On pair-splitting and pair-reaping pairs of \(\omega \)

Hiroaki Minami

January 10, 2008

Abstract

In this paper we investigate variations of splitting number and reaping number, pair-splitting number \(s_{\text{pair}} \), pair-reaping number \(r_{\text{pair}} \). We prove that it is consistent that \(s_{\text{pair}} < b \). We also prove it is consistent that \(r_{\text{pair}} > b \).

Introduction

The splitting number \(s \) and the reaping number \(r \) are cardinal invariants related to the structure \(\mathcal{P}(\omega)/\text{fin} \).

For \(X, Y \in [\omega]^{\omega} \) we say \(X \) splits \(Y \) if \(X \cap Y \) and \(Y \setminus X \) are infinite. We call \(S \subset [\omega]^{\omega} \) a splitting family if for each \(Y \in [\omega]^{\omega} \), there exists \(X \in [\omega]^{\omega} \) such that \(X \) splits \(Y \). The splitting number \(s \) is the least size of a splitting family.

We call \(\mathcal{R} \) a reaping family if for each \(X \in [\omega] \), there exists \(Y \in [\omega]^{\omega} \) such that \(Y \) is not split by \(X \), that is, \(X \cap Y \) is finite or \(Y \setminus X \) is finite. The reaping number \(r \) is the least size of a reaping family.

We shall study variations of splitting number and reaping number, pair-splitting number \(s_{\text{pair}} \) and pair-reaping number \(r_{\text{pair}} \). They are introduced and investigated in [7] to analyze dual-reaping number \(r_{\text{d}} \) and dual-splitting number \(s_{\text{d}} \) which are reaping number and splitting number for the structure of all infinite partitions of \(\omega \) ordered by “almost coarser” \(((\omega)^{\omega}, \leq^*) \) respectively.

We call \(A \subset [\omega]^2 \) unbounded if for \(k \in \omega \), there exists \(a \in A \) such that \(a \cap k = \emptyset \). For \(X \in [\omega]^{\omega} \) and unbounded \(A \subset [\omega]^2 \), \(X \) pair-splits \(A \) if there exist infinitely many \(a \in A \) such that \(a \cap X \neq \emptyset \) and \(a \setminus X \neq \emptyset \). We call \(S \subset [\omega]^{\omega} \) a pair-splitting family if for each unbounded \(A \subset [\omega]^2 \), there exists
$X \in S$ such that X pair-splits A. The pair-splitting number s_{pair} is the least size of a pair-splitting family.

We call $\mathcal{R} \subset \mathcal{P}([\omega]^2)$ a pair-reaping family if for each $A \in \mathcal{R}$, A is unbounded and for $X \in [\omega]^{\omega}$, there exists $A \in \mathcal{R}$ such that X doesn’t pair-split A. The pair-reaping number r_{pair} is the least size of a pair-reaping family.

In [7] it is proved that there is the following relationship between r_{pair}, s_{pair} and other cardinal invariants.

Proposition 0.1

1. $s_{\text{pair}} \leq \text{non}(\mathcal{M}), \text{non}(\mathcal{N})$.
2. $r_{\text{pair}} \geq \text{cov}(\mathcal{M}), \text{cov}(\mathcal{N})$.
3. $s_{\text{pair}} \geq s$.
4. $r_{\text{pair}} \leq r, s_d$.

It is not known that $r_d \leq s_{\text{pair}}$ or not.

Question 0.1 $r_d \leq s_{\text{pair}}$?

$s \leq \diamondsuit$ and $r \geq \textbf{b}$ hold (see in [2]). And Kamo proved the following statement in [7]:

Theorem 0.1 $r_d \leq \diamondsuit$ and $s_d \geq \textbf{b}$.

So we have the following diagram:
An arrow $\kappa \to \lambda$ denotes the inequality $\kappa \geq \lambda$.

In [7] by using finite support iteration of Hechler forcing, the following consistency results are proved.

Theorem 0.2 It is consistent that $s_{\text{pair}} < \text{add}(\mathcal{M})$. Dually it is consistent that $r_{\text{pair}} > \text{cof}(\mathcal{M})$.

r_{pair} is a lower bound of r and s and s_{pair} is an upper bound of s (and maybe of r_d). So it is natural to ask the following question.

