sequence (Cn)n∈N of sets in C, fix Bn ∈ B such that Cn ⊆ Bn

and Bn \Cn is µ-null for all n ∈ N, and note that
⋃
n∈NCn ⊆

⋃
n∈NBn

and
⋃
n∈NBn \

⋃
n∈NCn ⊆

⋃
n∈NBn \ Cn, and is therefore also µ-null.

To see that there is a unique measure on C extending µ, note that
if ν is any such extension, then ν(C) = 0 whenever C ∈ C is µ-null,
so ν(B) = ν(C) whenever B ⊆ C are in C and C \ B is µ-null, thus
ν(B) = ν(B ∩ C) = ν(C) whenever B,C ∈ C and B 4 C is µ-null.
In particular, it follows that ν(C) = µ(B) whenever B ∈ B, C ∈ C,
and B 4 C is µ-null. To see that this constraint yields a well-defined
extension of µ, note that if A,B ∈ B, C ∈ C, and A 4 C and B 4 C
are µ-null, then the fact that A 4 B ⊆ (A 4 C)∪(B 4 C) ensures that
µ(A 4 B) = 0, thus µ(A) = µ(B). To see that the resulting extension
ν is a measure, suppose that (Cn)n∈N is a sequence of pairwise disjoint
sets in C, appeal to the closure of C under complements to obtain sets
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Bn ∈ B for which Bn ⊆ Cn and Cn \ Bn is µ-null, and observe that
ν(
⋃
n∈NCn) = µ(

⋃
n∈NBn) =

∑
n∈N µ(Bn) =

∑
n∈N ν(Cn).

The completion of µ is the measure given by Proposition 1.9. We
will identify measures with their completions.

2. Integration

A Borel space is a set equipped with a σ-algebra of Borel sets . A
function φ : X → Y between such spaces is Borel if pre-images of Borel
sets are Borel.

Proposition 2.1. Suppose that X is a Borel space and φ : X →
[0,∞] is Borel. Then there are sequences (Bn)n∈N of Borel subsets of
X and (rn)n∈N of positive real numbers such that φ =

∑
n∈N rnχBn.

Proof. Fix Borel functions φn : [0,∞]→ (0,∞) with the property
that φn([0,∞]) is countable for all n ∈ N, and r =

∑
n∈N φn(r) for all

r ∈ [0,∞]. This can be achieved, for example, by setting φn(∞) = 1
for all n ∈ N and φ0(r) = max{k ∈ N | k ≤ r} for all r ∈ [0,∞),
and recursively defining Rn = {r ∈ [0,∞) | r ≥ 1/2n +

∑
m<n φm(r)}

and φn(r) = (1/2n)χRn(r), for all n > 0 and r ∈ [0,∞). Now define
Bn,r = (φn ◦ φ)−1({r}) for all n ∈ N and r ∈ φn([0,∞]), and observe
that φ =

∑
n∈N,r∈φn([0,∞]) rχBn,r .

We say that a function s : X → [0,∞) is simple if s(X) is finite.
Note that a Borel function s : X → [0,∞) is simple if and only if there
exists N ∈ N for which there are sequences (Bn)n<N of Borel subsets
of X and (rn)n<N of positive real numbers such that s =

∑
n<N rnχBn .

A Borel measure on a Borel space is a measure on the corresponding
family of Borel sets.

Proposition 2.2. Suppose that X is a Borel space, µ is a Bor-
el measure on X, (Am)m<M and (Bn)n<N are finite sequences of µ-
measurable subsets of X, and (rm)m<M and (sn)n<N are finite sequences
of reals numbers with the property that

∑
m<M rmχAm ≤

∑
n<N snχBn.

Then
∑

m<M rmµ(Am) ≤
∑

n<N snµ(Bn).

Proof. By appending the Borel set AM = X \
⋃
m<M Am and the

real number rM = 0 onto the sequences (Am)m<M and (rm)m<M , we
can assume that X =

⋃
m<M Am, and similarly, that X =

⋃
n<N Bn.

For each t ∈ 2M , set At =
⋂
m∈supp(t) Am \

⋃
m∈M\supp(t)Am and

rt =
∑

m∈supp(t) rm. A straightforward inductive argument shows that

by replacing (Am)m<M and (rm)m<M with (At)t∈2M and (rm)m<M with
(rt)t∈2M , we can assume that the sets of the form Am are pairwise
disjoint, and similarly, that so too are the sets of the form Bn.
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It then follows that
∑

m<M rmµ(Am) =
∑

m<M,n<N rmµ(Am ∩ Bn)

and
∑

n<N snµ(Bn) =
∑

m<M,n<N snµ(Am∩Bn), so we can assume that

(Am)m<M = (Bn)n<N . But this implies that rn ≤ sn for all n < N ,
thus

∑
n<N rnµ(Bn) ≤

∑
n<N snµ(Bn).

We say that a function φ : X → Y is µ-measurable if pre-images
of Borel sets are µ-measurable. Proposition 2.2 allows us to define
the integral of a µ-measurable simple function s : X → [0,∞] with
respect to µ by setting

∫
s dµ =

∑
n<N rnµ(Bn), for all finite sequences

(Bn)n<N of µ-measurable subsets of X and (rn)n<N of positive real
numbers such that s =

∑
n<N rnχBn . Moreover, it allows us to extend

this notion to all µ-measurable functions φ : X → [0,∞] by setting∫
φ dµ = sup{

∫
s dµ | s ≤ φ is µ-measurable and simple}. We also

use
∫
φ(x) dµ(x) to denote

∫
φ dµ, and

∫
B
φ dµ to denote

∫
φχB dµ.

Proposition 2.3. Suppose that X is a Borel space, µ is a Borel
measure on X, φ : X → [0,∞] is µ-measurable, (Bn)n∈N is a sequence
of µ-measurable subsets of X, and (rn)n∈N is a sequence of non-negative
real numbers with φ =

∑
n∈N rnχBn. Then

∫
φ dµ =

∑
n∈N rnµ(Bn).

Proof. As
∫
φ dµ ≥

∫ ∑
n≤N rnχBn dµ =

∑
n≤N rnµ(Bn) for all

N ∈ N, it follows that
∫
φ dµ ≥

∑
n∈N rnµ(Bn), so we need only

show that
∫
φ dµ ≤

∑
n∈N rnµ(Bn). As this holds trivially when∑

n∈N rnµ(Bn) =∞, we can assume that
∑

n∈N rnµ(Bn) <∞.

Lemma 2.4. Suppose that ε > 0. Then µ(φ−1((ε,∞])) <∞.

Proof. If µ(φ−1((ε,∞])) =∞, then there exists N ∈ N for which
the set B = {x ∈ X |

∑
n≤N rnχBn(x) ≥ ε} has µ-measure strictly

greater than
∑

n∈N rnµ(Bn)/ε. As εχB ≤
∑

n≤N rnχBn , Proposition 2.2
yields that

∑
n∈N rnµ(Bn) <

∑
n≤N rnµ(Bn), a contradiction.

Suppose now that s ≤ φ is a µ-measurable simple function. Lemma
2.4 then ensures that µ(supp(s)) < ∞, so for all ε > 0, there exists
N ∈ N for which the set B = {x ∈ X | s(x) > ε +

∑
n≤N rnχBn} has

µ-measure at most ε. Then s ≤ max(s)χB + εχsupp(s) +
∑

n≤N rnχBn ,

so
∫
s dµ ≤ max(s)ε+εµ(supp(s))+

∑
n∈N rnµ(Bn) by Proposition 2.2,

thus
∫
s dµ ≤

∑
n∈N rnµ(Bn), hence

∫
φ dµ ≤

∑
n∈N rnµ(Bn).

Proposition 2.5. Suppose that X is a Borel space, µ is a Borel
measure on X, and φn : X → [0,∞] is µ-measurable for all n ∈ N.
Then

∑
n∈N φn is µ-measurable and

∫ ∑
n∈N φn dµ =

∑
n∈N

∫
φn dµ.

Proof. To see that
∑

n∈N φn is µ-measurable, simply note that the
function φ : [0,∞]N → [0,∞] given by φ((rn)n∈N) =

∑
n∈N rn is Borel.
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By Proposition 2.1, there are µ-measurable sets Bm,n ⊆ X and real
numbers rm,n ≥ 0 with the property that φn =

∑
m∈N rm,nχBm,n for all

n ∈ N. Then
∫ ∑

n∈N φn dµ =
∑

m,n∈N rm,nµ(Bm,n) =
∑

n∈N
∫
φn dµ

by Proposition 2.3.

Proposition 2.6. Suppose that X is a Borel space, µ is a Borel
measure on X, φ : X → [0,∞] and ψ : X → [0,∞] are µ-measurable,
and ν(B) =

∫
B
ψ dµ for all Borel sets B ⊆ X. Then ν is a Borel

measure on X, φ is ν-measurable, and
∫
φ dν =

∫
φψ dµ.

Proof. Proposition 2.5 directly implies that ν is a measure. As
every µ-null set is ν-null, it follows that every µ-measurable set is ν-
measurable, thus φ is ν-measurable.

By Proposition 2.1, there are µ-measurable sets Bn ⊆ X and real
numbers rn ≥ 0 with φ =

∑
n∈N rnχBn . Proposition 2.5 then ensures

that
∫
φ dν =

∑
n∈N rnν(Bn) =

∑
n∈N

∫
rnχBnψ dµ =

∫
φψ dµ.

The push-forward of a Borel measure µ on a Borel space X through
a Borel function ψ : X → Y is the Borel measure ψ∗µ on the Borel space
Y given by (ψ∗µ)(B) = µ(ψ−1(B)) for all Borel sets B ⊆ Y .

Proposition 2.7. Suppose that X and Y are Borel spaces, µ is a
Borel measure on X, ψ : X → Y is Borel, and φ : Y → [0,∞] is (ψ∗µ)-
measurable. Then φ ◦ ψ is µ-measurable and

∫
φ ◦ ψ dµ =

∫
φ d(ψ∗µ).

Proof. As the preimage of every (ψ∗µ)-null set under φ is µ-null,
it follows that the preimage of every (ψ∗µ)-measurable set under φ is
µ-measurable, thus φ ◦ ψ is µ-measurable.

By Proposition 2.1, there are (ψ∗µ)-measurable sets Bn ⊆ X and
real numbers rn > 0 with the property that φ =

∑
n∈N rnχBn . Then∫

φ◦ψ dµ =
∫ ∑

n∈N rnχψ−1(Bn) dµ =
∫
φ d(ψ∗µ) by Proposition 2.5.

3. Product measures

The product of Borel spaces X and Y is the Borel space whose
underlying set is X × Y and whose distinguished σ-algebra is that
generated by Borel rectangles.

Proposition 3.1. Suppose that X and Y are Borel spaces and µ
and ν are σ-finite Borel measures on X and Y . Then there is a unique
Borel measure µ× ν on X × Y such that (µ× ν)(A×B) = µ(A)ν(B)
for all Borel sets A ⊆ X and B ⊆ Y .

Proof. Let λ denote the function on the family of Borel rectangles
given by λ(A × B) = µ(A)ν(B). If A ⊆ X and B ⊆ Y are Borel and
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(An ×Bn)n∈N is a sequence of pairwise disjoint Borel rectangles whose
union is A×B, then Proposition 2.5 ensures that

µ(A)ν(B) =
∫ ∫

χA(x)χB(y) dµ(x) dν(y)

=
∫ ∫ ∑

n∈N χAn(x)χBn(y) dµ(x) dν(y)

=
∑

n∈N
∫ ∫

χAn(x)χBn(y) dµ(x) dν(y)

=
∑

n∈N µ(An)ν(Bn),

so λ(A×B) =
∑

n∈N λ(An ×Bn), thus λ is a measure.
Suppose now that A,A′ ⊆ X and B,B′ ⊆ Y . As (A×B)∩(A′×B′)

is (A ∩ A′)× (B ∩B′), it follows that the family of Borel rectangles is
closed under finite intersections. As (A×B) \ (A′ ×B′) is the disjoint
union of (A\A′)× (B \B′), (A∩A′)× (B \B′), and (A\A′)× (B∩B′),
it follows that differences of Borel rectangles are finite disjoint unions
of Borel rectangles. An appeal to Remark 1.8 therefore yields the
existence of a unique extension of λ to a Borel measure on X × Y .

