Special topics in set theory

Exercises week 1-2

October 2022

1 Ordinals and cardinal arithmetic

1. Let γ be an ordinal. Show that the following are equivalent:
(a) $\forall \alpha, \beta<\gamma, \alpha+\beta<\gamma$.
(b) $\forall \alpha<\gamma, \alpha+\gamma=\gamma$.
(c) $\forall X \subseteq \gamma, \operatorname{type}(X)=\gamma \vee \operatorname{type}(\gamma \backslash X)=\gamma$.
(d) $\exists \delta$ such that $\gamma=\omega^{\delta}$.

Recall that for a well-ordered set X, type (X) is the unique ordinal α such that $X \simeq \alpha$. Such γ is called indecomposable. The δ in (d) might equal γ. The least γ such that $\gamma=\omega^{\gamma}$ is called ϵ_{0}.
2. Show that if $\alpha>0$ is an ordinal, then there are unique positive natural numbers k and $c_{1}, c_{2}, \ldots, c_{k}$ and ordinals $0 \leq \beta_{1}<\beta_{2}<\ldots<\beta_{k} \leq \alpha$ such that:

$$
\alpha=\omega^{\beta_{k}} \cdot c_{k}+\ldots+\omega^{\beta_{1}} \cdot c_{1}
$$

This representation is called the Cantor normal form.
3. Prove that $\left(\beth_{\omega}\right)^{\aleph_{0}}=\Pi_{n \in \omega} \beth_{n}=\beth_{\omega+1}$. Here \beth is the Beth function.
4. Let W be a vector space over some field F, and let $W^{*}=\operatorname{Hom}(W, F)$ be the dual vector space. Consider W be a subspace of $W^{* *}$ in the usual way (identify $x \in W$ with $\varphi \rightarrow \varphi(x)$ in $W^{* *}$). Let $W_{0}=W$ and $W_{n+1}=\left(W_{n}\right)^{* *}$, so that $W_{0} \subseteq W_{1} \subseteq \ldots$ Let $W_{\omega}=\bigcup_{n} W_{n}$. Now assume that $|F|<\beth_{\omega}$ and $\aleph_{0} \leq \operatorname{dim}(W)<\beth_{\omega}$. Prove that $\left|W_{\omega}\right|=\operatorname{dim}\left(W_{\omega}\right)=\beth_{\omega}$.
5. Assume CH but no GCH, prove that $\left(\aleph_{n}\right)^{\aleph_{0}}=\aleph_{n}$ whenever $1 \leq n<\omega$.
6. Assume that α is infinite, show that $\alpha+1$ is not a cardinal.
7. Assume that κ is an infinite cardinal and \prec is the lexicographic order on $\{0,1\}^{\kappa}$. Prove that there is no strictly increasing or strictly decreasing sequence of length κ^{+}.
8. Prove that if $2^{\aleph_{0}}>\aleph_{\omega}$, then $\aleph_{\omega}^{\aleph_{0}}=2^{\aleph_{0}}$.
9. Assume that λ is a singular cardinal, $\kappa=\operatorname{cf}(\lambda)$ and $f \in \kappa^{\kappa}$. Further, let $\left(\mu_{\xi}: \xi<\kappa\right)$ be a sequence with supremum λ such that the set $\left\{\xi<\kappa: 2^{\mu_{\xi}} \leq \mu_{\xi}^{+f(\xi)}\right\}^{1}$ is unbounded in κ. Prove that λ is a strong limit cardinal, meaning that for all $\alpha<\lambda$, then $2^{\alpha}<\lambda$.
10. Assume that κ and λ are cardinals with $\kappa \geq 2$ and $\lambda \geq \omega$, such that $\operatorname{cf}\left(\kappa^{<\lambda}\right)>\lambda$. Prove that the continuum function for κ is eventually constant below λ, i.e. there exists $\beta<\kappa$ such that for all $\alpha \geq \beta, 2^{\alpha}=\mu$ for some $\mu<\lambda$.

[^0]
[^0]: ${ }^{1}$ Here $\mu_{\xi}^{+f(\xi)}$ means the $f(\xi)$-th successor of μ_{ξ}