Question 0.2 $s_{\text{pair}} \leq d$? Dually $r_{\text{pair}} \geq b$?

In the present paper we shall investigate the relation ship between r_{pair} and b and the relationship between s_{pair} and d. In section 1 we shall prove the consistency of $s_{\text{pair}} > d$. In section 2 we shall show the consistency of the consistency of $r_{\text{pair}} < b$. In section 3 we mention the development of results in section 1 and 2.
1 pair-splitting number and dominating number

Notation and Definition We present the related notions. We use standard set theoretical conventions and notation. For a set \(X \), \(X^\omega \) denotes the set of all functions from \(\omega \) to \(X \). For \(f, g \in \omega^\omega \), \(f \) dominates \(g \), written \(f \leq^* g \), if for all but finitely many \(n \in \omega \) \(g(n) \leq f(n) \). We call \(\mathcal{F} \) a dominating family if for each \(g \in \omega^\omega \) there exists \(f \in \mathcal{F} \) such that \(g \leq^* f \). The dominating number \(\mathfrak{d} \) is the least size of a dominating family.

We call \(\mathcal{G} \) an unbounded family if for each \(f \in \omega^\omega \) there exists \(g \in \mathcal{G} \) such that \(g \nleq^* f \), i.e., there exist infinitely many \(n \in \omega \) such that \(g(n) > f(n) \). The unbounded number \(\mathfrak{b} \) is the least size of an unbounded family.

For a set \(X \), \(X^{<\omega} \) denote the set of all functions from natural numbers to \(X \).

We call partial ordering \((T, <)\) a tree if the set \{\(s \in T : s < t \)\} is well-ordered by \(<\). We say \(T \) is a tree on \(X \) if \(T \) is a subtree of \((X^{<\omega}, \subset)\). For a tree \(T \) and \(t \in T \), \(\text{succ}_{\text{T}}(t) \) is the set of all immediate successors of \(t \) in \(T \). For a tree \(T \), \(\text{stem}(T) \) is the first element of \(T \) which has at least \(2 \)-many immediate successors.

Theorem 1.1 It is consistent \(s_{\text{pair}} > \mathfrak{d} \).

To prove theorem 1.1, we shall construct a proper forcing notion which enlarges \(s_{\text{pair}} \) and is \(\omega^\omega \)-bounding to show \(\mathfrak{d} \) is preserved by the forcing notion.

Definition 1.1 [4, pp340] A forcing notion \(\mathbb{P} \) is \(\omega^\omega \)-bounding if

\[\vDash_{\mathbb{P}} \forall f \in \omega^\omega \cap V[G] \exists g \in \omega^\omega \cap V (f \leq^* g) . \]

The \(\omega^\omega \)-boundingness has the following good property.

Theorem 1.2 [4, pp341] The countable support iteration of proper \(\omega^\omega \)-bounding forcing notions is \(\omega^\omega \)-bounding.

To prove theorem 1.1 we shall construct a forcing notion which consists of finitely branching trees on \([\omega]^2\) such that the set of successors of any node carries a norm as [8].

To present the desired forcing notion, we define “norm” for finite subsets of \([\omega]^2\). Let \(R(n) \) be a natural number such that if \(m \geq R(n) \), then for any
function \(f : [m]^2 \to 2 \) there exists \(H \in [m]^n \) such that \(|f([H]^2)| = 1 \). Then recursively define \(l_1 = 3 \), \(l_{n+1} = \max\{2l_n, R(l_n)\} \). Then for a finite subset \(A \) of \([\omega]^2 \) \(\text{norm}(A) \geq n \) if \(A \) contains a complete graph with \(l_n \)-many vertices.

This norm has the following properties:

Proposition 1.1 For a finite subset \(A \) of \([\omega]^2 \),

1. \(\text{norm}(A) \geq 1 \) implies for any \(X \in [\omega]^\omega \) there exists \(a \in A \) such that \(a \cap X = \emptyset \) or \(a \subset X \).

