Winter 2015, Introduction to mathematical logic

Series 5

Exercise 1 Let $\mathcal{I} = (I, <^\mathcal{I})$ be a partial order such that any two elements have a common upper bound, that is,

$$(I, <^\mathcal{I}) = \forall x \forall y \exists z((x < z \lor x = z) \land (y < z \lor y = z)).$$

Let \mathcal{L} be a language and $(\mathcal{A}_i)_{i \in I}$ a family of structures for \mathcal{L} such that \mathcal{A}_i is a substructure of \mathcal{A}_j whenever $i <^\mathcal{I} j$. Let \mathcal{A} be the \mathcal{L}-structure with universe $\bigcup_{i \in I} \mathcal{A}_i$ (where \mathcal{A}_i is the universe of \mathcal{A}_i) that interprets relation symbols R, functions symbols f and constants c of \mathcal{L} as follows:

$$R^\mathcal{A} := \bigcup_{i \in I} R^{\mathcal{A}_i}, \; f^\mathcal{A} := \bigcup_{i \in I} f^{\mathcal{A}_i}, \; c^\mathcal{A} := c^{\mathcal{A}_{i_0}}$$ \hspace{1cm} (1)

where i_0 is some arbitrary fixed element of I.

(a) Show that \mathcal{A} is well-defined and does not depend on the choice of i_0. It is often denoted $\bigcup_{i \in I} \mathcal{A}_i$ and called the union of $(\mathcal{A}_i)_{i \in I}$.

(b) An $\forall\exists$-formula is one of the form $\forall x_1 \cdots \forall x_r \exists y_1 \cdots \exists y_s \psi$ for $r, s \in \mathbb{N}$ and ψ quantifier-free. Show that if a closed $\forall\exists$-formula holds true in all \mathcal{A}_i, then it holds true in \mathcal{A}.

Exercise 2 Let \mathcal{L} be a language.

(a) Let \mathcal{M} be a structure for \mathcal{L}. Let $X \subseteq M$ be nonempty. Show that there exists a substructure $\langle X \rangle^\mathcal{M}$ of \mathcal{M} whose universe contains X and is “the smallest such substructure”, i.e., $\langle X \rangle^\mathcal{M}$ is a substructure of every substructure of \mathcal{M} whose universe contains X. Substructures of the form $\langle X \rangle^\mathcal{M}$ with $X \subseteq M$ nonempty and finite are called finitely generated.

(b) Give a precise formulation of the following statement and prove it: “each structure is the union of its finitely generated substructures”.

1
Exercise 3 Let \mathcal{C} be the field of complex numbers.

(a) Show that a closed $\forall \exists$-formula that holds in all finite fields, also holds in \mathcal{C}.

Hint: First apply Series 4, Exercise 3 (b). Then apply (b) of the previous exercise.

(b) A map $f : \mathbb{C}^r \to \mathbb{C}^s$ is *polynomial* if there are polynomials $p_1, \ldots, p_s \in \mathbb{C}[X_1, \ldots, X_r]$ such that

$$f(c_1, \ldots, c_r) = (p_1(c_1, \ldots, c_r), \ldots, p_s(c_1, \ldots, c_r))$$

Show that every injective polynomial map from \mathbb{C}^r to \mathbb{C}^r is surjective.

Hint: For each $d \in \mathbb{N}$ write a closed formula expressing that injective polynomial maps “of degree $\leq d$” are surjective.

Exercise 4 Let \mathcal{L} be a language and \mathcal{M}, \mathcal{N} structures for \mathcal{L}. An *algebraic embedding of \mathcal{M} into \mathcal{N}* is an isomorphism of \mathcal{M} onto a substructure of \mathcal{N}.

The *algebraic diagram of \mathcal{M}* is the set $\text{Alg}(\mathcal{M})$ of all closed $\mathcal{L}(\mathcal{M})$-literals true in \mathcal{M} (a *literal* is a formula which is either atomic or the negation of an atomic formula).

Let Γ be an \mathcal{L}-theory.

(a) Show that there is an algebraic embedding of \mathcal{M} into some model of Γ if and only if $\Gamma \cup \text{Alg}(\mathcal{M})$ is consistent.

(b) Show that there is an algebraic embedding of \mathcal{M} into some model of Γ if and only if \mathcal{M} satisfies every closed universal \mathcal{L}-formula which is implied by Γ.

(c) If every finitely generated substructure of \mathcal{M} is algebraically embeddable into some model of Γ, then so is \mathcal{M}.