Proposition 3.2. Suppose that U ⊆ P(X) is closed under finite
intersections. Then the closure of U under complements and countable
disjoint unions is a σ-algebra.

Proof. It is sufficient to show that the closure B of U under com-
plements and countable disjoint unions is itself closed under finite in-
tersections (and therefore countable unions).

Lemma 3.3. Suppose that B ∈ B and U ∈ U . Then B ∩ U ∈ B.

Proof. The closure of U under finite intersections yields the spe-
cial case where B ∈ U . If B∩U ∈ B, then (∼B)∩U = ∼((B∩U)∪∼U),
so (∼B)∩U ∈ B. And if (Bn)n∈N is a sequence of pairwise disjoint sub-
sets of X with the property that Bn ∩ U ∈ B for all n ∈ N, then
(
⋃
n∈NBn) ∩ U =

⋃
n∈N(Bn ∩ U), so (

⋃
n∈NBn) ∩ U ∈ B.

If B ∈ B has the property that B ∩ C ∈ B for all C ∈ B, then
(∼B) ∩ C = ∼((B ∩ C) ∪ ∼C) for all C ∈ B, so (∼B) ∩ C ∈ B for all
C ∈ B. And if (Bn)n∈N is a sequence of pairwise disjoint subsets of X
with the property that Bn ∩ C ∈ B for all C ∈ B and n ∈ N, then
(
⋃
n∈NBn) ∩ C =

⋃
n∈N(Bn ∩ C) for all C ∈ B, so (

⋃
n∈NBn) ∩ C ∈ B

for all C ∈ B.

Theorem 3.4 (Fubini). Suppose that X and Y are Borel spaces,
µ and ν are σ-finite Borel measures on X and Y , and R ⊆ X × Y is
Borel. Then the function φR : X → [0,∞] given by φR(x) = ν(Rx) is
Borel and (µ× ν)(R) =

∫
φR dµ.
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Proof. It is clearly sufficient to take care of the special case that
µ and ν are both finite.

If there are Borel sets A ⊆ X and B ⊆ Y with R = A × B, then
φR = ν(B)χA, so φR is Borel and (µ× ν)(R) = µ(A)ν(B) =

∫
φR dµ.

If φ∼R is Borel and (µ × ν)(∼R) =
∫
φ∼R dµ, then the fact that

φR +φ∼R = ν(Y ) ensures that φR is Borel, and Proposition 2.5 implies
that

∫
φR dµ+

∫
φ∼R dµ = µ(X)ν(Y ), thus (µ× ν)(R) =

∫
φR dµ.

If (Rn)n∈N is a sequence of pairwise disjoint Borel subsets of X×Y ,
whose union is R, such that φRn is Borel and (µ×ν)(Rn) =

∫
φRn dµ for

all n ∈ N, then φR =
∑

n∈N φRn , so φR is Borel. Proposition 2.5 yields
that (µ× ν)(R) =

∑
n∈N(µ× ν)(Rn) =

∫ ∑
n∈N φRn dµ =

∫
φR dµ.

4. Absolute continuity

A Borel measure µ is ccc if there is no uncountable sequence of
pairwise disjoint µ-positive sets.

Proposition 4.1. Suppose that X is a Borel space, µ is a ccc
Borel measure on X, and B ⊆ P(X) is closed under countable disjoint
unions. Then there is a set in B whose complement does not contain a
µ-positive set in B.

Proof. Fix a maximal family A ⊆ B of pairwise disjoint µ-positive
sets in B. As the assumption that µ is ccc ensures that A is countable,
it follows that the set B =

⋃
A is as desired.

Proposition 4.2. Suppose that X is a Borel space, µ is a Borel
measure on X, ν is a ccc Borel measure on X, r > 0, and B ⊆ X is a
Borel set with the property that µ(A) ≤ rν(A) for all ν-positive Borel
sets A ⊆ B, but no ν-positive Borel subset of ∼B has this property.
Then µ(C) > rν(C) for all ν-positive Borel sets C ⊆ ∼B.

Proof. If C ⊆ ∼B is a ν-positive Borel set, then Proposition 4.1
yields a Borel set D ⊆ C such that ν(D) > 0 =⇒ µ(D) > rν(D) but no
ν-positive Borel subset of C \D has this property. As our assumption
on B ensures that C \D is ν-null, it follows that D is ν-positive, thus
µ(C) ≥ µ(D) > rν(D) = rν(C).

Proposition 4.3. Suppose that X is a Borel space, µ is a σ-finite
Borel measure on X, and ν is a ccc Borel measure on X. Then there is
a sequence (Bn)n∈N of Borel subsets of X, whose union is ν-conull, such
that µ(B) ≤ nν(B) for all n ∈ N and ν-positive Borel sets B ⊆ Bn.

Proof. It is sufficient to take care of the special case that µ is
finite. By Proposition 4.1, there are Borel sets Bn ⊆ X with the
property that µ(B) ≤ nν(B) for all ν-positive Borel sets B ⊆ Bn, but
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no ν-positive Borel subset of ∼Bn has this property. But Proposition 4.2
ensures that if ν(∼

⋃
n∈NBn) > 0, then µ(∼

⋃
n∈NBn) > mν(∼

⋃
n∈NBn)

for all m ∈ N, contradicting the finiteness of µ.

A Borel measure µ on X is absolutely continuous with respect to
a Borel measure ν on X, or µ � ν, if µ(B) > 0 =⇒ ν(B) > 0 for all
Borel sets B ⊆ X.

Proposition 4.4. Suppose that X is a Borel space, µ is a finite
Borel measure on X, ν is a ccc Borel measure on X, and µ� ν. Then
∀δ > 0∃ε > 0∀B ⊆ X Borel (µ(B) ≥ δ =⇒ ν(B) ≥ ε).

Proof. The restriction of µ below a Borel set B ⊆ X is the
corresponding Borel measure µ � B on the Borel subspace B ⊆ X.
By Proposition 4.3, there are Borel sets Bn ⊆ X, whose union is ν-
conull, such that µ � Bn ≤ nν � Bn for all n ∈ N. Given δ > 0, fix
any δ′ < δ, as well as N ∈ N with µ(

⋃
n≤N Bn) ≥ µ(X) − δ′. Set

ε = (δ − δ′)/N , and note that if B ⊆ X is Borel and µ(B) ≥ δ, then
ν(B) ≥ ν(B ∩

⋃
n≤N Bn) ≥ µ(B ∩

⋃
n≤N Bn)/N ≥ (δ − δ′)/N = ε.

A Radon-Nikodým derivative of a Borel measure µ with respect to
a Borel measure ν is a Borel function φ : X → [0,∞) satisfying the
conclusion of the following theorem.

Theorem 4.5 (Radon-Nikodým). Suppose that X is a Borel space
and µ � ν are σ-finite Borel measures on X. Then there is a Borel
function φ : X → [0,∞) with µ(B) =

∫
B
φ dν for all Borel sets B ⊆ X.

Proof. It is clearly sufficient to take care of the special case that
ν is finite. By Proposition 4.3, we can assume that µ ≤ ν.

Define r : 2<N → [0, 1) by r(s) =
∑

n∈supp(s) 1/2n+1. A straightfor-
ward recursive construction utilizing Propositions 4.1 and 4.2 yields
a sequence (Bs)s∈2<N of Borel sets with the property that B∅ = X,
Bs is the disjoint union of Bsa(0) and Bsa(1) for all s ∈ 2<N, and

r(s)ν � Bs ≤ µ � Bs ≤ (r(s) + 1/2|s|)ν � Bs for all s ∈ 2<N. For
each n ∈ N, let sn(x) be the unique s ∈ 2n with x ∈ Bs, and de-
fine φn : X → {m/2n | m < 2n} by φn(x) = r(sn(x)). Now define
φ : X → [0, 1] by φ(x) = limn→∞ φn(x).

To see that φ is as desired, observe that if B ⊆ X is Borel and
n ∈ N, then

∫
B
φn dν =

∑
s∈2n r(s)ν(B ∩ Bs), from which it follows

that
∫
B
φn dν ≤ µ(B) ≤

∫
B
φn + 1/2n dν, and therefore the fact that

φn ≤ φ ≤ φn + 1/2n ensures that |µ(B)−
∫
B
φ dµ| ≤ (1/2n)ν(B), thus

µ(B) =
∫
B
φ dµ.





Part II

Measures on Polish spaces



5. Lebesgue measure

The Lebesgue measure is the Borel measure given by the following.

Proposition 5.1. There is a unique Borel measure m on R with
the property that m([r, s)) = s− r for all real numbers r ≤ s.

Proof. Let U denote the family of all sets of the form [r, s), where
r ≤ s are real numbers. Clearly U is closed under intersections, and
differences of sets in U are in the closure of U under finite disjoint
unions. Define µ : U → [0,∞] given by µ([r, s)) = s− r.

Lemma 5.2. The function µ is a measure on U .

Proof. Suppose that V ⊆ U is a countable family of non-empty
pairwise disjoint sets whose union is also in U . Then the restriction of
≤ to {min(V ) | V ∈ V} is well-founded, for if (Vn)n∈N is a sequence
of sets in V whose left endpoints rn are strictly decreasing, then the
unique set V ∈ V containing the point r = limn→∞ rn intersects Vn
for all but finitely many n ∈ N, contradicting the fact that the sets
in V are pairwise disjoint. Fix an ordinal γ < ω1 and an injective
enumeration (Vα)α<γ of V for which the corresponding left endpoints
rα are strictly increasing. Clearly Vα = [rα, rα+1) whenever α + 1 < γ,
and rλ = limα→λ rα for all limit ordinals λ < α. As a straightforward
induction shows that rβ − r0 =

∑
α<β rα+1− rα for all β < γ, it follows

that µ(
⋃
α<γ Vα) =

∑
α<γ µ(Vα), thus µ is a measure on U .

Remark 1.8 therefore ensures that µ has a unique extension to a
Borel measure on R.

A Borel probability measure µ on a Borel space X is a Borel measure
µ on X with the property that µ(X) = 1. When X is a Borel space
with respect to which every singleton is Borel, we say that a Borel
measure µ on X is continuous if every singleton is µ-null.

Theorem 5.3. Suppose that X is a standard Borel space and µ is
a continuous Borel probability measure on X. Then there is a Borel
isomorphism π : X → [0, 1) with the property that π∗µ is the Lebesgue
measure on [0, 1).

Proof. By the isomorphism theorem for standard Borel spaces, we
can assume that X = [0, 1). Define φ : X → [0, 1) by φ(x) = µ([0, x)).

Lemma 5.4. The function φ is continuous.

Proof. To see that φ is continuous at a point x ∈ X, note that
if (xn)n∈N is an increasing sequence of real numbers converging to x,
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then [0, x) =
⋃
n∈N[0, xn), so µ([0, xn))→ µ([0, x)), thus φ(xn)→ φ(x).