2. Suppose \(\text{norm}(A) \geq n+1 \). For \(X \in [\omega]^{\omega} \) let \(A_X^0 = \{a \in A : a \cap X = \emptyset\} \) and \(A_X^1 = \{a \in A : a \subset X\} \). Then \(\text{norm}(A_X^0) \geq n \) or \(\text{norm}(A_X^1) \geq n \).

3. Suppose \(\text{norm}(A) \geq n+1 \). If \(A = A_0 \cup A_1 \), then \(\text{norm}(A_0) \geq n \) or \(\text{norm}(A_1) \geq n \).

Proof of proposition 1.1

1. Since \(\text{norm}(A) \geq 1 \), \(A \) contains a complete graph \(A' \subset A \) with 3-many vertices. Then for any 2-coloring of the vertices of \(A' \), there exists an edge whose vertices have the same color. So there exists \(a \in A' \subset A \) such that \(a \subset X \) or \(a \cap X = \emptyset \).

2. Since \(\text{norm}(A) \geq n+1 \), \(A \) contain a complete graph \(A' \) with \(l_{n+1} \)-many vertices. So for each \(X \subset \omega \), \(X \) contains \(l_n \)-many vertices of \(A' \) or \(X \) doesn’t meet \(l_n \)-many vertices of \(A' \) because \(l_{n+1} \geq 2l_n \). Anyway \(A_X^0 = \{a \in A : a \cap X = \emptyset\} \) or \(A_X^1 = \{a \in A : a \subset X\} \) contains a complete graph with \(l_n \)-many vertices. Therefore \(\text{norm}(A_X^0) \geq n \) or \(\text{norm}(A_X^1) \geq n \).

3. Since \(\text{norm}(A) \geq n+1 \), \(A \) contain a complete graph \(A' \) with \(l_{n+1} \)-many vertices. Define \(f : A' \to 2 \) by \(f(a) = i \) if \(a \in A_i \) for \(i < 2 \). Since \(l_{n+1} \geq R(l_n) \), there exists a complete graph \(A^* \subset A' \) which has \(l_n \)-many vertices of \(A' \) and \(|f[A^*]| = 1 \). So \(A^* \subset A_0 \) or \(A^* \subset A_1 \). Hence \(\text{norm}(A_0) \geq n \) or \(\text{norm}(A_1) \geq n \).

\[\square \]

Then let \(\mathbb{P} \) be the set of perfect trees such that

1. \(T \) is a finitely branching tree on \([\omega]^2\),

2. for any branch of \(T \) and \(n \in \omega \) there exist \(m \geq n \) such that whenever \(t \in T \) with \(|t| \geq m \), \(\text{norm}(\text{succ}_{T}(t)) \geq n \).

For \(T \) and \(S \) in \(\mathbb{P} \), \(T \leq S \) if \(T \subset S \).
Lemma 1.1 Let G be a generic filter on \mathbb{P} and $A_G = \bigcap \{ T : T \in G \}$. Then $A_G \subseteq [\omega]^2$ and for any $X \in [\omega]^\omega \cap V$, X doesn’t pair-split A_G.

Proof For $X \in [\omega]^\omega$ define a subset D_X of \mathbb{P} by $T \in D_X$ if for all $t \in T \setminus \{ s : s \subset \text{stem}(T) \}$ and $a \in \text{succ}_T(t)$, $a \subset X$ or $a \cap X = \emptyset$. Then for a given $S \in \mathbb{P}$ we can find $T \leq S$ such that for all $t \in T \setminus \{ s : s \subset \text{stem}(T) \}$ and $a \in \text{succ}_T(t)$, $a \subset X$ or $a \cap X = \emptyset$ by 1 and 2 in Proposition 1.1. So D_X is dense. So X doesn’t pair-split A_G.

By this lemma, \mathbb{P} adds an infinite subset of $[\omega]^2$ which is not pair-split by any infinite subset of ω in ground model. Therefore ω_2-stage countable support iteration of \mathbb{P} forces $s_{\text{pair}} = \omega_2$.

From now on we shall prove \mathbb{P} is ω_2-bounding and proper.

