Exercise 1 Let \mathcal{L} be a first-order language, φ a closed \mathcal{L}-formula and Γ be an \mathcal{L}-theory. Let I be a nonempty index set, and for each $i \in I$ let J_i be a nonempty index set. For $i \in I$ and $j \in J_i$ let ψ_{ij} be a closed \mathcal{L}-formula. Assume Γ implies the “infinitary formula”

$$\varphi \leftrightarrow \bigvee_{i \in I} \bigwedge_{j \in J_i} \psi_{ij},$$

that is, assume a model \mathcal{M} of Γ is a model of φ if and only if there is $i \in I$ such that for all $j \in J_i$ we have $\mathcal{M} \models \psi_{ij}$.

Prove that there exists a finite subset $I^0 \subseteq I$ and for each $i \in I^0$ finite subsets $J^0_i \subseteq J_i$ such that

$$\Gamma \models \psi \leftrightarrow \bigvee_{i \in I^0} \bigwedge_{j \in J^0_i} \psi_{ij}.$$

Hint: prove this first for the case that I is a singleton.

Exercise 2 (Beth’s Definability Theorem) Let \mathcal{L} be a first-order language and P a new unary relation symbol. Let Γ be an $(\mathcal{L} \cup \{P\})$-theory. Assume that Γ implicitly defines P: for all models \mathcal{M}, \mathcal{N} of Γ with $\mathcal{M} \models \mathcal{L} = \mathcal{N} \models \mathcal{L}$ we have $P^\mathcal{M} = P^\mathcal{N}$ (and hence $\mathcal{M} = \mathcal{N}$).

Prove that Γ explicitly defines P: there exists an \mathcal{L}-formula $\varphi = \varphi(x)$ with at most one free variable x such that

$$\Gamma \models \forall x(\neg P x \leftrightarrow \varphi(x)).$$

*Hint: Let Γ' be Γ with P replaced by a copy P'. Let c be a new constant. Show $(\Gamma \cup \{Pc\}) \cup (\Gamma' \cup \{\neg P'c\})$ is inconsistent and apply Joint Consistency.