Similarly, if (xn)n∈N is a decreasing sequence of real numbers converging
to x, then [0, x] =

⋂
n∈N[0, xn), so µ([0, xn)) → µ([0, x]), and since

the continuity of µ ensures that µ([0, x)) = µ([0, x]), it follows that
φ(xn) → φ(x). In particular, these observations ensure that every
sequence (xn)n∈N of real numbers converging to x has a subsequence
(yn)n∈N for which φ(yn)→ φ(x), thus φ(xn)→ φ(x).

In conjunction with the intermediate value theorem and the facts
that φ(0) = 0 and φ(x) → 1 as x → 1, Lemma 5.4 ensures that φ is
surjective, and therefore that φ−1({r}) is a non-empty closed interval
for all r ∈ [0, 1).

One consequence of this observation is that if r ∈ [0, 1), then
(φ∗µ)([0, r)) = µ(φ−1([0, r))) = µ([0,minφ−1({r}))) = r, so if r ≤ s
are in [0, 1), then (φ∗µ)([r, s)) = (φ∗µ)([0, s)) − (φ∗µ)([0, r)) = s − r,
thus φ∗µ is the Lebesgue measure on [0, 1).

Another consequence of the previous observation is that the set
C = {r ∈ [0, 1) | |φ−1({r})| > 1} is countable, since ≤ is ccc. As the
perfect set theorem ensures the existence of a continuous injection of
2N into [0, 1) \ C, and therefore the existence of a continuous injection
of 2N into a Lebesgue-null subset of [0, 1) \ C, it follows that there
is an uncountable Lebesgue-null Borel superset N ⊆ [0, 1) of C. One
more application of the isomorphism theorem for standard Borel spaces
yields a Borel isomorphism ψ : φ−1(N)→ N , in which case the function
π = (φ � ∼φ−1(N)) ∪ ψ is a Borel automorphism of [0, 1) with the
property that π∗µ is the Lebesgue measure on [0, 1), since the fact that
π = φ off of the µ-null set φ−1(N) ensures that π∗µ = φ∗µ.

6. Regularity

We say that a Borel measure µ on a topological space X is strongly
regular if every µ-measurable set B ⊆ X is contained in a Gδ set
G ⊆ X for which µ(G \ B) = 0, or equivalently, if every µ-measurable
set B ⊆ X contains an Fσ set F ⊆ X for which µ(B \ F ) = 0.

Proposition 6.1. Suppose that X is a metric space and µ is a
sum of countably-many finite Borel measures on X. Then µ is strongly
regular.

Proof. We will show that every µ-measurable set B ⊆ X contains
an Fσ set F ⊆ X for which µ(B \ F ) = 0. It is sufficient to handle the
special case that B is Borel and µ is finite.

Let B denote the family of all sets B ⊆ X with the property that
for all ε > 0, there is a closed set C ⊆ X contained in B for which
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µ(B \ C) ≤ ε. As B trivially contains the closed subsets of X and
every open subset of X is Fσ, we need only show that B is closed
under countable intersections and countable unions. Towards this end,
suppose that (Bn)n∈N is a sequence of sets in B.

To see that
⋂
n∈NBn ∈ B, suppose that ε > 0, fix a sequence (εn)n∈N

of positive real numbers whose sum is at most ε, and fix closed sets
Cn ⊆ X contained in Bn such that µ(Bn \Cn) ≤ εn for all n ∈ N. Then
the set C =

⋂
n∈NCn is closed and contained in the set B =

⋂
n∈NBn.

As B \ C ⊆
⋃
n∈NBn \ Cn, it follows that µ(B \ C) ≤ ε.

To see that
⋃
n∈NBn ∈ B, suppose that ε > 0, fix any positive real

number δ < ε and N ∈ N with µ(
⋃
n∈NBn \

⋃
n≤N Bn) ≤ ε − δ, fix a

sequence (δn)n≤N of positive real numbers whose sum is at most δ, and
fix closed sets Cn ⊆ X contained in Bn with µ(Bn \ Cn) ≤ δn for all
n ≤ N . Then the set C =

⋃
n≤N Cn is closed and contained in the set

B =
⋃
n∈NBn. As B \ C ⊆ (

⋃
n≤N Bn \ Cn) ∪ (

⋃
n∈NBn \

⋃
n≤N Bn), it

follows that µ(B \ C) ≤ ε.

A set B ⊆ X is a µ-envelope for a set Y ⊆ X if Y ⊆ B and every
µ-measurable subset of B \ Y is µ-null.

Proposition 6.2. Suppose that X is a metric space and µ is a sum
of countably-many finite Borel measures on X. Then every set Y ⊆ X
has a Gδ µ-envelope.

Proof. It is sufficient to show that every set Y ⊆ X is the µ-
envelope of an Fσ set. Towards this end, appeal to Proposition 4.1 to
obtain an Fσ set F ⊆ X contained in Y with the property that no Fσ
subset of X contained in Y \ F is µ-positive, and note that if Y \ F
contains a µ-positive set, then Proposition 6.1 ensures that it contains
a µ-positive Fσ subset of X, a contradiction.

We say that a Borel measure µ on a topological space is strongly
tight if every µ-measurable set B ⊆ X contains a Kσ set K ⊆ X for
which µ(B \K) = 0.

Proposition 6.3. Suppose that X is a Polish metric space and µ
is a sum of countably-many finite Borel measures on X. Then µ is
strongly tight.

Proof. It is sufficient to handle the special case that µ is finite. By
Proposition 6.1, we need only show that if C ⊆ X is closed and ε > 0,
then there is a compact set K ⊆ C for which µ(C \K) ≤ ε. Towards
this end, fix sequences (δn)n∈N and (εn)n∈N of positive real numbers for
which δn → 0 and

∑
n∈N εn ≤ ε. For each n ∈ N, fix a cover (Cm,n)m∈N

of C by closed subsets of diameter at most δn, and fix Mn ∈ N with
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µ(C \
⋃
m<Mn

Cm,n) ≤ εn. Then the set K =
⋂
n∈N

⋃
m<Mn

Cm,n is
compact and C \K ⊆

⋃
n∈NC \

⋃
m<Mn

Cm,n, thus µ(C \K) ≤ ε.

Clinton Conley has pointed out that one can also establish Propo-
sition 6.3 by simply appealing to the fact that every Polish space is
a Gδ subspace of a compact Polish space, since strong regularity and
strong tightness are equivalent for Borel subsets of Kσ spaces.

Proposition 6.4 (Lusin). Suppose that X is a Polish space and µ
is a finite Borel measure on X. Then for every ε > 0 and µ-measurable
function φ : X → Y to a second countable topological space, there is a
compact set K ⊆ X such that µ(∼K) ≤ ε and φ � K is continuous.

Proof. Fix a sequence (εn)n∈N of positive real numbers for which∑
n∈N εn ≤ ε, as well as an enumeration (Vn)n∈N of a basis for Y .

For each n ∈ N, Proposition 6.3 yields compact sets Kn ⊆ φ−1(Vn)
and K ′n ⊆ ∼φ−1(Vn) for which µ(∼(Kn ∪ K ′n)) ≤ εn. Then the set
K =

⋂
n∈NKn ∪K ′n is as desired.

A measure µ is semifinite if every µ-positive set contains a µ-finite
µ-positive set. The following observation ensures that every semifinite
Borel measure µ on a Polish space, satisfying the weakening of the
conclusion of Proposition 6.4 where K is σ-compact, is necessarily σ-
finite, and while σ-finiteness is insufficient to obtain this weakening,
it is equivalent to the existence of a finer Polish topology, compatible
with the underlying Borel structure, for which the weakening holds.

Proposition 6.5. Suppose that X is a Polish space and µ is a
semifinite Borel measure on X. Then the following are equivalent:

(1) The union of all µ-finite open sets is µ-conull.
(2) For every ε > 0 and µ-measurable function φ : X → Y to

a second countable topological space, there is a σ-compact set
K ⊆ X such that µ(∼K) ≤ ε and φ � K is continuous.

(3) For every ε > 0 and compact set K ⊆ X, there is a µ-
measurable set B ⊆ X such that µ(∼B) ≤ ε and χK � B
is continuous.

Proof. To see (1) =⇒ (2), note that condition (1) yields a se-
quence (Un)n∈N of µ-finite open subsets of X whose union is µ-conull,
and suppose that ε > 0 and φ : X → Y is a µ-measurable function to a
second countable topological space. We will recursively construct pair-
wise disjoint open sets VN ⊆ UN and compact sets KN ⊆ VN such that
µ(
⋃
M≤N UM \

⋃
m≤M Km) < ε and φ � KN is continuous for all N ∈ N.

In order to facilitate the construction, we will ensure that Vn ⊆ Un for
all n ∈ N as well. Suppose that N ∈ N and we have already found
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(Kn)n<N and (Vn)n<N . As UN \
⋃
n<N Vn is open and therefore Fσ, there

is a closed set CN ⊆ UN \
⋃
n<N Vn for which µ((UN \

⋃
n<N Vn)\CN) is

strictly less than ε − µ(
⋃
M<N UM \

⋃
m≤M Km). Proposition 6.4 then

yields a compact set KN ⊆ CN for which µ((UN \
⋃
n<N Vn) \ KN) is

strictly less than ε−µ(
⋃
M<N UM \

⋃
m≤M Km) and φ � KN is continu-

ous. As
⋃
M≤N UM \

⋃
m≤M Km is the union of (UN \

⋃
n<N Vn)\KN and⋃

M<N UM \
⋃
m≤M Km, it follows that µ(

⋃
M≤N UM \

⋃
m≤M Km) < ε.

The compactness of KN then yields an open set VN ⊇ KN for which
VN ⊆ UN \

⋃
n<N Vn, which completes the recursive construction. It

follows that the σ-compact set K =
⋃
n∈NKn has the property that

µ(∼K) = µ(
⋃
n∈N Un \

⋃
n∈NKn) ≤ µ(

⋃
N∈N UN \

⋃
n≤N Kn) ≤ ε and

φ � K is continuous, since if W ⊆ Y is open, then there are open sets
V ′n ⊆ Vn with (φ � Kn)−1(W ) = Kn ∩ V ′n for all n ∈ N, in which case
(φ � K)−1(W ) =

⋃
n∈NKn ∩ V ′n = K ∩

⋃
n∈N V

′
n, thus (φ � K)−1(W ) is

a relatively open subset of K.
As (2) =⇒ (3) is trivial, it only remains to show ¬(1) =⇒ ¬(3).

Towards this end, appeal to the semifiniteness of µ to obtain a µ-finite
µ-positive set A ⊆ X consisting solely of points without µ-finite open
neighborhoods, and appeal to Proposition 6.3 to obtain a compact µ-
positive set K ⊆ A. Suppose now that ε < µ(K) and B ⊆ X is a
µ-measurable set for which µ(∼B) ≤ ε. Then there exists x ∈ B ∩K,
and since every open neighborhood of x contains points of B \ K, it
follows that χK � B is discontinuous at x.

The following observation explains the necessity of ε in the state-
ment of Proposition 6.4.

Proposition 6.6. Suppose that X is a Polish space and µ is a
semifinite Borel measure on X. Then the following are equivalent:

(1) There is a discrete µ-conull set.
(2) For every function φ : X → Y to a topological space, there is

a discrete µ-conull set D ⊆ X such that φ � D is continuous.
(3) For every compact set K ⊆ X, there is a µ-conull set B ⊆ X

such that χK � B is continuous.