For $T \in \mathbb{P}$, let $\text{ess}(T) = \{ t \in T : \text{stem}(T) \subset t \}$. For $T, S \in \mathbb{P}$, $T \leq^* S$ if $T \leq S$ and for all $t \in \text{ess}(T)$, $\text{norm}(\text{succ}_T(t)) \geq \text{norm}(\text{succ}_S(t)) - 1$. $T \leq_m S$ if $T \leq S$ and for all $t \in T$ with $\text{norm}(\text{succ}_S(t)) \leq m$, we have $\text{succ}_S(t) \subset T$.

As [8] we can prove the following lemmata.

Lemma 1.2 If $S \in \mathbb{P}$ and $W \subset S$, then there is some $T \leq^* S$ such that

I. every branch of T meets W, or else

II. T is disjoint from W.

Proof Let S^W be the set of all $s \in S$ such that there exists $S' \leq^* S_s$ such that every branch of S' meets W where S_s is the set of $t \in S$ comparable to s.

If $\text{stem}(S) \in S^W$, then (I) holds. Otherwise we will construct $T \leq^* S$ which satisfies (II).

Suppose $\text{stem}(S) \notin S^W$. Recursively construct $t \in T$ with $|t| = n$. If $n \leq |\text{stem}(T)|$, $t \in T$ with $|t| = n$ if $t \in S$ with $|t| = n$. If $n \geq |\text{stem}(T)|$, assume $t \in T$ with $|t| \leq n$ are given and $t \notin S^W$ for $t \in T$ with $|t| \leq n$. For $t \in T$ with $|t| = n$, let $A^t = \text{succ}_S(t)$, $A_0^t = S^W \cap A^t$ and $A_1^t = A^t \setminus A_0^t$.

By Proposition 1.1 (iii), $\text{norm}(A^t) \geq \text{norm}(A^t) - 1 - 1$. Since $t \notin S^W$, there is no $S' \leq^* S_i$ such that S' holds I. So $\text{norm}(A_0^t) < n$. Hence $\text{norm}(A^t) \geq \text{norm}(A^t) - 1$. Define $t \in T$ with $|t| = n + 1$ if $t \nmid n \in T$ and $n(t) \in A_1^t \setminus A_1^t$. Then for any $t \in T$ with $|t| = n + 1$, $t \notin S^W$.

By construction $T \leq^* S$ and satisfies II. \qed
Lemma 1.3 Let $\dot{\alpha}$ be a \mathbb{P}-name for an ordinal. Let $S \in \mathbb{P}$ such that for $t \in S \setminus \{s : s \subseteq \text{stem}(S)\}$, $\text{norm}(\text{succ}_S(t)) > m + 1$. Then there exists $T \leq_m S$ and a finite subset w of ordinals such that $T \models \dot{\alpha} \in w$.

Proof Let W be the set of nodes $s \in S$ such that there exists $S^s \leq_m S_s$ which decides the value $\dot{\alpha}$. We shall prove that there exists $S_1 \leq^* S$ such that every branch of S_1 meets W. Suppose $S' \leq^* S$ and $S'' \leq S'$ such that $S'' \models \dot{\alpha} = \beta$ for some β. Then for some $t \in S''$ for each extension s of t in S'' satisfies $\text{norm}(\text{succ}_{S''}(s)) > m$. Because $S''_1 \leq_m S_1$ and S'' decides $\dot{\alpha}$, $t \in W$. Hence by Lemma 1.2 there exists $S_1 \leq^* S$ which satisfies I in Lemma 1.2.

Let $S_1 \leq^* S$ such that every branch of S_1 meets W. Let W_0 be the set of minimal elements of W in S_1. Since S_1 is finitely branching, W_0 is finite. (Otherwise, by K"{o}nig’s Lemma we can construct infinitely branch which doesn’t meet W). For $v \in W_0$ choose $T^v \leq_m S_v$ and α_v such that $T^v \models \dot{\alpha} = \alpha_v$. Put $T = \bigcup_{v \in W_0} T^v$ and $w = \{\alpha_v : v \in W_0\}$. Then $T \leq_m S$ and $T \models \dot{\alpha} \in w$.

