Special topics in set theory

Exercises week 1-2

October 2022

1 Ordinals and cardinal arithmetic

- 1. Let γ be an ordinal. Show that the following are equivalent:
 - (a) $\forall \alpha, \beta < \gamma, \alpha + \beta < \gamma$.
 - (b) $\forall \alpha < \gamma, \ \alpha + \gamma = \gamma.$
 - (c) $\forall X \subseteq \gamma$, type $(X) = \gamma \lor$ type $(\gamma \backslash X) = \gamma$.
 - (d) $\exists \delta$ such that $\gamma = \omega^{\delta}$.

Recall that for a well-ordered set X, type(X) is the unique ordinal α such that $X \simeq \alpha$. Such γ is called indecomposable. The δ in (d) might equal γ . The least γ such that $\gamma = \omega^{\gamma}$ is called ϵ_0 .

2. Show that if $\alpha > 0$ is an ordinal, then there are unique positive natural numbers k and c_1, c_2, \ldots, c_k and ordinals $0 \le \beta_1 < \beta_2 < \ldots < \beta_k \le \alpha$ such that:

$$\alpha = \omega^{\beta_k} \cdot c_k + \ldots + \omega^{\beta_1} \cdot c_1$$

This representation is called the *Cantor normal form*.

- 3. Prove that $(\beth_{\omega})^{\aleph_0} = \prod_{n \in \omega} \beth_n = \beth_{\omega+1}$. Here \beth is the Beth function.
- 4. Let W be a vector space over some field F, and let $W^* = \operatorname{Hom}(W, F)$ be the dual vector space. Consider W be a subspace of W^{**} in the usual way (identify $x \in W$ with $\varphi \to \varphi(x)$ in W^{**}). Let $W_0 = W$ and $W_{n+1} = (W_n)^{**}$, so that $W_0 \subseteq W_1 \subseteq \ldots$. Let $W_\omega = \bigcup_n W_n$. Now assume that $|F| < \beth_\omega$ and $\aleph_0 \leq \dim(W) < \beth_\omega$. Prove that $|W_\omega| = \dim(W_\omega) = \beth_\omega$.
- 5. Assume CH but no GCH, prove that $(\aleph_n)^{\aleph_0} = \aleph_n$ whenever $1 \le n < \omega$.
- 6. Assume that α is infinite, show that $\alpha + 1$ is not a cardinal.
- 7. Assume that κ is an infinite cardinal and \prec is the lexicographic order on $\{0,1\}^{\kappa}$. Prove that there is no strictly increasing or strictly decreasing sequence of length κ^+ .
- 8. Prove that if $2^{\aleph_0} > \aleph_{\omega}$, then $\aleph_{\omega}^{\aleph_0} = 2^{\aleph_0}$.

- 9. Assume that λ is a singular cardinal, $\kappa = cf(\lambda)$ and $f \in \kappa^{\kappa}$. Further, let $(\mu_{\xi} : \xi < \kappa)$ be a sequence with supremum λ such that the set $\{\xi < \kappa : 2^{\mu_{\xi}} \le \mu_{\xi}^{+f(\xi)}\}^{-1}$ is unbounded in κ . Prove that λ is a strong limit cardinal, meaning that for all $\alpha < \lambda$, then $2^{\alpha} < \lambda$.
- 10. Assume that κ and λ are cardinals with $\kappa \geq 2$ and $\lambda \geq \omega$, such that $cf(\kappa^{<\lambda}) > \lambda$. Prove that the continuum function for κ is eventually constant below λ , i.e. there exists $\beta < \kappa$ such that for all $\alpha \geq \beta$, $2^{\alpha} = \mu$ for some $\mu < \lambda$.

¹Here $\mu_{\xi}^{+f(\xi)}$ means the $f(\xi)$ -th successor of μ_{ξ}