Proof. As (1) =⇒ (2) =⇒ (3) is trivial, we need only show
¬(1) =⇒ ¬(3). Towards this end, suppose first that there exist x ∈ X
and a sequence (xn)n∈N of points of X with µ({x}) > 0, µ({xn}) > 0
for all n ∈ N, and xn → x, and observe that if B ⊆ X is µ-conull,
then all of these points are in B, thus χ{x} � B is discontinuous at x.
If such points do not exist, then {x ∈ X | µ({x}) > 0} is discrete,
so {x ∈ X | µ({x}) = 0} is µ-positive, thus the semifiniteness of µ
yields a µ-finite µ-positive set A ⊆ X on which µ is continuous, and
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Proposition 6.3 yields a compact µ-positive set K ⊆ A. By deleting
the union of the µ-null relatively open subsets of K, we can assume
that every relatively open subset of K is µ-positive.

Lemma 6.7. There is a relatively dense open set U ⊆ K with the
property that µ(U) < µ(K).

Proof. Fix a sequence (kn)n∈N of positive natural numbers for
which

∑
n∈N 1/kn < 1, as well as an enumeration (Un)n∈N of non-empty

relatively open subsets of K forming a basis. Observe that for each
n ∈ N, the set Un necessarily contains kn distinct points, so there is a
sequence of kn non-empty pairwise disjoint relatively open subsets of
Un, and therefore a relatively open set U ′n ⊆ Un with the property that
µ(U ′n) ≤ (1/kn)µ(Un) ≤ (1/kn)µ(K). But then the set U =

⋃
n∈N U

′
n is

as desired.

It only remains to observe that if B ⊆ X is µ-conull, then there
exists x ∈ B∩(K\U), and since every open neighborhood of x intersects
B ∩ U , it follows that χK\U � B is discontinuous at x.

7. Density

We say that a point x of a metric space X is a µ-density point of a
µ-measurable set B ⊆ X if µ(B ∩ B(x, ε))/µ(B(x, ε))→ 1 as ε→ 0.

Theorem 7.1 (Lebesgue). Suppose that X is a Polish ultrametric
space, µ is a finite Borel measure on X, and B ⊆ X is µ-measurable.
Then µ-almost every point of B is a µ-density point of B.

Proof. By throwing out the maximal µ-null open set, we can as-
sume that every non-empty open set is µ-positive. For each ε > 0 and
r < 1, the fact that X is an ultrametric space ensures that the set

Uε,r =
⋃
δ≤ε{x ∈ X | µ(B ∩ B(x, δ))/µ(B(x, δ)) ≤ r}

is open, so the set Gr =
⋂
ε>0 Uε,r is Gδ. Suppose, towards a contradic-

tion, that there exists r < 1 for which µ(B∩Gr) > 0. Then Proposition
6.3 yields a µ-positive compact set K ⊆ B ∩ Gr, and Proposition 6.1
yields an open set U ⊇ K with µ(K) > rµ(U). For each x ∈ K, fix
εx > 0 such that B(x, εx) ⊆ U and µ(B∩B(x, εx))/µ(B(x, εx)) ≤ r. Let
N be the least natural number for which there is a sequence (xn)n≤N
of points of K with the property that the set V =

⋃
n≤N B(xn, εxn)

contains K. As the minimality of N ensures that the sets B(xn, εxn)
are pairwise disjoint, it follows that µ(K)/µ(U) ≤ µ(B∩V )/µ(V ) ≤ r,
the desired contradiction.
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A function φ : X → [0,∞] is µ-integrable if it is µ-measurable and∫
φ dµ <∞. Let φ

µ
(B) denote

∫
B
φ dµ/µ(B).

Proposition 7.2 (Lebesgue). Suppose that X is a Polish ultra-
metric space, µ is a finite Borel measure on X, and φ : X → [0,∞]
is µ-integrable. Then φ(x) = limε→0 φ

µ
(B(x, ε)) for µ-almost every

x ∈ X.

Proof. By throwing out the maximal µ-null open subset of X, we
can assume that every non-empty open subset of X is µ-positive. By
Proposition 2.1, there are µ-measurable sets Bn ⊆ X and real num-
bers rn > 0 for which φ =

∑
n∈N rnχBn . For each N ∈ N, define

φN =
∑

n≤N rnχBn , and observe that Theorem 7.1 yields that φN(x) =∑
n≤N rnχBn(x) =

∑
n≤N rn limε→0 χBn

µ(B(x, ε)) = limε→0 φN
µ
(B(x, ε))

for µ-almost every x ∈ X, thus limε→0 φ
µ
(B(x, ε)) ≥ φ(x) for µ-almost

every x ∈ X. To show that limε→0 φ
µ
(B(x, ε)) ≤ φ(x) for µ-almost

every x ∈ X, it is sufficient to show that if 0 < δ < µ(X), then the
set of x ∈ X with limε→0 φ

µ
(B(x, ε)) < δ+φ(x) has µ-measure at least

µ(X) − δ. Towards this end, note that Proposition 2.3, in conjunc-
tion with the µ-integrability of φ, yields N ∈ N sufficiently large that∫
φ− φN dµ ≤ δ2. Define U =

⋃
ε>0{x ∈ X | φ− φN

µ
(B(x, ε)) ≥ δ}.

Lemma 7.3. The set U is open and µ(U) ≤ δ.

Proof. For all x ∈ U , let εx denote the maximal real number for
which φ− φN

µ
(B(x, ε)) ≥ δ. Then the sets B(x, εx) yield a partition of

U , so U is open and δ2 ≥
∫
U
φ− φN dµ ≥ δµ(U), thus µ(U) ≤ δ.

But limε→0 φ
µ
(B(x, ε)) = limε→0 φ− φN

µ
(B(x, ε)) + φN

µ
(B(x, ε)) <

δ + φN(x) for µ-almost every x ∈ ∼U , by Lemma 7.3.

This, in turn, allows us to compute Radon-Nikodým derivatives.

Proposition 7.4. Suppose that X is a Polish ultrametric space,
µ is a finite Borel measure on X, ν is a Borel measure on X, and
φ : X → [0,∞] is a Radon-Nikodým derivative of µ with respect to ν.
Then φ(x) = limε→0 µ(B(x, ε))/ν(B(x, ε)) for ν-almost all x ∈ X.

Proof. As φ(x) = limε→0

∫
B(x,ε)

φ(y) dν(y)/ν(B(x, ε)) for ν-almost

all x ∈ X by Proposition 7.2, the desired result follows from the fact
that µ(B(x, ε)) =

∫
B(x,ε)

φ(y) dν(y) for all ε > 0 and x ∈ X.

It is not difficult to verify that the results of this section hold for a
given semifinite Borel measure µ on a Polish ultrametric space if and
only if the union of all µ-finite open sets is µ-conull.
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8. Extensions

When X is a metric space and U ⊆ P(X), we say that U ∈ U is
approximately bounded with respect to a finitely-additive measure µ on
U if µ(U) = sup{µ(V ) | V ∈ U is δ-bounded and V ⊆ U} for all δ > 0.

Proposition 8.1. Suppose that X is a complete metric space, U is
an algebra of clopen subsets of X, and µ is a finitely-additive measure
on U with respect to which every set in U is approximately bounded.
Then µ is a measure.

Proof. By Proposition 1.1, we need only show that µ is σ-subad-
ditive. Suppose, towards a contradiction, that there is a sequence
(Un)n∈N of sets in U with

⋃
n∈N Un ∈ U and µ(

⋃
n∈N Un) >

∑
n∈N µ(Un).

Fix a sequence (δm)m∈N of positive real numbers converging to zero, as
well as δm-bounded sets Vm ∈ U such that V0 ⊆

⋃
n∈N Un, Vm+1 ⊆ Vm,

and µ(Vm) >
∑

n∈N µ(Un) for all m ∈ N. As (Un)n∈N covers the com-

pact set K =
⋂
m∈N Vm, so too does (Un)n≤N for some N ∈ N.

Lemma 8.2. There exists m ∈ N for which Vm ⊆
⋃
n≤N Un.

Proof. For each m ∈ N, fix Im ∈ N and a sequence (Vi,m)i<Im of
open sets of diameter at most 2δm whose union is Vm. Let T be the
tree of all t ∈

⋃
M∈N

∏
m<M Im for which

⋂
m<|t| Vt(m),m *

⋃
n≤N Un, and

note that T is necessarily well-founded, since any branch b through T
would give rise to a singleton

⋂
m∈N Vb(m),m contained in K \

⋃
n≤N Un.

König’s Lemma therefore yields M ∈ N for which T ⊆
⋃
L≤M

∏
`<L I`,

in which case VM ⊆
⋃
n≤N Un.

As µ(Vm) >
∑

n≤N µ(Un) ≥ µ(
⋃
n≤N Un) for all m ∈ N, Lemma 8.2

contradicts the monotonicity of µ.

Proposition 8.1 ensures that if U is a basis for X, then every finitely-
additive σ-finite measure µ on U has a unique extension to a Borel
measure on X. As every zero-dimensional Polish space is homeomor-
phic to a closed subset of NN, the following observation shows that,
by choosing U with more care, one can obtain an even more concrete
representation of Borel measures on such spaces.

Proposition 8.3. Suppose that U = {Ns | s ∈ N<N} is the family
of basic clopen neighborhoods of NN and µ : U → [0,∞] has the prop-
erty that ∀s ∈ N<N µ(Ns) =

∑
n∈N µ(Nsa(n)). Then there is a unique

extension of µ to a measure on the algebra generated by U .

Proof. The external boundary of a tree T ⊆ N<N is the set ∂ext(T )
of all v-minimal elements of N<N \ T .
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Lemma 8.4. Suppose that T ⊆ N<N is a well-founded tree. Then
µ(Ns) =

∑
t∈∂ext(T ) µ(Nsat) for all s ∈ N<N.

Proof. By induction on the pruning rank of T . Suppose that
0 < α < ω1, the lemma holds for well-founded trees with pruning rank
strictly less than α, and the pruning rank of T is α. For all n ∈ N, set
Tn = {t ∈ N<N | (n) a t ∈ T}, and note that if s ∈ N<N, then

µ(Ns) =
∑

n∈N µ(Nsa(n))

=
∑

n∈N
∑

t∈∂ext(Tn) µ(Nsa(n)at)

=
∑

t∈∂ext(T ) µ(Nsat),
since ∂ext(T ) = {(n) a t | n ∈ N and t ∈ ∂ext(Tn)}.

It follows that µ is a measure.

Lemma 8.5. Suppose that X is an ultrametric space. Then the
algebra generated by the open balls is contained in the closure of the
open balls under disjoint unions.

Proof. Note that if A is in the algebra generated by the open
balls, then the fact that the intersection of any two open balls is again
an open ball ensures that A is of the form

⋃
m<M Am \

⋃
n<Nm

Bm,n,
where each M and Nm is a natural number, each Am is an open ball
or X, and each Bm,n is an open ball strictly contained in Am. Set
δ = minm,n∈N diam(Bm,n), and observe that A is the union of the open
balls of diameter δ that intersect A.

It follows that the algebra generated by U is contained in the closure
of U under countable disjoint unions. As U is closed under finite in-
tersections, Proposition 1.7 therefore ensures the existence of a unique
extension of µ to a measure on the algebra generated by U .

9. The space of probability measures

We begin with a simple observation that allows one to view the
result thereafter as a generalization of a part of Fubini’s theorem.

Proposition 9.1. Suppose that X is a set, Y is a Borel space, and
R ⊆ X×Y is in the σ-algebra generated by the sets of the form A×B,
where A ⊆ X and B ⊆ Y is Borel. Then Rx is Borel for all x ∈ X.

Proof. If R = A × B, where A ⊆ X and B ⊆ Y is Borel, then
the fact that Rx ∈ {∅, B} for all x ∈ X ensures that Rx is Borel for
all x ∈ X. If R ⊆ X × Y has the property that Rx is Borel for all
x ∈ X, then the fact that (∼R)x = ∼(Rx) for all x ∈ X ensures that
(∼R)x is Borel for all x ∈ X. And if (Rn)n∈N is a sequence of subsets of
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X × Y with the property that (Rn)x is Borel for all n ∈ N and x ∈ X,
then the fact that (

⋃
n∈NRn)x =

⋃
n∈N(Rn)x for all x ∈ X ensures that

(
⋃
n∈NRn)x is Borel for all x ∈ X.

