Descriptive Set Theory on Generalised Baire Space

Joint work with Khomskii-Kulikov (first part) and with Hyttinen-Kulikov (second part)

We assume $\kappa = \kappa^{<\kappa}$.

κ-Baire space $= \kappa^{\kappa}$ consists of all $f : \kappa \to \kappa$, with basic open sets given by

$$\{ f : \kappa \to \kappa \mid s \subseteq f \}$$

where $s \in \kappa^{<\kappa}$.

Nowhere dense $= \text{Closure has no interior}$
Meager $= \text{union of } \kappa\text{-many nowhere dense sets}$

Baire measurable $= \text{differs from an open set by a meager set}$

The Baire Category theorem holds (the intersection of κ-many open dense sets is dense)
Regularity Properties

Baire measurability is just one example of a regularity property.

A forcing P is κ-treelike iff it is a κ-closed suborder of the set of subtrees of $2^{\lt \kappa}$, ordered by inclusion.

Some examples of κ-treelike forcings:

κ-Cohen \mathbb{C}_κ. These are subtrees of $2^{\lt \kappa}$ consisting of a stem and all nodes above it.

κ-Sacks \mathbb{S}_κ. These are κ-closed subtrees of $2^{\lt \kappa}$ with the property that every node has a splitting extension and the limit of splitting nodes is a splitting node.

κ-Silver \mathbb{V}_κ, for inaccessible κ. These are κ-Sacks trees T which are uniform, i.e. if s, t are elements of T of the same length then $s \star i$ is in T iff $t \star i$ is in T for $i = 0, 1$.
Regularity Properties

κ-Miller \mathbb{M}_κ. These are κ-closed subtrees of the tree $\kappa^{<\kappa}$ of increasing sequences in $\kappa^{<\kappa}$ with the property that every node can be extended to a club-splitting node and the limit of club-splitting nodes is club-splitting. We also require continuous club-splitting, which means that if s is a limit of club-splitting nodes then the club witnessing club-splitting for s is the intersection of the clubs witnessing club-splitting for the club-splitting proper initial segments of s.

κ-Laver \mathbb{L}_κ. These are κ-Miller trees with the property that every node beyond some fixed node (the stem) is club-splitting.

κ-Mathias \mathbb{R}_κ. Conditions are pairs (s, C) where s is a bounded subset of κ and C is a club in κ. $(t, D) \leq (s, C)$ iff t end-extends s, $D \subseteq C$ and $t \setminus s \subseteq C$. This is equivalent to a κ-treelike forcing.
Regularity Properties

The 6 examples above fall into two groups:

\mathbb{C}_κ, \mathbb{L}_κ and \mathbb{R}_κ are topological: The $[T]$ for $T \in \mathcal{P}$ form the base for a topology (either $[S] \cap [T]$ is empty or contains some $[U]$). They are κ^+-cc.

\mathbb{S}_κ, \mathbb{M}_κ and \mathbb{V}_κ are not κ^+-cc but they satisfy a form of fusion (called Axiom A*), sufficient to show that κ^+ is preserved.

Remark. There is no obvious κ-analogue of Solovay forcing (random real forcing). However:

Theorem

(SDF-Laguzzi) If $V = L$ and κ is inaccessible then there is a Δ^1_1 κ-treelike forcing \mathbb{B}_κ which is κ^+-cc and κ^κ-bounding.
Regularity Properties

To define “\mathcal{P}-measurability” for κ-treelike forcings \mathcal{P} we proceed as follows.

A set A is:

Strictly \mathcal{P}-null if every tree $T \in \mathcal{P}$ has a subtree in \mathcal{P}, none of whose κ-branches belongs to A.

\mathcal{P}-null (or \mathcal{P}-meager) if it is the union of κ-many strictly \mathcal{P}-null sets.

\mathcal{P}-measurable (or \mathcal{P}-regular) if any tree $T \in \mathcal{P}$ has a subtree $S \in \mathcal{P}$ such that either all κ-branches through S, with a \mathcal{P}-null set of exceptions, belong to A or all κ-branches through S, with a \mathcal{P}-null set of exceptions, belong to the complement of A.
Regularity Properties

Proposition

(a) If \mathcal{P} is topological then:
(a1) A set is \mathcal{P}-measurable iff it differs from a \mathcal{P}-open set by a \mathcal{P}-null set. (So \mathcal{C}_κ-measurable is the same as Baire-measurable.)
(a2) Not every \mathcal{P}-null set is strictly \mathcal{P}-null.
(a3) Borel sets are \mathcal{P}-measurable.
(b) If \mathcal{P} satisfies fusion (Axiom A*) then:
(b1) Every \mathcal{P}-null set is strictly \mathcal{P}-null.
(b2) Borel sets are \mathcal{P}-measurable.

Question. As in the case $\kappa = \omega$, are all Σ^1_1 sets \mathcal{P}-measurable?