Lemma 1.4 If $S \in \mathbb{P}$, $\dot{\alpha}$ be a \mathbb{P}-name for an ordinal and $m < \omega$. Then there exists $T \leq_m S$ and a finite set of ordinals w such that $T \models \dot{\alpha} \in w$.

Proof Choose $k \in \omega$ such that for any $s \in S$ with $|s| \geq k, \text{norm}(\text{succ}_S(s)) > m + 1$. For each $s \in S$ with $|s| = k$, apply Lemma 1.3 to S_s pick $T^s \leq_m S_s$ and a finite set of ordinals w_s so that $T_s \models \dot{\alpha} \in w_s$. Put $T = \bigcup_{s \in S, |s| = k} T_s$ and $w = \bigcup_{s \in S, |s| = k} w_s$. Then $T \leq_m S$ and $T \models \dot{\alpha} \in w$. Since S is finitely branching, w is a finite set.

Proof of theorem 1.1 Lemma 1.4 implies that \mathbb{P} is ω^ω-bounding. Given a \mathbb{P}-name for a function f from ω to ω and $S \in \mathbb{P}$, we can construct a sequence $\langle T_n : n \in \omega \rangle$ of conditions of \mathbb{P} such that $T_0 = S$, $T_{n+1} \leq_n T_n$ and for each $n \in \omega$, there exists some finite w_n of natural numbers such that $T_n \models f(n) \in w_n$. Then there exists $T \in \mathbb{P}$ such that $T \leq_n T_n$ and $T \models \forall n \in \omega(f(n) \in w_n)$. Put $g(n) = \max\{w_n\}$. Then $T \models \forall n \in \omega(f(n) \leq g(n))$. So \mathbb{P} is ω^ω-bounding. Also this claim say \mathbb{P} satisfies Baumgartner’s Axiom A. Hence \mathbb{P} is proper.

Hence the ω_2-stage countable support iteration of \mathbb{P} is ω^ω-bounding by theorem 1.2. Therefore if $V \models CH$, then the ω_2-stage countable support iteration of \mathbb{P} forces $\omega^\omega \cap V$ is a dominating family. So the ω_2-stage countable support iteration of \mathbb{P} forces $\mathfrak{d} = \omega_1$. Hence it is consistent that $\mathfrak{s}_{pair} > \mathfrak{d}$.

7
Since $s \leq \mathfrak{d}$ (see[2]), we have the following corollary.

Corollary 1.1 It is consistent that $s < s_{pair}$.

2 pair-reaping number and unbounded number

To show the consistency of $\tau_{pair} < b$, we shall use the Laver forcing \mathbb{L}. \mathbb{L} is defined by $T \in \mathbb{L}$ if $T \subseteq \omega^{<\omega}$ is a tree and for $s \in T$ with $stem(T) \subseteq s$, $|\text{succ}_T(s)| = \aleph_0$. \mathbb{L} is ordered by inclusion. Then \mathbb{L} adds an unbounded real.

Proposition 2.1 Let G be a \mathbb{L}-generic over V and $f_G = \bigcup \{stem(T) : T \in G\}$. Then $f_G \in \omega^\omega$ and f_G dominates for all $g \in \omega^\omega \cap V$.

Therefore if \mathbb{L}_{ω_2} is ω_2-stage countable support iteration of Laver forcing, then $V^{\mathbb{L}_{\omega_2}} \models b = \mathfrak{c}$.

By using ω_2-stage countable support iteration of Laver forcing, we shall construct ZFC model which satisfies $\tau_{pair} < b$.

Theorem 2.1 It is consistent $\tau_{pair} < b$.

By proposition 2.1 it is enough \mathbb{L} preserves τ_{pair}. We shall use the Laver property.

Definition 2.1 [4] A forcing notion \mathbb{P} have the Laver property if for every $H : \omega \rightarrow \omega \in V$

\[\models \forall f \in (\Pi_{n \in \omega} H(n)) \cap V[\hat{G}] \exists A : \omega \rightarrow \omega^{<\omega} \in V \forall n \in \omega (f(n) \in A(n) \land |A(n)| \leq 2^n) . \]

Theorem 2.2 [4] The Laver property is preserved under countable support iteration of proper forcing notions.