We endow the set P (X) of all Borel probability measures on a Borel
space X with the smallest σ-algebra rendering the functions µ 7→ µ(B)
Borel, where B varies over all Borel subsets of X.

Proposition 9.2. Suppose that X and Y are Borel spaces and
R ⊆ X × Y is Borel. Then the function φR : P (Y )×X → [0, 1] given
by φR(µ, x) = µ(Rx) is Borel.

Proof. If R = A × B, where A ⊆ X and B ⊆ Y are Borel, then
φR(µ, x) = µ(B)χA(x), thus φR is Borel. If R ⊆ X×Y has the property
that φR is Borel, then the fact that φ∼R = 1 − φR ensures that φ∼R
is Borel. And if (Rn)n∈N is a sequence of pairwise disjoint subsets of
X × Y with the property that φRn is Borel for all n ∈ N, then the fact
that φ⋃

n∈NRn =
∑

n∈N φRn ensures that φ⋃
n∈NRn is Borel.

When X is a zero-dimensional Polish space, we also endow P (X)
with the smallest topology rendering the functions µ 7→ µ(U) continu-
ous, where U ranges over all clopen subsets of X.

Proposition 9.3. Suppose that X is a zero-dimensional Polish
space, τ is the topology on P (X), and B ⊆ X is Borel. Then the
function µ 7→ µ(B) is τ -Borel.

Proof. If B ⊆ X has the property that the function µ 7→ µ(B) is
τ -Borel, then the fact that µ(∼B) = 1−µ(B) ensures that the function
µ 7→ µ(∼B) is τ -Borel. And if (Bn)n∈N is a sequence of pairwise disjoint
subsets of X with the property that the function µ 7→ µ(Bn) is τ -Borel
for all n ∈ N, then the fact that µ(

⋃
n∈NBn) =

∑
n∈N µ(Bn) ensures

that the function µ 7→ µ(
⋃
n∈NBn) is τ -Borel.

It follows that a subset of P (X) is Borel if and only if it is τ -Borel.

Proposition 9.4. Suppose that X is a zero-dimensional Polish
space. Then P (X) is a Polish space.

Proof. Fix a countable algebra U ⊆ P(X) of sets forming a basis
for X. A finitely-additive probability measure on U is a finitely-additive
measure µ on U for which µ(X) = 1. As the set C ⊆ [0, 1]U of finitely-
additive probability measures on U is closed, it follows that the set
G ⊆ C of finitely-additive probability measures on U with respect to
which every set in U is approximately bounded is Gδ, thus Polish.
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As Proposition 8.1 ensures that each µ ∈ G is a measure, Theorem
1.5 implies that each µ ∈ G has a unique extension to a Borel prob-
ability measure on X. We therefore obtain a bijection π : G → P (X)
by letting π(µ) be this unique extension.

To see that π is open, note that if U ∈ U and V ⊆ [0, 1] is open,
then π({µ ∈ G | µ(U) ∈ V }) = {µ ∈ P (X) | µ(U) ∈ V }. To
see that π is continuous, note first that if µ ∈ G, V ⊆ X is clopen,
0 ≤ r ≤ 1, and π(µ)(V ) > r, then there exists U ⊆ V in U with
the property that µ(U) > r, so the π-image of the open neighborhood
{ν ∈ G | ν(U) > r} of µ is contained in {ν ∈ P (X) | ν(V ) > r}, thus
π−1({ν ∈ P (X) | ν(V ) > r}) is open. But then the sets of the form
π−1({ν ∈ P (X) | ν(V ) < r}) are also open, since π(µ)(V ) < r if and
only if π(µ)(∼V ) > 1 − r. It follows that the preimage of every open
subset of P (X) under π is open, thus π is continuous.

Remark 9.5. In the special case that X is compact, the sets C and
G coincide, thus P (X) is compact.

Remark 9.6. Proposition 9.4 and Remark 9.5 can be similarly
established using Proposition 8.3 in place of Proposition 8.1.

10. Analytic sets

Recall that a non-empty topological space is analytic if it is a con-
tinuous image of NN.

Proposition 10.1 (Lusin). Suppose that X is a metric space and
µ is a sum of countably-many finite Borel measures on X. Then every
analytic set A ⊆ X is µ-measurable.

Proof. Suppose that φ : NN → A is a continuous surjection. For
each sequence t ∈ N<N, define At = φ(Nt) and appeal to Proposi-
tion 6.2 to obtain a Borel µ-envelope Bt for At contained in At. The
fact that A =

⋃
b∈NN

⋂
n∈NAb�n =

⋃
b∈NN

⋂
n∈NBb�n ⊆

⋂
n∈N

⋃
t∈Nn Bt

ensures that to establish the µ-measurability of A, it is sufficient to
show that

⋂
n∈N

⋃
t∈Nn Bt \

⋃
b∈NN

⋂
n∈NBb�n is µ-null. And for this, it

is enough to show that Bt \
⋃
n∈NBta(n) is µ-null for all t ∈ N<N. But

Bt \
⋃
n∈NBta(n) ⊆ Bt \

⋃
n∈NAta(n) = Bt \ At, and is therefore µ-null

by the definition of µ-envelope.

Define �n on Nn by s �n t ⇐⇒ ∀m < n s(m) ≤ t(m), and define
� on NN by a � b ⇐⇒ ∀n ∈ N a(n) ≤ b(n).

Proposition 10.2. Suppose that b ∈ NN, X is a topological space,
and φ : NN → X is closed-to-one. Then φ(�b) =

⋂
n∈N

⋃
s�nb�n

φ(Ns).
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Proof. Suppose that x ∈
⋂
n∈N

⋃
s�nb�n

φ(Ns), and fix sequences

an ∈ NN such that an � n �n b � n and φ(an) = x for all n ∈ N. The
former condition ensures the existence of a limit point a of {an | n ∈ N},
in which case a � b and the latter condition implies that φ(a) = x.

Proposition 10.3. Suppose that X is a metric space, µ is a finite
Borel measure on X, and φ : NN → X is a continuous function. Then
µ(φ(NN)) = supb∈NN µ(φ(�b)).

Proof. Given ε > 0, recursively construct b ∈ NN such that
µ(
⋃
s�nb�n

φ(Ns)) > µ(φ(NN)) − ε for all n ∈ N. It then follows that

µ(
⋂
n∈N

⋃
s�nb�n

φ(Ns)) ≥ µ(φ(NN))− ε, in which case Proposition 10.2

ensures that µ(φ(�b)) ≥ µ(φ(NN))− ε.

Remark 10.4. More generally, if A ⊆ φ(NN) is µ-measurable, then
for all ε > 0, Proposition 6.1 yields a closed set C ⊆ X contained in A
for which µ(A\C) < ε. As φ−1(C) is also closed, and is therefore the set
of branches through a tree TC on N, the above argument can be applied
to obtain a locally finite subtree T of TC for which µ(A \ φ([T ])) < ε.

We next note that analytic sets are vertical projections of closed
sets with compact horizontal sections.

Proposition 10.5. Suppose that X is a metric space and φ : NN →
X is continuous. Then (φ× id)(�) is a closed subset of X × NN.

Proof. Suppose that (x, b) ∈ (φ× id)(�), and fix an � bn for
all n ∈ N such that (φ(an), bn) → (x, b). Note that if k ∈ N, then
an � k �k b � k for all but finitely many n ∈ N, so there is a limit point
a of {an | n ∈ N}. Then a � b and (φ× id)(a, b) = (x, b).

The following observation generalizes Proposition 9.2.

Proposition 10.6 (Kondô-Tugué). Suppose that X is a metric
space, Y is a zero-dimensional Polish space, and R ⊆ X×Y is analytic.
Then so too is the set S = {(µ, x, r) ∈ P (Y )×X × [0, 1] | µ(Rx) > r}.

Proof. Suppose that φ : NN → R is a continuous surjection. For
µ ∈ P (Y ) and x ∈ X, let µx be the Borel probability measure on
X × Y given by µx(S) = µ(Sx). Proposition 10.3 then ensures that
µ(φ(NN)x) = µx(φ(NN)) = supb∈NN µx(φ(�b)) = supb∈NN µ(φ(�b)x), and
the set C = {((b, x), y) ∈ (NN × X) × Y | ((x, y), b) ∈ (φ × id)(�)}
is closed by Proposition 10.5. As C(b,x) = φ(�b)x for all b ∈ NN, it
follows that µ(Rx) > r ⇐⇒ ∃b ∈ NN µ(C(b,x)) > r for all r ∈ [0, 1], so
Proposition 9.2 yields the desired result.
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11. Ergodic decomposition

The following fact is the main observation underlying the results of
this section.

Theorem 11.1. Suppose that X is a standard Borel space, E is an
equivalence relation on X, and µ is a Borel probability measure on X.
Then there is an E-invariant Borel function φ : X → P (X) such that
µ(A ∩ B) =

∫
A
φ(x)(B) dµ(x) for all E-invariant Borel sets A ⊆ X

and all Borel sets B ⊆ X.

Proof. By the isomorphism theorem for standard Borel spaces, we
can assume that X is a compact zero-dimensional metric space. Fix a
countable algebra U of clopen subsets of X forming a basis.

For each U ∈ U , let µU denote the finite Borel measure on X given
by µU(B) = µ(B ∩ U) for all Borel sets B ⊆ X.

Lemma 11.2. For each U ∈ U , there is an E-invariant Borel func-
tion ψU : X → [0, 1] with the property that µU(A) =

∫
A
ψU dµ for all

E-invariant Borel sets A ⊆ X.

Proof. Theorem 4.5 yields a Borel function ψ′U : X/E → [0, 1]
such that (µU/E)(A/E) =

∫
A/E

ψ′U d(µ/E) for all E-invariant Bor-

el sets A ⊆ X. Note that the E-invariant function ψU : X → [0, 1]
given by ψU(x) = ψ′U([x]E) is Borel. By Proposition 2.1, there are
E-invariant Borel sets An ⊆ X and real numbers rn > 0 such that
ψ′U =

∑
n∈N rnχAn/E, and therefore ψU =

∑
n∈N rnχAn . If A ⊆ X is an

E-invariant Borel set, then Proposition 2.3 ensures that∫
A/E

ψ′U d(µ/E) =
∑

n∈N rn(µ/E)((A ∩ An)/E)

=
∑

n∈N rnµ(A ∩ An)

=
∫
A
ψU dµ,

so µU(A) = (µU/E)(A/E) =
∫
A/E

ψ′U d(µ/E) =
∫
A
ψU dµ.

Define ψ : X → [0, 1]U by ψ(x)(U) = ψU(x).

Lemma 11.3. For µ-almost all x ∈ X, the function ψ(x) is a
finitely-additive probability measure on U .

Proof. As
∫
ψX dµ = µX(X) = 1, it follows that ψX(x) = 1 for

µ-almost all x ∈ X. As
∫
A
ψU dµ = µ(A ∩ U) for all E-invariant Borel

sets A ⊆ X and U ∈ U , it follows that if U, V ∈ U are disjoint sets
whose union is also in U , then

∫
A
ψU∪V dµ =

∫
A
ψU + ψV dµ for all

E-invariant Borel sets A ⊆ X, thus ψU∪V (x) = ψU(x) + ψV (x) for
µ-almost all x ∈ X.
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As every finitely-additive measure on U is a measure on U , Theo-
rem 1.5 yields an E-invariant Borel function φ : X → P (X) with the
property that for all x ∈ X, if ψ(x) is a finitely-additive measure on
U , then φ(x) is the unique extension of ψ(x) to a Borel probability
measure on X.