Answer: NO!
Regularity Properties

Fact. The club filter $\{f : \kappa \rightarrow 2 \mid f(i) = 1 \text{ for club-many } i < \kappa\}$ is not κ-Sacks (S_κ) measurable.

Proof. Otherwise there is a κ-Sacks tree T such that either for all $f \in [T]$, $f(i) = 1$ for club-many $i < \kappa$ or for all $f \in [T]$, $f(i) = 0$ for stationary-many $i < \kappa$.

But we can easily build f_0, f_1 in $[T]$ such that whenever $f_0 | i$ splits in T, $f(i) = 0$ and whenever $f_1 | i$ splits in T, $f(i) = 1$.

And the set of i where $f_0 | i$ splits forms a club (same for f_1).

So $[T]$ has an element f_0 which is not in the club filter and an element f_1 which is. \square
Regularity Properties

Now we can apply the following result to conclude that Σ^1_1 sets need not be \mathcal{P}-measurable for any of our 6 examples. For a pointclass Γ, let $\Gamma(\mathcal{P})$ denote that sets in Γ are \mathcal{P}-measurable.

Theorem

\[
\begin{align*}
(a) \quad & \Gamma(\mathbb{C}_\kappa) \to \Gamma(\mathbb{V}_\kappa) \to \Gamma(\mathbb{S}_\kappa). \\
(b) \quad & \Gamma(\mathbb{C}_\kappa) \to \Gamma(\mathbb{M}_\kappa) \to \Gamma(\mathbb{S}_\kappa). \\
(c) \quad & \Gamma(\mathbb{R}_\kappa) \to \Gamma(\mathbb{M}_\kappa). \\
(d) \quad & \Gamma(\mathbb{L}_\kappa) \to \Gamma(\mathbb{M}_\kappa).
\end{align*}
\]

In particular $\Gamma(\mathbb{S}_\kappa)$ is the weakest of them all, so as it fails for $\Gamma = \Sigma^1_1$ so do all the others.

Question. What about Δ^1_1 (\neq Borel for $\kappa > \omega$)?
Regularity Properties

Theorem

It is consistent to have $\Delta_1^1(\mathcal{P})$ for $\mathcal{P} = \mathbb{C}_\kappa$, \mathbb{L}_κ and \mathbb{R}_κ simultaneously.

This is proved by interleaving iterations with $< \kappa$-support of these three forcings for κ^+ steps.

Note that in the above model we also have $\Delta_1^1(\mathcal{P})$ for $\mathcal{P} = \mathbb{M}_\kappa$, \mathbb{V}_κ and \mathbb{S}_κ, by the previous slide.

Question. But can we separate $\Delta_1^1(\mathcal{P})$ for different \mathcal{P}?

This looks hard. But we have one result about it:
Regularity Properties

Theorem

There is a model where κ is inaccessible and $\Delta_1^1(\forall \kappa)$ holds but $\Delta_1^1(\mathbb{M}_\kappa)$ fails.

This is proved by iterating $\forall \kappa$ for κ^+ steps over L, where κ is inaccessible; $\Delta_1^1(\forall \kappa)$ holds in the resulting model.

The main lemma is that $\Delta_1^1(\mathbb{M}_\kappa)$ yields functions from κ to κ that are unbounded over $L[f]$, for any given $f : \kappa \rightarrow \kappa$.

As the iteration is κ^κ-bounding and therefore does not add functions which are unbounded over the ground model, we conclude that $\Delta_1^1(\mathbb{M}_\kappa)$ fails.

It follows from our earlier implications between regularity properties that in the above model, $\Delta_1^1(\mathbb{C}_\kappa)$, $\Delta_1^1(\mathbb{R}_\kappa)$ and $\Delta_1^1(\mathbb{L}_\kappa)$ all fail, but $\Delta_1^1(\mathbb{S}_\kappa)$ holds.
Regularity Properties

The main difficulty with separating Δ^1_1 regularity properties is the lack of “Solovay-type characterisations”.
In the classical setting we have:

(Solovay) Σ^1_2 sets are Baire-measurable iff for every real x there is a comeager set of reals Cohen over $L[x]$.
(Shelah) Δ^1_2 sets are Baire-measurable iff for every real x there is a Cohen real over $L[x]$.

In fact, Shelah’s result provably fails for uncountable κ:

Theorem

(SDF-Wu-Zdomskyy) Suppose that κ is regular and uncountable in L. Then in a cofinality-preserving forcing extension, for every $x \subseteq \kappa$ there is a κ-Cohen over $L[x]$ but the CUB filter on κ is Δ^1_1. In particular not all Δ^1_1 sets are Baire-measurable.
Borel Reducibility

If E and F are equivalence relations on κ^κ then we say that E is \textit{Borel reducible to} F, written $E \leq_B F$, if there is a Borel function f such that for all x, y: $E(x, y)$ iff $F(f(x), f(y))$. The relation \leq_B is reflexive and transitive and we write \equiv_B for the equivalence relation it induces.
Borel Reducibility: Dichotomies

In the classical setting one has two important Dichotomies:

Silver Dichotomy. Suppose that E is a Borel equivalence relation on ω^ω with uncountably many classes. Then equality is Borel (even continuously) reducible to E.