Theorem 2.3 [1, pp353] The Laver forcing \mathbb{L} has the Laver property.

So \mathbb{L}_{ω_2} has the Laver property. If forcing notion \mathbb{P} has the Laver property, then \mathbb{P} has the following good property:

Lemma 2.1 Let \mathbb{P} be a forcing notion satisfying the Laver property. Then $\models_{\mathbb{P}} \forall X \in V[\hat{G}] \exists A \in V (X$ doesn’t pair-split $A)$.
Corollary 2.1 It is consistent that $\text{trans-add}(\mathcal{N})$, transitive additivity of null ideal (see [1, pp91]). That is, trans-add(\mathcal{N}) is the smallest size of \leq^*-bounded family $F \subseteq \omega^\omega$ such that for every $\phi \in \mathcal{S}$ there is $f \in F$ such that for infinitely many $n \in \omega$ such that $f(n) \notin \phi(n)$.

Then the dual inequality to the corollary 2.2 holds.

Proposition 2.2 $s_{\text{pair}} \geq \text{trans-add}(\mathcal{N})$.

Proof Let $p \in \mathbb{P}$. Let $\Pi = \langle I_n : n \in \omega \rangle$ be an interval partition of ω such that $|I_n| = 2^{2n} + 1$. Then $\langle X \upharpoonright I_n : n \in \omega \rangle \in \Pi_{n \in \omega} 2^{I_n}$. By the Laver property there exists $q \leq^* p$ such that $\langle A_n : n \in \omega \rangle \in V$ such that $A_n \subseteq 2^{I_n}$, $|A_n| \leq 2^n$ and $q \models \forall n \in \omega (X \upharpoonright I_n \in A_n)$. For each $n \in \omega \{\langle \sigma(k) : \sigma \in A_n \rangle : k \in A_n\}$ is at most 2^{2n}-many element. But $|I_n| = 2^{2n} + 1$. So there exists k_0^n and k_1^n in I_n such that $k_0^n \neq k_1^n$ and $\langle \sigma(k_0^n) : \sigma \in A_n \rangle = \langle \sigma(k_1^n) : \sigma \in A_n \rangle$. Put $a_n = \{k_0^n, k_1^n\}$ and $A = \{a_n : n \in \omega\} \in V$. Then $q \models X \upharpoonright I_n \cap a_n = \emptyset$ or $a_n \subseteq X \upharpoonright I_n$ for $n \in \omega$. Therefore $q \not\models X$ doesn’t pair-split A.

Proof of Theorem 2.1 Suppose $V \models CH$. By Theorem 2.2 and 2.3 \mathbb{L}_{ω_2} has the Laver property. By Lemma 2.1 for each $X \in [\omega]^\omega \cap V^{\omega_2}$ there exists an unbounded $A \subseteq [\omega]^2$ such that $V^{\omega_2} \models X$ doesn’t pair-split A. So $\{A \subseteq [\omega]^2 : A \text{ unbounded}\} \cap V$ is pair-reaping family. Since $V \models CH$, $\{A \subseteq [\omega]^2 : A \text{ unbounded}\} \cap V$ has the cardinality at most ω_1. Therefore $V^{\omega_2} \models r_{\text{pair}} < b$.

Since $r \geq b$ (see [2]), we have the following corollary.

Corollary 2.1 It is consistent that $r > r_{\text{pair}}$.

Let \mathcal{S} be the collection of functions ϕ from ω to $[\omega]^{<\omega}$ such that $|\phi(n)| \leq n + 1$. I is the smallest cardinal κ such that for every $h \in \omega^{\omega}$ there is a set $\Phi \subseteq \mathcal{S}$ with cardinality κ so that, for every $f \in \omega$ with $f(n) < h(n)$ for all $n < \omega$, there is $\phi \in \Phi$ such that for all but finitely many $n \in \omega$ we have $f(n) \notin \phi(n)$.

As the proof of Theorem 2.1 we can prove the following statement.

Corollary 2.2 $r_{\text{pair}} \leq I$.