It only remains to note that if A ⊆ X is an E-invariant Borel set,
then the functions B 7→ µ(A∩B) and B 7→

∫
A
φ(x)(B) dµ(x) are finite

Borel measures on X agreeing on each set in U , so on all open subsets
of X, and therefore on all Borel subsets of X, by Proposition 6.1.

Remark 11.4. If A ⊆ X is an E-invariant Borel set, then the fact
that

∫
A
φ(x)(∼A) dµ(x) = µ(A∩ (∼A)) = 0 ensures that φ(x)(∼A) = 0

for µ-almost all x ∈ A, thus φ(x)(A) = 1 for µ-almost all x ∈ A.

Remark 11.5. Suppose that F is a Borel superequivalence relation
of E that is smooth, in the sense that there are Borel sets An ⊆ X such
that x F y ⇐⇒ ∀n ∈ N χAn(x) = χAn(y) for all x, y ∈ X. By Remark
11.4, the sets Cn = {x ∈ X | φ(x)(An) = χAn(x)} are µ-conull, thus
so too is the set C =

⋂
n∈NCn. As [x]F is φ(x)-conull for all x ∈ C, it

follows that [x]F is φ(x)-conull for µ-almost all x ∈ X.

Remark 11.6. The special case of Remark 11.5 for the equivalence
relation on X given by x F y ⇐⇒ φ(x) = φ(y) ensures that if φ
satisfies the conclusion of Theorem 11.1, then φ−1(φ(x)) is φ(x)-conull
for µ-almost all x ∈ X. By altering φ off of this µ-conull Borel set, we
can therefore ensure that φ−1(φ(x)) is φ(x)-conull for all x ∈ X.

A Borel disintegration of µ through a Borel function φ : X → Y is
a Borel function ψ : Y → P (X) such that µ(B) =

∫
ψ(y)(B) d(φ∗µ)(y)

for all Borel sets B ⊆ X, and φ−1(y) is ψ(y)-conull for (φ∗µ)-almost all
y ∈ Y .

Theorem 11.7. Suppose that X and Y are standard Borel spaces,
µ is a Borel probability measure on X, and φ : X → Y is Borel. Then
there is a Borel disintegration of µ through φ.

Proof. Let E be the smooth Borel equivalence relation on X given
by w E x ⇐⇒ φ(w) = φ(x). By Theorem 11.1, there is an E-invariant
Borel function φ′ : X → P (X) such that µ(A∩B) =

∫
A
φ′(x)(B) dµ(x)

for all E-invariant Borel sets A ⊆ X and all Borel sets B ⊆ X. As
Remark 11.5 ensures that the set C = {x ∈ X | φ′(x)([x]E) = 1} is µ-
conull, there is a (φ∗µ)-conull Borel set D ⊆ φ(C). Fix a Borel function
ψ : Y → P (X) with ψ(y) = ν ⇐⇒ ∃x ∈ X (φ(x) = y and φ′(x) = ν)
for all ν ∈ P (X) and y ∈ D.
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To see that φ is as desired, note that if B ⊆ X is Borel, then

µ(B) =
∫
φ′(x)(B) dµ(x)

=
∫

(ψ ◦ φ)(x)(B) dµ(x)

=
∫
ψ(y)(B) d(φ∗µ)(y),

and if y ∈ D, then there exists x ∈ C such that φ(x) = y, so
ψ(y)(φ−1(y)) = φ′(x)([x]E) = 1, thus φ−1(y) is ψ(y)-conull for (φ∗µ)-
almost all y ∈ Y .

A Borel measure µ on X is ergodic with respect to an equivalence
relation E on X if every E-invariant µ-measurable set is µ-conull or
µ-null. A Borel decomposition of µ is a Borel function φ : X → P (X)
such that µ(B) =

∫
φ(x)(B) dµ(x) for all Borel sets B ⊆ X, and

φ−1(φ(x)) is φ(x)-conull for all x ∈ X.

Theorem 11.8 (Kechris, Louveau-Mokobodzki). Suppose that X
is a Polish space, E is a Kσ equivalence relation on X, and µ is a
Borel probability measure on X. Then there is an E-invariant Borel
decomposition φ : X → P (X) of µ into E-ergodic measures.

Proof. By Theorem 11.1, there is an E-invariant Borel function
φ : X → P (X) such that µ(A ∩ B) =

∫
A
φ(x)(B) dµ(x) for all E-

invariant Borel sets A ⊆ X and all Borel sets B ⊆ X. By Remark
11.6, we can ensure that φ−1(φ(x)) is φ(x)-conull for all x ∈ X, so it
only remains to show that φ(x) is E-ergodic for µ-almost all x ∈ X.

Fix a Kσ set K ⊆ 2N×X whose vertical sections are exactly the Kσ

subsets of X. Then the set KE = {(c, y) ∈ 2N×X | ∃x ∈ X c K x E y}
is also Kσ, and its vertical sections are exactly the E-invariant Kσ sub-
sets of X. As the set R = {(ν, c) ∈ P (X)× 2N | 0 < ν((KE)c) < 1} is
Borel by Proposition 9.2, the Jankov-von Neumann uniformization the-
orem yields a σ(Σ1

1)-measurable function ψ : projP (X)(R) → 2N whose
graph is contained in R. Proposition 10.1 ensures that every such func-
tion is µ-measurable.

Suppose, towards a contradiction, that (φ∗µ)(projP (X)(R)) > 0. By
Proposition 6.4, there is a (φ∗µ)-positive Borel set B ⊆ projP (X)(R) for

which ψ � B is Borel. Then the set A = φ−1(B)∩ ((ψ ◦φ)× id)−1(KE)
is Borel and E-invariant, and 0 < φ(x)(A) < 1 for all x ∈ φ−1(B), so
µ(A) =

∫
φ(x)(A) dµ(x) > 0, contradicting Remark 11.4.

Remark 11.9. Kechris has established the generalization of The-
orem 11.8 to analytic equivalence relations, assuming that continu-
ous images of co-analytic subsets of Polish spaces are µ-measurable.
A modification of the above argument can be used to establish this:
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Fix a closed set C ⊆ NN × X whose vertical sections are exactly the
closed subsets of X, and note that while the corresponding set CE is
merely analytic, Proposition 9.2 nevertheless ensures that the set R
of (µ, b) ∈ P (X) × (NN × NN) for which µ(Cb(0)), µ(Cb(1)) > 0 and
(CE)b(0) ∩ (CE)b(1) = ∅ is co-analytic. The Kondô-Novikov uniformiza-
tion theorem therefore yields a function ψ : projP (X)(R) → NN × NN

whose graph is co-analytic and contained in R, and the measurabil-
ity assumption ensures that ψ is µ-measurable, in which case we can
define B exactly as before. But this time, fix an E-invariant Bor-
el set A ⊆ X separating φ−1(B) ∩ ((proj0 ◦ ψ ◦ φ) × id)−1(KE) from
φ−1(B) ∩ ((proj1 ◦ ψ ◦ φ)× id)−1(KE), and proceed as before.

Remark 11.10. Louveau-Mokobodzki established the generaliza-
tion of Theorem 11.8 to analytic equivalence relations in ZFC by show-
ing that if X is a Polish space, E is an analytic equivalence relation
on X, and µ is a Borel probability measure on X, then there is a
Kσ subequivalence relation F of E with the property that for ev-
ery F -invariant Borel set A ⊆ X, there is an E-invariant Borel set
A′ ⊆ X for which µ(A 4 A′) = 0. To obtain the former result from
the latter, simply use F instead of E in the original proof, fix an E-
invariant Borel set A′ ⊆ X for which µ(A 4 A′) = 0, and note that
µ(A 4 A′) =

∫
φ(x)(A 4 A′) dµ(x), so 0 < φ(x)(A′) < 1 for µ-almost

all x ∈ φ−1(B), yielding the same contradiction as before.





Part III

Countable Borel equivalence
relations



12. Smoothness

An equivalence relation is finite if its classes are all finite. A re-
duction of an equivalence relation E on X to an equivalence relation
F on Y is function π : X → Y with the property that two points are
E-related if and only if their images are F -related. Note that a Borel
equivalence relation on a standard Borel space is smooth if and only if
it is Borel reducible to equality on a standard Borel space.

Proposition 12.1. Suppose that X is a standard Borel space and
E is a finite Borel equivalence relation on X. Then E is smooth.

Proof. Fix a Borel linear ordering ≤ of X. Then the Lusin-No-
vikov uniformization theorem ensures that the function φ : X → X,
sending each point of X to the ≤-minimal element of its E-class, is a
Borel reduction of E to equality.

An equivalence relation is countable if its classes are all countable.
A set B ⊆ X is E-complete if it intersects every E-class. A partial
transversal of E is a set B ⊆ X intersecting every E-class in at most
one point, and such a set is a transversal of E if it is also E-complete.
A selector for E is a reduction φ : X → X of E to equality for which
graph(φ) ⊆ E.

The proof of Proposition 12.1 yields the stronger fact that every
finite Borel equivalence relation on a standard Borel space admits a
Borel selector. But this is a special case of a more general fact.

Proposition 12.2. Suppose that X is a standard Borel space and
E is a countable Borel equivalence relation on X. Then the following
are equivalent:

(1) The relation E is smooth.
(2) There is a Borel selector for E.
(3) There is a Borel transversal of E.
(4) There is a sequence (Bn)n∈N of Borel partial transversals of E

such that X =
⋃
n∈NBn.

(5) There is a sequence (Bn)n∈N of Borel transversals of E such
that X =

⋃
n∈NBn.

(6) There is a sequence (φn)n∈N of Borel selectors for E such that
E =

⋃
n∈N graph(φn).

Proof. To see (2) =⇒ (1), note that every selector for E is a
reduction of E to equality.

To see (3) =⇒ (2), note that if B ⊆ X is a Borel transversal of
E, and φ : X → B is the unique function with graph(φ) ⊆ E, then
graph(φ) is Borel, thus so too is φ, hence φ is a Borel selector for E.



12. SMOOTHNESS 33

To see (4) =⇒ (3), note that if (Bn)n∈N is a sequence of Borel partial
transversals of E for which X =

⋃
n∈NBn, then the Lusin-Novikov

uniformization theorem ensures that the sets B′n = Bn \
⋃
m<n[Bm]E

are Borel for all n ∈ N, thus
⋃
n∈NB

′
n is a Borel transversal of E.

To see (5) =⇒ (4), note that every transversal of E is also a partial
transversal of E.

To see (6) =⇒ (5), note that if (φn)n∈N is a sequence of Borel
selectors for E such that E =

⋃
n∈N graph(φn), then the Lusin-Novikov

uniformization theorem ensures that the sets Bn = φn(X) are Borel.
But each Bn is a transversal of E and X =

⋃
n∈NBn.

To see (1) =⇒ (6), note that if π : X → Y is a Borel reduction
of E to equality on a standard Borel space, then the Lusin-Novik-
ov uniformization theorem ensures that π(X) is Borel. As graphs of
Borel functions are themselves Borel, it also yields Borel functions
πn : π(X) → X with graph(π−1) =

⋃
n∈N graph(πn). Then the func-

tions φn = πn◦π are Borel selectors for E and E =
⋃
n∈N graph(φn).

An equivalence relation is aperiodic if its classes are all infinite.

Proposition 12.3. Suppose that X is a standard Borel space and
E is an aperiodic countable smooth Borel equivalence relation on X.
Then there is a sequence (Bn)n∈N of pairwise disjoint Borel transversals
of E such that X =

⋃
n∈NBn.