Harrington-Kechris-Louveau Dichotomy. Suppose that E is a Borel equivalence relation. Then either E is Borel reducible to equality or E_0 is Borel reducible to E, where E_0 is the equivalence relation of equality mod finite.

In generalised Baire space, the Silver Dichotomy fails in L but consistently holds (after collapsing a Silver indiscernible to become ω_2), and the Harrington-Kechris-Louveau Dichotomy simply fails.
Borel Reducibility: Small Equivalence Relations

Theorem

*If E is the orbit equivalence relation of a Borel action of a group of size at most κ then E is Borel reducible to E_0.***

Proof. The key observation is this: Let F_κ denote the free group on κ generators. Then F_α has cardinality less than κ for $\alpha < \kappa$ (this fails when κ equals ω). Using this one shows that the shift action of F_κ (sending (g, X) in $G \times \mathcal{P}(F_\kappa)$ to $\{g \cdot x \mid x \in X\}$) reduces to E_0: Map $X \subseteq F_\kappa$ to the sequence $f(X) = (<_\alpha$-least element of $\{g_\alpha \cdot (X \cap F_\alpha) \mid g_\alpha \in F_\alpha\} \mid \alpha < \kappa$). If X, Y are equivalent under shift then it is easy to check $f(X)E_0f(Y)$; the converse uses Fodor’s theorem. □
Borel Reducibility: Small Equivalence Relations

Theorem

Assume $V = L$. Then there is a smooth Borel equivalence relation with classes of size 2 which is not induced by a Borel action of a small group.

Proof. Let X be the Borel set of Master Codes for initial segments of L of size κ and $\sim X$ its complement. Define a bijection $f : \sim X \to X$ with Borel graph and define $E(x, y)$ iff $y = f(x)$ or $x = f(y)$. Then E is smooth. If it were induced by a Borel action of a group of size at most κ then f would be Borel on a non-meager set, which is impossible. □
Borel Reducibility: E_1

Theorem

E_1 is Borel reducible to E_0.

Proof idea: For limit $\alpha < \kappa$, define E_1^α to be the equivalence relation on $(2^\alpha)^\alpha$ approximating E_1 defined by $(x_i)_{i<\alpha} E_1^\alpha (y_i)_{i<\alpha}$ iff for some $\beta < \alpha$, $x_i = y_i$ for all $i > \beta$.

Now define $F((x_i)_{i<\kappa})(\alpha)$ to be 0 if α is not a limit and otherwise to be a code for the E_1^α-equivalence class of $(x_i \upharpoonright \alpha)_{i<\alpha}$.

Clearly if $(x_i)_{i<\kappa} E_1 (y_i)_{i<\kappa}$ then $F((x_i)_{i<\kappa})$ and $F((y_i)_{i<\kappa})$ are E_0-equivalent.

Conversely, if $(x_i)_{i<\kappa}$ and $(y_i)_{i<\kappa}$ are not E_1 equivalent then for club-many $\alpha^* < \kappa$, $(x_i \upharpoonright \alpha^*)_{i<\alpha^*}$ and $(y_i \upharpoonright \alpha^*)_{i<\alpha^*}$ are not $E_1^\alpha^*$-equivalent; it follows that $F((x_i)_{i<\kappa})$ and $F((y_i)_{i<\kappa})$ are not E_0-equivalent. \Box
(a) Each Borel isomorphism relation is Borel reducible to the α-th jump of equality for some $\alpha < \kappa^+$.
(b) For each $\alpha < \kappa^+$, the α-th jump of equality is Borel reducible to equality on κ^κ modulo a μ-nonstationary set, for any regular $\mu < \kappa$.
(c) A first-order theory is classifiable and shallow iff the isomorphism relation on its models of size κ is Borel.
(d) (For a suitable successor κ) A first-order theory is unclassifiable iff equality on 2^κ modulo a μ-nonstationary set is Borel reducible to the isomorphism relation on its models of size κ for some regular $\mu < \kappa$.

Is equality on κ^κ modulo a μ-nonstationary set Borel reducible to equality on 2^κ modulo a μ-nonstationary set?
If so we have:
Borel Reducibility: Isomorphism Relations

If T_0 is classifiable and shallow and T_1 is unclassifiable then isomorphism on the models of T_0 of size κ is Borel reducible to isomorphism on the models of T_1 of size κ (for example when κ is the successor of an uncountable regular and GCH holds).