Special topics on set theory Exercises weeks 3-4

Diana Carolina Montoya

October 2020

1 Weeks 3 and 4: Forcing

1.

Definition 1. A family of sets \mathcal{A} forms a Δ -system with root R if and only if $X \cap Y = R$, whenever $X, Y \in \mathcal{A}$ with $X \neq Y$.

Prove the generalized version of the Δ -system lemma: Let κ be an uncountable such that $\kappa^{<\kappa}$. Let \mathcal{A} be a collection of sets of cardinality less than κ such that $|\mathcal{A}| = \kappa^+$. Then there exists a collection $\mathcal{B} \subseteq \mathcal{A}$ such that $|\mathcal{A}| = \kappa^+$ and a set \mathcal{A} such that \mathcal{B} forms a Δ -system with root \mathcal{A} .

- 2. Use the item above to prove that the poset $\operatorname{Fn}_{\lambda}(I, J)$ has the $(|J|^{<\lambda})^+$ -cc. In particular, $\operatorname{Fn}_{\lambda}(I, J)$ has the $(2^{<\lambda})^+$ -cc whenever $|J| \leq 2^{<\lambda}$.
- 3. Show that in the definition of G being a generic filter one can change the fact that G intersects all dense sets D in M by the following properties, specifically:
 - A filter G on \mathbb{P} is generic over M if and only if for every $p \in G$, if $D \in M$ is dense below p, $G \cap D \neq \emptyset$. D is dense below p, if for all $q \leq p$, there exist $r \in D$ and $r \leq q$.
 - A filter G on P is generic over M if and only if for every D ∈ M open dense set, G ∩ D ≠ Ø.
 D is open dense, if it is dense and additionally if p ∈ D and q ≤ p then q ∈ D.
 - A filter G on \mathbb{P} is generic over M if and only if for every $D \in M$ predense, $G \cap D \neq \emptyset$. D is predense, if every $p \in \mathbb{P}$ is compatible with some $q \in D$.
 - A filter G on \mathbb{P} is generic over M if and only if for every $A \in M$ is a maximal antichain, $G \cap A \neq \emptyset$.
- 4. Assume that $\mathbb{P}, J \in M$ and in M, \mathbb{P} is countable and J is a set of size \aleph_1 . Let G be \mathbb{P} -generic over M. In M[G], let E be a an uncountable subset of J. Prove that there is an $E' \in M$ such that $E' \subseteq E$ and E' is uncountable in M. Also give a counter-example to the existence of such an E' when $\mathbb{P} = \operatorname{Fn}(J, 2)$.

Hint: $E' = \{j \in J : p \Vdash j \in \dot{E}\}$ for some $p \in \mathbb{P}$, where \dot{E} is a name for E.

- 5. In M, let $\mathbb{P} = \operatorname{Fn}(\kappa, \lambda)$ where $\aleph_0 \leq \kappa < \lambda$. Then λ is countable in M[G] and all cardinals of M above λ remain cardinals in M[G]. Also prove that $M[G] \models \operatorname{GCH}$, assuming that $M \models \operatorname{GCH}$.
- 6. Assume that $M \models \neg$ CH and let $\mathbb{P} = (\operatorname{Fn}_{\aleph_1}(I,2))^M$ where $(|I| \ge \aleph_0)^M$. Then $M[G] \models$ CH and all cardinals κ of M with $(\aleph_1 < \kappa \le \mathfrak{c})^M$ cease to be cardinals in M[G].

Hint: There is a complete embedding $\operatorname{Fn}_{\aleph_1}(\omega_1, 2)$ into \mathbb{P} and $\operatorname{Fn}_{\aleph_1}(\omega_1, 2) \simeq \operatorname{Fn}_{\aleph_1}(\omega_1, \mathfrak{c})$.

7. Assume in M that λ is a singular cardinal, $|I| \ge \lambda$, $|J| \ge 2$ and $\mathbb{P} = \operatorname{Fn}_{\lambda}(I, J)$. Then λ is not a cardinal in M[G].