Special topics on set theory

Diana Carolina Montoya

November 2022

1 Weeks 5-7. Product forcing and cardinal arithmetic.

1. Let \mathbb{P} be such that for every $p \in \mathbb{P}$ there exist incompatible $q \leq p$ and $r \leq p$. Show that $G \subseteq \mathbb{P}$, then $G \times G$ is not generic on $\mathbb{P} \times \mathbb{P}$.
2. Give one example of posets \mathbb{P}, \mathbb{Q} both with the countable chain condition, such that $\mathbb{P} \times \mathbb{Q}$ has not the ccc.
3. Prove that if \mathbb{P} and \mathbb{Q} have the property K, then $\mathbb{P} \times \mathbb{Q}$ has the countable chain condition. A poset \mathbb{P} has the property K if every uncountable set of conditions has an uncountable subset of pairwise compatible conditions.
4. The singular cardinal hypothesis SCH holds in Easton's model.
5. If κ is a singular cardinal, then there is no normal ideal on κ which contains all bounded subsets of κ.
6. Assume that κ is a regular cardinal and \mathcal{I} is an ideal on κ. We call a function $g \in \kappa^{\kappa}$ minimal for \mathcal{I} if and only if the following conditions:

- $g \leq_{\mathcal{I}} \mathrm{id}_{\kappa}$.
- For every $\eta<\kappa$ we have $\{\xi<\kappa: g(\xi)=\eta\} \in \mathcal{I}$.
- If $f \in \kappa^{\kappa}$ is regressive on κ, then $f \circ g$ is constant on an \mathcal{I}-positive set.

Prove that if \mathcal{I} is σ-complete ideal on κ with $\cup \mathcal{I}=\kappa$, then there is a function $g \in \kappa^{\kappa}$ which is minimal for \mathcal{I}.
7. Assume that κ is an uncountable regular cardinal and $\Phi \in \mathrm{ON}^{\kappa}$ is a function. Prove that if $\sigma<\kappa$ and $S=\{\xi<\kappa: \Phi(\xi) \leq \xi+\alpha\}$ is stationary in κ, then $\|\Phi\|_{\mathcal{I}_{N S}} \leq \kappa+\alpha$. Here NS is the non-stationary ideal on κ.
8. Assume that κ, λ are cardinals satisfying $\omega \leq \lambda \leq \kappa$. Prove that there is a set $\mathcal{F} \subseteq \kappa^{\lambda}$ of almost disjoint functions such that $|\mathcal{F}|>\lambda$.
9. Assume that \aleph_{η} is a κ-strong singular cardinal, where $\kappa=\operatorname{cf}\left(\aleph_{\eta}\right)>\aleph_{0}$. Further, let $(\eta(\xi): \xi<\kappa)$ be a normal sequence cofinal in η such that the set $S=\left\{\xi<\kappa: \beth\left(\aleph_{\eta(\xi)}\right)=\aleph_{\eta(\xi)}^{+}\right\}$is stationary in κ. Prove that $\beth\left(\aleph_{\eta}\right)=\aleph_{\eta}^{+}$.

Hint: Prove that the set $S^{*}=\left\{\xi<\kappa: \aleph_{\eta(\xi)}\right.$ is κ strong and $\left.\beth\left(\aleph_{\eta(\xi)}\right)=\aleph_{\eta(\xi)}^{+}\right\}$is stationary and use the rules of cardinal arithmetic to prove that $\aleph_{\eta(\xi)}^{\kappa}=\beth\left(\aleph_{\eta(\xi)}\right)$. Finally, apply Galvin-Hajnal lemma.

Lemma 1 (Galvin-Hajnal lemma). Assume that \aleph_{η} is a κ-strong singular cardinal, where $\kappa=$ $\operatorname{cf}\left(\aleph_{\eta}\right)>\omega,\left(\eta_{\xi}: \xi<\kappa\right)$ is a normal sequence cofinal in η, and $\lambda>1$ is a cardinal. Further, let $\Phi \in \mathrm{ON}^{\kappa}$ be an ordinal function satisfying:

$$
\aleph_{\eta(\xi)}^{\lambda}=\aleph_{\eta(\xi)+\Phi(\xi)}
$$

for all $\xi<\kappa$. Then:

$$
\aleph_{\eta}^{\lambda} \leq \aleph_{\eta+\|\Phi\|_{\mathcal{I}_{N S}}}
$$

10. If the set $\left\{\xi<\omega_{1}: 2^{\aleph_{\xi}} \leq \aleph_{\xi+\xi+2}\right\}$ is stationary in ω_{1}, then $2^{\aleph_{\omega_{1}}} \leq \aleph_{\omega_{1}+\omega_{1}+2}$.
11. If $\aleph_{\omega_{1}}$ is a strong limit cardinal, and if $\left\{\xi<\omega_{1}: \aleph_{\xi}^{\aleph_{0}} \leq \aleph_{\xi+\xi}\right\}$ is a club in ω_{1}. Then $2^{\aleph_{\omega_{1}}}<\aleph_{\omega_{1}+\omega_{1}}$.