Proof. By Proposition 12.2, there is a sequence (An)n∈N of Borel
partial transversals of E with the property that X =

⋃
n∈NAn. Define

kn : X → N by kn(x) = min{k ∈ N | Ak ∩ [x]E 6⊆
⋃
m<nAkm(x)} for all

n ∈ N. As the Lusin-Novikov uniformization theorem ensures that each
kn is Borel, so too are the sets Bn =

⋃
k∈N{x ∈ Ak | k = kn(x)}. But

these sets are pairwise disjoint transversals of E and X =
⋃
n∈NBn.

Remark 12.4. The same argument shows that if N ∈ N and the
cardinality of every E-class is N , then there is a sequence (Bn)n<N of
pairwise disjoint Borel transversals of E for which X =

⋃
n<N Bn.

A homomorphism from an equivalence relation E on X to an equiv-
alence relation F on Y is a function π : X → Y sending E-related points
to F -related points.

Proposition 12.5. Suppose that X and Y are standard Borel
spaces, E and F are countable Borel equivalence relations on X, F is
smooth, and there is a countable-to-one Borel homomorphism π : X →
Y from E to F . Then E is smooth.

Proof. Define x E ′ y ⇐⇒ π(x) F π(y). If F is smooth, then
E ′ is smooth, so Proposition 12.2 yields a sequence (Bn)n∈N of Borel
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partial transversals of E ′ for which X =
⋃
n∈NBn. As E ⊆ E ′, it follows

that every partial transversal of E ′ is a partial transversal of E, so one
more application of Proposition 12.2 ensures that E is smooth.

Proposition 12.6. Suppose that X is a standard Borel space, E
is a countable smooth Borel equivalence relation on X, and F is a
finite-index Borel superequivalence relation of E. Then F is smooth.

Proof. Simply note that the restriction of F to every partial trans-
versal of E is finite, and appeal to Propositions 12.1 and 12.2.

We say that E is generically smooth if there is a comeager Borel set
on which E is smooth, and generically nowhere smooth if the only Borel
sets on which E is smooth are meager. Let E0 denote the equivalence
relation on 2N given by c E0 d ⇐⇒ ∃n ∈ N∀m ≥ n c(m) = d(m).

Proposition 12.7. The relation E0 is generically nowhere smooth.

Proof. By Proposition 12.2, it is enough to show that if B ⊆ 2N

is a non-meager Borel set, then it is not a partial transversal of E0.
Towards this end, appeal to localization to obtain t ∈ 2<N with the
property that B is comeager in Nt. As the function φ : Nt → Nt given
by φ(t a (i) a c) = t a (1 − i) a c is category preserving, it follows
that B ∩φ−1(B) is comeager in Nt. But if x ∈ B ∩φ−1(B), then x and
φ(x) are distinct E0-related points of B.

We say that E is category smooth if it is generically smooth with
respect to every Polish topology on X generating its Borel structure.

Theorem 12.8 (Harrington-Kechris-Louveau). Suppose that X is
a standard Borel space and E is a countable Borel equivalence relation
on X. Then E is smooth if and only if E is category smooth.

Proof. If E is not smooth, then the Glimm-Effros dichotomy
for countable Borel equivalence relations yields a Borel embedding
π : 2N → X of E0 into E. But Proposition 12.7 ensures that E is
not generically smooth with respect to any topology on X agreeing on
π(2N) with the push-forward of the topology on 2N through π.

We say that E is µ-smooth if there is a µ-conull Borel set on which
E is smooth, and µ-nowhere smooth if the only Borel sets on which E
is smooth are µ-null. Let �0 denote the Borel measure on 2N given by
�0(Nt) = 1/2|t|, for all t ∈ 2<N.

Proposition 12.9. The relation E0 is �0-nowhere smooth.

Proof. By Proposition 12.2, it is enough to show that if B ⊆ 2N

is a �0-positive Borel set, then it is not a partial transversal of E0.
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Towards this end, appeal to Proposition 7.1 to obtain t ∈ 2<N with the
property that �0(B ∩ Nt)/�0(Nt) > 1/2. As the function φ : Nt → Nt
given by φ(t a (i) a c) = t a (1 − i) a c is (�0 � Nt)-preserving, it
follows that �0(B ∩ φ−1(B)) > 0. But if x ∈ B ∩ φ−1(B), then x and
φ(x) are distinct E0-related points of B.

We say that E is measure smooth if it is µ-smooth for all Borel
probability measures µ on X.

Theorem 12.10 (Harrington-Kechris-Louveau). Suppose that X is
a standard Borel space and E is a countable Borel equivalence relation
on X. Then E is smooth if and only if E is measure smooth.

Proof. If E is not smooth, then the Glimm-Effros dichotomy
for countable Borel equivalence relations yields a Borel embedding
π : 2N → X of E0 into E. But Proposition 12.9 ensures that E is
(π∗�0)-nowhere smooth, thus E is not measure smooth.

13. Combinatorics

The results of the last section allow one to build in a Borel fashion
any structure on the classes of a countable smooth Borel equivalence
relation that one can build on a countable set. While the analogous
statement is false for non-smooth countable Borel equivalence relations,
one can still carry out such constructions that depend only upon names
for sets in a countable separating family, rather than upon names for
points themselves. Here we describe several particularly useful ways of
leveraging this fact.

Given a binary relation R on X, we say that a set Y ⊆ X is R-
complete if it intersects every vertical section of R.

Proposition 13.1 (Slaman-Steel). Suppose that X is a standard
Borel space and R is a transitive Borel binary relation on X whose
vertical sections are all countably infinite. Then there is a decreasing
sequence (Bn)n∈N of R-complete Borel sets with empty intersection.

Proof. By the isomorphism theorem for standard Borel spaces,
we can assume that X = 2N. For all s ∈ 2<N, set

Ds = {c ∈ 2N | |Ns ∩Rc| = ℵ0 =⇒ ∀d ∈ Rc |Ns ∩Rd| = ℵ0}.
For all n ∈ N, put Dn =

⋂
s∈2n Ds, define sn : Dn → 2n by

sn(c) = minlex{s ∈ 2n | |Ns ∩Rc| = ℵ0},
and set An = {c ∈ Dn | sn(c) = c � n}. The Lusin-Novikov uniformiza-
tion theorem ensures that these functions and sets are Borel.
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Lemma 13.2. Suppose that n ∈ N and c ∈ An+1. Then c ∈ An.

Proof. Note first that if s ∈ 2n and |Ns ∩ Rc| = ℵ0, then there
exists i < 2 with |Nsa(i) ∩Rc| = ℵ0, so the fact that c ∈ Dsa(i) ensures
that |Nsa(i) ∩ Rd| = ℵ0 for all d ∈ Rc, thus |Ns ∩ Rd| = ℵ0 for all
d ∈ Rc. It follows that c ∈ Dn, and the fact that |Ns ∩ Rc| = ℵ0

if and only if there exists i < 2 with |Nsa(i) ∩ Rc| = ℵ0 also ensures
that sn(c) v sn+1(c). As sn+1(c) = c � (n + 1), this implies that
sn(c) = c � n, thus c ∈ An.

Lemma 13.3. Suppose that c ∈ 2N and n ∈ N. Then |An∩Rc| = ℵ0.

Proof. By a straightforward induction of length 2n, there exists
d ∈ Dn ∩ Rc. Set s = sn(d), and observe that |Ns ∩ Rd| = ℵ0 and
Ns ∩Rd ⊆ An ∩Rd ⊆ An ∩Rc.

Lemma 13.4. The set A =
⋂
n∈NAn is an R-antichain.

Proof. Suppose that c ∈ A and d ∈ Rc are distinct, and fix n ∈ N
sufficiently large that c � n 6= d � n. As c ∈ An, it follows that c ∈ Dn

and sn(c) = c � n. As c R d, it follows that d ∈ Dn and sn(d) = c � n,
so d /∈ An.

It remains to show that the sets Bn = An \ A are R-complete.
Given c ∈ 2N and n ∈ N, appeal to Lemma 13.3 to obtain distinct
points d ∈ An ∩ Rc and e ∈ An ∩ Rd. As Lemma 13.4 ensures that at
most one of these points is in A, it follows that at least one is in Bn.

A graph on X is an irreflexive symmetric set G ⊆ X ×X. A map
c : X → Y is a coloring of G if it sends G-related points to distinct
points. A graph is locally finite if its vertical sections are all finite.

Proposition 13.5 (Kechris-Solecki-Todorcevic). Suppose that X
is a standard Borel space and G is a locally finite Borel graph on X.
Then there is a Borel coloring c : X → N of G.

Proof. Fix an enumeration (Bn)n∈N of a Borel separating family
for X that is closed under intersections. Then the Lusin-Novikov uni-
formization theorem ensures that the coloring c : X → N of G given by
c(x) = min{n ∈ N | x ∈ Bn and Bn ∩Gx = ∅} is Borel.

A set B ⊆ X is G-independent if G � B = ∅. A graph is locally
countable if its vertical sections are all countable.

Proposition 13.6 (Kechris-Solecki-Todorcevic). Suppose that X
is a standard Borel space and G is a locally countable Borel graph on
X for which there is a Borel coloring c : X → N. Then there is a
maximal G-independent Borel set B ⊆ X.
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Proof. Recursively set Bn = {x ∈ c−1(n) |
⋃
m<nBm ∩ Gx = ∅}

for all n ∈ N. As the Lusin-Novikov uniformization theorem ensures
that these sets are Borel, so too is the maximal G-independent set
B =

⋃
n∈NBn.

We say that a graph has degree at most k if all of its vertical sections
have cardinality at most k.

Proposition 13.7 (Kechris-Solecki-Todorcevic). Suppose that X
is a standard Borel space and G is a Borel graph on X of degree at
most some k ∈ N. Then there is a Borel coloring c : X → k + 1 of G.

Proof. As G is locally finite, Proposition 13.5 yields a Borel N-
coloring of G, so Proposition 13.6 yields maximal (G � ∼

⋃
i<j Bi)-

independent Borel sets Bj ⊆ ∼
⋃
i<j Bi for j ≤ k. Define c : X → k + 1

by c(x) = j ⇐⇒ x ∈ Bj.

For each n ∈ N, let [X]n denote the set of subsets of X of cardinality
n, equipped with the standard Borel structure it inherits from Xn. Let
[X]<ℵ0 denote the disjoint union of these spaces. The intersection graph
on a set S ⊆ [X]<ℵ0 is the graph on S with respect to which two distinct
sets are related if they intersect.

Proposition 13.8 (Kechris-Miller). Suppose that X is a standard
Borel space and S ⊆ [X]<ℵ0 is Borel. Then the intersection graph on
S has a Borel N-coloring if and only if it is locally countable.

Proof. Note first that if the intersection graph on S is not locally
countable, then there exists x ∈ X appearing in uncountably many
S ∈ S, in which case the set of such S forms an uncountable clique
in the intersection graph on S. As the existence of such cliques rules
out the existence of N-colorings (let alone Borel N-colorings), it only
remains to show that if the intersection graph on S is locally countable,
then it has a Borel N-coloring.

Towards this end, note that the vertical sections of the Borel set

R = {((x, y), S) ∈ (X ×X)× S | x, y ∈ S}

are all countable, so the Lusin-Novikov uniformization theorem en-
sures that projX×X(R) is Borel. As this projection also has countable
vertical sections, another application of the Lusin-Novikov uniformiza-
tion theorem ensures that

⋃
S is Borel and yields Borel functions

φn :
⋃
S →

⋃
S such that projX×X(R) =

⋃
n∈N graph(φn). Fix an

enumeration (Bn)n∈N of a Borel separating family for X that is closed
under finite intersections.
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For each set S ∈ S, let a(S) be the lexicographically minimal se-
quence (nSi )i<|S| of natural numbers for which there is an injection
φ : |S| → S such that ∀i, j < |S| (φ(i) ∈ BnS

j
⇐⇒ i = j), and let

b(S) be the lexicographically minimal sequence (nSi,j)i,j<|S| of natural
numbers with the property that

∀i, j < |S| φnS
i,j

(BnS
i
∩ S) = BnS

j
∩ S.

