Special topics on set theory

Diana Carolina Montoya

November 2022

1 Weeks 5-7. Product forcing and cardinal arithmetic.

- 1. Let \mathbb{P} be such that for every $p \in \mathbb{P}$ there exist incompatible $q \leq p$ and $r \leq p$. Show that $G \subseteq \mathbb{P}$, then $G \times G$ is not generic on $\mathbb{P} \times \mathbb{P}$.
- 2. Give one example of posets \mathbb{P} , \mathbb{Q} both with the countable chain condition, such that $\mathbb{P} \times \mathbb{Q}$ has not the ccc.
- 3. Prove that if \mathbb{P} and \mathbb{Q} have the property K, then $\mathbb{P} \times \mathbb{Q}$ has the countable chain condition. A poset \mathbb{P} has the property K if every uncountable set of conditions has an uncountable subset of pairwise compatible conditions.
- 4. The singular cardinal hypothesis SCH holds in Easton's model.
- 5. If κ is a singular cardinal, then there is no normal ideal on κ which contains all bounded subsets of κ .
- 6. Assume that κ is a regular cardinal and \mathcal{I} is an ideal on κ . We call a function $g \in \kappa^{\kappa}$ minimal for \mathcal{I} if and only if the following conditions:
 - $g \leq_{\mathcal{I}} \mathrm{id}_{\kappa}$.
 - For every $\eta < \kappa$ we have $\{\xi < \kappa : g(\xi) = \eta\} \in \mathcal{I}$.
 - If $f \in \kappa^{\kappa}$ is regressive on κ , then $f \circ g$ is constant on an \mathcal{I} -positive set.

Prove that if \mathcal{I} is σ -complete ideal on κ with $\cup \mathcal{I} = \kappa$, then there is a function $g \in \kappa^{\kappa}$ which is minimal for \mathcal{I} .

- 7. Assume that κ is an uncountable regular cardinal and $\Phi \in ON^{\kappa}$ is a function. Prove that if $\sigma < \kappa$ and $S = \{\xi < \kappa : \Phi(\xi) \le \xi + \alpha\}$ is stationary in κ , then $\| \Phi \|_{\mathcal{I}_{NS}} \le \kappa + \alpha$. Here NS is the non-stationary ideal on κ .
- 8. Assume that κ , λ are cardinals satisfying $\omega \leq \lambda \leq \kappa$. Prove that there is a set $\mathcal{F} \subseteq \kappa^{\lambda}$ of almost disjoint functions such that $|\mathcal{F}| > \lambda$.

9. Assume that \aleph_{η} is a κ -strong singular cardinal, where $\kappa = \operatorname{cf}(\aleph_{\eta}) > \aleph_0$. Further, let $(\eta(\xi) : \xi < \kappa)$ be a normal sequence cofinal in η such that the set $S = \{\xi < \kappa : \exists(\aleph_{\eta(\xi)}) = \aleph_{\eta(\xi)}^+\}$ is stationary in κ . Prove that $\exists(\aleph_{\eta}) = \aleph_{\eta}^+$.

Hint: Prove that the set $S^* = \{\xi < \kappa : \aleph_{\eta(\xi)} \text{ is } \kappa \text{ strong and } \beth(\aleph_{\eta(\xi)}) = \aleph_{\eta(\xi)}^+\}$ is stationary and use the rules of cardinal arithmetic to prove that $\aleph_{\eta(\xi)}^{\kappa} = \beth(\aleph_{\eta(\xi)})$. Finally, apply Galvin-Hajnal lemma.

Lemma 1 (Galvin-Hajnal lemma). Assume that \aleph_{η} is a κ -strong singular cardinal, where $\kappa = cf(\aleph_{\eta}) > \omega$, $(\eta_{\xi} : \xi < \kappa)$ is a normal sequence cofinal in η , and $\lambda > 1$ is a cardinal. Further, let $\Phi \in ON^{\kappa}$ be an ordinal function satisfying:

$$\begin{split} \aleph_{\eta(\xi)}^{\lambda} &= \aleph_{\eta(\xi) + \Phi(\xi)} \\ \aleph_{\eta}^{\lambda} &\leq \aleph_{\eta + \|\Phi\|_{\mathcal{I}_{NS}}} \end{split}$$

10. If the set $\{\xi < \omega_1 : 2^{\aleph_{\xi}} \leq \aleph_{\xi+\xi+2}\}$ is stationary in ω_1 , then $2^{\aleph_{\omega_1}} \leq \aleph_{\omega_1+\omega_1+2}$.

for all $\xi < \kappa$. Then:

11. If \aleph_{ω_1} is a strong limit cardinal, and if $\{\xi < \omega_1 : \aleph_{\xi}^{\aleph_0} \le \aleph_{\xi+\xi}\}$ is a club in ω_1 . Then $2^{\aleph_{\omega_1}} < \aleph_{\omega_1+\omega_1}$.