Pawlikowski shows that the dual notion to the definition of I is the characterization of $\text{trans-add}(\mathcal{N})$, transitive additivity of null ideal (see [1, pp91]). That is, $\text{trans-add}(\mathcal{N})$ is the smallest size of \leq^*-bounded family $F \subseteq \omega^\omega$ such that for every $\phi \in \mathcal{S}$ there is $f \in F$ such that for infinitely many $n \in \omega$ such that $f(n) \notin \phi(n)$.
It is known the following relation between trans-add(\mathcal{N}) and \mathfrak{d}.

Theorem 2.4 [6] It is consistent that trans-add(\mathcal{N}) $> \mathfrak{d}$.

By theorem 2.4 and proposition 2.2 it is consistent that $s_{\text{pair}} > \mathfrak{d}$.

3 Further results

In this section we mention the development of above results in the paper [3] written by Hrušák, Meza-Alcántara and the author.

Hrušák and Meza-Alcántara study cardinal invariants of ideals on ω and they define the pair-splitting number and the pair-reaping number independently of the author and they showed the pair-splitting number and the pair-reaping number are described as cardinal invariants of an ideal on ω.

Let \mathcal{I} be an ideal on ω. Define the cardinal invariants associate with \mathcal{I} by

$$
\text{cov}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subset \mathcal{I} \land \forall I \in \mathcal{I} \exists A \in \mathcal{A} (|A \cap I| = \aleph_0)\}
$$

$$
\text{non}^*(\mathcal{I}) = \min\{|\mathcal{A}| : \mathcal{A} \subset [\omega]^\omega \land \forall I \in \mathcal{I} \exists A \in \mathcal{A} (|A \cap I| < \aleph_0)\}.
$$

Theorem 3.1 [3] Let \mathcal{G}_{FC} be an ideal on $[\omega]^2$ defined by

$$
\mathcal{G}_{FC} = \{A \subset [\omega]^2 : \chi(\omega, A) < \aleph_0\}
$$

where $\chi(\omega, A) = \min\{k \in \omega : \exists f : \omega \rightarrow k \forall a \in A(|f[a]| = 2)\}$.

Then $\text{non}^*(\mathcal{G}_{FC}) = r_{\text{pair}}$ and $\text{cov}^*(\mathcal{G}_{FC}) = s_{\text{pair}}$.

From now on we assume 2^ω is equipped with product topology and the topology of $\mathcal{P}(\omega)$ is induced by identification of each subset of ω with its characteristic function.

Then \mathcal{G}_{FC} is an F_σ-ideal on $[\omega]^2$. As theorem 2.4, 1.1 and theorem 2.1 we can show the following theorem.

Theorem 3.2 Suppose \mathcal{I} is an F_σ-ideal on ω.

1. [6] It is consistent that $\mathfrak{d} < \text{cov}^*(\mathcal{I})$.

2. [3] It is consistent that $\mathfrak{b} > \text{non}^*(\mathcal{I})$.

Also the following statement holds as corollary 2.2 and proposition 2.2.
Corollary 3.1 Suppose \mathcal{I} is an F_σ-ideal.

1. If $\non^*(\mathcal{I}) \neq \omega$, then $\non^*(\mathcal{I}) \leq 1$.

2. If $\non^*(\mathcal{I}) \neq \omega$, then $\cov^*(\mathcal{I}) \geq \transadd(\mathcal{I})$.

So many results in section 1 and 2 follows from theorem 3.2 and corollary 3.1.

Acknowledgment

While carrying out the research for this paper, I discussed my work with Jörg Brendle. He gave me helpful advice. I greatly appreciate his help.

I also thank Shizuo Kamo for pointing out some remarks. I also thank Masaru Kada for pointing out corollary 2.2, proposition 2.2 and another proof for theorem 2.1 from proposition 2.2 and theorem 2.4.

I thank to Michael Hrušáč and David Meza-Alcántara who point out the relation between their results and my research. The collaboration produce theorem 3.2 2 and corollary 3.1.

I also thank Teruyuki Yorioka and Noboru Osuga for pointing out some mistake of proof and for suggestions which improved the presentation of this work.

Finally I thank members of Arai Project at Kobe University for much support while carrying out the research.

References