Then a× b is a Borel coloring of the intersection graph on S.

Proposition 13.9 (Kechris-Miller). Suppose that X is a standard
Borel space and S ⊆ [X]<ℵ0 is a Borel set on which the intersection
graph is locally countable. Then there is a maximal Borel set R ⊆ S
of pairwise disjoint sets.

Proof. By Propositions 13.6 and 13.8.

A permutation σ is an involution if σ2 = id.

Theorem 13.10 (Feldman-Moore). Suppose that X is a standard
Borel space and R ⊆ X ×X is a reflexive symmetric Borel set whose
vertical sections are all countable. Then there are Borel involutions
In : X → X with the property that R =

⋃
n∈N graph(In).

Proof. Set S = {{x, y} ∈ [X]2 | x R y}, and appeal to Proposi-
tion 13.8 to obtain a Borel coloring c : S → N of the intersection graph
on S. For each n ∈ N, let In denote the involution of X, with support⋃
c−1({n}), given by In(x) = y ⇐⇒ c({x, y}) = n. As the graphs of

these involutions are Borel, so too are the involutions themselves, thus
the family {id} ∪ {In | n ∈ N} is as desired.

The orbit equivalence relation induced by a group action Γ y X is
given by x EX

Γ y ⇐⇒ ∃γ ∈ Γ γ · x = y.

Theorem 13.11 (Feldman-Moore). Suppose that X is a standard
Borel space and E is a countable Borel equivalence relation on X. Then
there is a countable group Γ of Borel automorphisms of X whose in-
duced orbit equivalence relation is E.

Proof. Appeal to Theorem 13.10 to obtain Borel automorphisms
Tn : X → X for which E =

⋃
n∈N graph(Tn), and let Γ be the group

generated by these automorphisms.

14. Hyperfiniteness

A Borel equivalence relation E is hyperfinite if it is the union of an
increasing sequence (Fn)n∈N of finite Borel subequivalence relations.
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Proposition 14.1. Suppose that X is a standard Borel space and
E is a countable smooth Borel equivalence relation on X. Then E is
hyperfinite.

Proof. By Proposition 12.2, there are Borel partial transversals
Bn ⊆ X of E for which X =

⋃
n∈NBn. For all n ∈ N, let Fn be the

equivalence relation on X generated by E �
⋃
m≤nBm.

Proposition 14.2. The equivalence relation E0 is hyperfinite.

Proof. For all n ∈ N, let Fn denote the equivalence relation on 2N

given by c Fn d ⇐⇒ ∀m ≥ n c(m) = d(m).

A Borel equivalence relation E is hypersmooth if it is the union of an
increasing sequence (En)n∈N of smooth Borel subequivalence relations.

Proposition 14.3 (Dougherty-Jackson-Kechris). Suppose that X
is a standard Borel space and E is a countable hypersmooth Borel equiv-
alence relation on X. Then E is hyperfinite.

Proof. Fix an increasing sequence (En)n∈N of smooth Borel equiv-
alence relations on X whose union is E. By Proposition 12.2, there are
Borel partial transversals Bm,n of Em such that X =

⋃
n∈NBm,n for all

m ∈ N. For all n ∈ N, a straightforward induction reveals that for all
m ∈ N, the equivalence relations Fm,n generated by

⋃
i≤mEi �

⋃
j≤nBi,j

are finite, and the Lusin-Novikov uniformization theorem ensures that
they are all Borel. Set Fn = Fn,n for all n ∈ N.

Proposition 14.4 (Dougherty-Jackson-Kechris). Suppose that X
and Y are standard Borel spaces, E is a countable Borel equivalence
relation on X, F is a hyperfinite Borel equivalence relation on Y , and
there is a countable-to-one Borel homomorphism φ : X → Y from E to
F . Then E is hyperfinite.

Proof. Fix an increasing sequence (Fn)n∈N of finite Borel equiva-
lence relations on Y whose union is F . Proposition 12.5 then ensures
that the equivalence relations En = E∩(φ×φ)−1(Fn) are smooth, so E
is hypersmooth, thus Proposition 14.3 implies that E is hyperfinite.

Proposition 14.5 (Dougherty-Jackson-Kechris). Suppose that X
is a standard Borel space and E is a countable Borel equivalence rela-
tion on X. Then the family of Borel sets on which E is hyperfinite is
closed under countable unions and saturations.

Proof. Suppose first that B ⊆ X is a Borel set on which E is
hyperfinite. The Lusin-Novikov uniformization theorem then ensures
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that [B]E is Borel and that there is a Borel reduction of E � [B]E to
E � B, so Proposition 14.4 implies that E is hyperfinite on [B]E.

Suppose now that (Bn)n∈N is a sequence of Borel sets on which E is
hyperfinite. As the Lusin-Novikov uniformization theorem ensures that
the sets [Bn]E \

⋃
m<n[Bm]E are Borel, it follows that E is hyperfinite

on their union.

We say that an equivalence relation F has finite index over an
equivalence relation E if every F -class is the union of finitely-many
E-classes.

Proposition 14.6 (Jackson-Kechris-Louveau). Suppose that X is
a standard Borel space, E is a hyperfinite Borel equivalence relation on
X, and F is a finite-index Borel superequivalence relation of E. Then
F is hyperfinite.

Proof. By Proposition 13.9, there is a Borel set S ⊆ [X]<ℵ0 of
transversals of restrictions of E to F -classes whose union is F -complete.
Fix an increasing sequence (En)n∈N of finite Borel equivalence relations
on X whose union is E. For all n ∈ N, let Fn be the equivalence
relation on S given by S Fn T ⇐⇒ ∀x ∈ S∃y ∈ T x En y. Then
the equivalence relation F∞ =

⋃
n∈N Fn is hyperfinite. Observe that

S F∞ T ⇐⇒ S×T ⊆ F for all S, T ∈ S, appeal to the Lusin-Novikov
uniformization theorem to obtain a Borel function φ : X → S such that
∀x ∈ X φ(x) ⊆ [x]F , and note that φ is a reduction of F to F∞, thus
Proposition 14.4 ensures that F is hyperfinite.

The orbit equivalence relation induced by a bijection T : X → X is
given by x EX

T y ⇐⇒ ∃n ∈ Z T n(x) = y.

Proposition 14.7 (Slaman-Steel, Weiss). Suppose that X is a
standard Borel space and E is a hyperfinite Borel equivalence rela-
tion on X. Then E is the orbit equivalence relation induced by a Borel
automorphism T : X → X.

Proof. Fix a Borel linear ordering ≤ of X, an increasing se-
quence (Fn)n∈N of finite Borel equivalence relations on X such that
F0 is equality and E =

⋃
n∈N Fn, and Borel selectors sn : X → X for

each Fn. Given distinct E-related points x, y ∈ X, let n(x, y) de-
note the maximal natural number n for which sn(x) 6= sn(y), and put
x � y ⇐⇒ sn(x) < sn(y). Then � � C is isomorphic to the usual
ordering of N, −N, or Z for every infinite E-class C. As E is smooth
on the union B of the E-classes C for which � � C is not isomorphic
to Z, it is easy to find a Borel automorphism T : B → B generating
E � B. But the �-successor generates E on ∼B.
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The tail equivalence relation induced by a function T : X → X is
the equivalence relation on X given by

x Et(T ) y ⇐⇒ ∃m,n ∈ N Tm(x) = T n(y).

Proposition 14.8 (Dougherty-Jackson-Kechris). Suppose that X
is a standard Borel space and T : X → X is a Borel function. Then
the tail equivalence relation induced by T is hypersmooth.

Proof. The aperiodic part of T is the set of all x ∈ X with the
property that Tm(x) 6= T n(x) for all distinct m,n ∈ N. As this set is
Borel and Proposition 12.1 ensures that the restriction of Et(T ) to its
complement is smooth, we can assume that T is aperiodic. Let R be the
Borel partial order on X given by x R y ⇐⇒ ∃n ∈ N T n(x) = y. By
Proposition 13.1, there is a decreasing sequence (Bn)n∈N of R-complete
Borel sets with empty intersection. For all n ∈ N, define in : X → N
by in(x) = min{i ∈ N | T i(x) ∈ Bn}, as well as sn : X → Bn by
sn(x) = T in(x)(x), and Fn on X by x Fn y ⇐⇒ sn(x) = sn(y).

Proposition 14.9 (Dougherty-Jackson-Kechris). Suppose that X
is a standard Borel space and E is a hyperfinite Borel equivalence re-
lation on X. Then E is Borel reducible to E0.

Proof. By the isomorphism theorem for standard Borel spaces,
we can assume that X = 2N. As the disjoint union of two copies of
E0 is Borel reducible to E0, and smooth Borel equivalence relations are
trivially Borel reducible to E0, Proposition 12.1 allows us to assume
that E is aperiodic. Fix a Borel automorphism T : X → X generating
E. Set B0 = X, and given n ∈ N and a Borel set Bn ⊆ X, let Gn

be the graph on Bn in which two distinct points x, y ∈ Bn are related
if there exist k ∈ N and z ∈ {x, y} such that {x, y} = {z, T k(z)} and
∀0 < j < k T j(x) /∈ Bn, and let Bn+1 be a maximal Gn-independent
Borel subset of Bn. By again throwing out an E-invariant Borel set
on which E is smooth, we can assume that

⋂
n∈NBn = ∅. For each

n ∈ N and x ∈ X, fix in(x) ∈ N least for which T−in(x)(x) ∈ Bn, let
bn(x) ∈ 3n denote the base two representation of in+1(x) − in(x), and
define φn : X → 2n·3

n
by φn(x) =

⊕
k<3n T

k−in(x)(x) � n. Then the
function φ : X → 2N given by φ(x) =

⊕
n∈N φn(x) a bn(x) is a Borel

reduction of E to E0.

Remark 14.10. Along with the Glimm-Effros dichotomy for count-
able Borel equivalence relations, Proposition 14.9 implies that every
hyperfinite Borel equivalence relation is Borel reducible to every non-
smooth hyperfinite Borel equivalence relation.
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We say that E is generically hyperfinite if there is a comeager Borel
set on which E is hyperfinite.

Theorem 14.11 (Sullivan-Weiss-Wright, Woodin, Hjorth-Kechris).
Suppose that X is a Polish space and E is a countable Borel equivalence
relation on X. Then E is generically hyperfinite.

Proof. Let F∅ denote equality on X. Given s ∈ N<N and a finite
Borel equivalence relation Fs on X, appeal to Theorem 13.10 to obtain
a sequence (In,s)n∈N of Borel involutions of X/Fs with the property
that E/Fs =

⋃
n∈N graph(In,s), and for each n ∈ N, let Fsa(n) be the

extension of Fs with respect to which two Fs-inequivalent points x and
y are related if and only if In([x]Fs) = [y]Fs .

For each b ∈ NN, set Fb =
⋃
n∈N Fb�n. Note that if s ∈ N<N and

x E y, then there exists n ∈ N such that x Fsa(n) y. It follows that for
all x ∈ X, the set of b ∈ NN with [x]E ⊆ [x]Fb

is dense Gδ, so the Kur-
atowski-Ulam Theorem yields that {x ∈ X | [x]E = [x]Fb

} is comeager
for comeagerly many b ∈ NN, thus E is generically hyperfinite.
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