For uncountable regular κ, NS_κ denotes the ideal of nonstationary subsets of κ

Proposition

NS_κ is Σ_1 definable with parameter κ.

Proof. $X \in \text{NS}_\kappa$ iff X is a subset of κ and there exists C such that C is a closed unbounded subset of κ disjoint from X. This is Σ_1 with parameter κ. □

We say that NS_κ is Δ_1 definable if it is both Σ_1 and Π_1 definable using subsets of κ as parameters.
\[\Delta_1 \text{ Definability of the Nonstationary Ideal} \]

For \(\text{NS}_\kappa \) to be \(\Delta_1 \) definable one needs to “witness stationarity”. Typically this is not possible:

Theorem

Assume \(V = L \). Then \(\text{NS}_\kappa \) is not \(\Delta_1 \) definable.

Proof Sketch. Suppose that \(\varphi(X) \) is a \(\Sigma_1 \) formula with a variable \(X \) denoting a subset of \(\kappa \).

If \(\varphi(X) \) is true then by condensation, \(\varphi(X \cap \alpha) \) is true for club-many \(\alpha < \kappa \); in fact, for club-many \(\alpha < \kappa \), \(\varphi(X \cap \alpha) \) is true “while \(\alpha \) still looks regular”, i.e. in some \(L_\beta \models \alpha \) regular.

Conversely, if \(\varphi(X) \) is false then for any club \(C \) there is \(\alpha \) in \(C \) such that \(\varphi(X \cap \alpha) \) is false in the largest \(L_\beta \models \alpha \) regular.

So the club filter is “complete” for \(\Sigma_1 \) subsets of \(\mathcal{P}(\kappa) \) and therefore not \(\Delta_1 \). \(\Box \)
Δ₁ Definability of the Nonstationary Ideal

Large cardinals also prevent NS_κ from being Δ₁ definable.

Theorem

Suppose that κ is weakly compact. Then NS_κ is not Δ₁ definable.

Proof. Again let φ(X) be a Σ₁ formula with a variable X denoting a subset of κ.

As before, if φ(X) is true then by condensation, φ(X ∩ α) is true for club-many α < κ.

Conversely, suppose that φ(X) is false. Then φ(X) is false in H(κ⁺) and the latter is a Π₁⁻ statement about V_κ. By weak compactness (= Π₁⁻ reflection), φ(X ∩ α) is false for stationary-many α < κ.

So again the club filter is “complete” for Σ₁ subsets of ℙ(κ) and therefore not Δ₁. □
Δ_1 Definability of the Nonstationary Ideal

However it is indeed possible for NS_{ω_1} to be Δ_1 definable.

Theorem

(Mekler-Shelah, proof repaired by Hyttinen-Rautiela) Assume GCH. Then there is a proper, cardinal-preserving forcing extension satisfying GCH in which NS_{ω_1} is Δ_1 definable.

Idea of Proof. For $X \subseteq \omega_1$ let $T(X)$ be the tree of countable, closed subsets of X ordered by end-extension. Then X contains a club iff $T(X)$ has a branch of length ω_1.

The idea is to force a tree T (called a canary tree) of size and height ω_1 with no ω_1-branch such that whenever X is stationary, costationary there are embeddings of $T(X)$ and $T(\sim X)$ into T. Then conversely, if there are embeddings of both $T(X)$ and $T(\sim X)$ into T it follows that X is both stationary and costationary. So we have:
\(\Delta_1 \) Definability of the Nonstationary Ideal

\(X \) is stationary iff
\(X \) contains a club or there are embeddings of both \(T(X) \) and \(T(\sim X) \) into \(T \)

and therefore \(\text{NS}_{\omega_1} \) is \(\Delta_1 \) definable. □

With some extra work, Hyttinen-Rautila obtained the natural generalisation to \(\text{NS}_{\kappa^+} \) for any regular \(\kappa \):
Let \(\text{Cof}(\kappa) \) denote the class of ordinals of cofinality \(\kappa \) and \(\text{NS}_{\kappa^+} \upharpoonright \text{Cof}(\kappa) \) the ideal of stationary subsets of \(\kappa^+ \cap \text{Cof}(\kappa) \),

\textbf{Theorem}

\textit{(Hyttinen-Rautila)} Assume GCH and \(\kappa \) regular. Then there is a \(\kappa \)-proper, cardinal-preserving forcing extension satisfying GCH in which \(\text{NS}_{\kappa^+} \upharpoonright \text{Cof}(\kappa) \) is \(\Delta_1 \) definable.
Δ_1 Definability of the Nonstationary Ideal

With a different strategy the Hyttinen-Rautila result can be improved. For stationary $A \subseteq \kappa^+$ let $\text{NS}_{\kappa^+} \upharpoonright A$ denote the ideal of nonstationary subsets of A.

Theorem

(SDF-Hyttinen-Kulikov) Assume GCH and κ regular. Then for any costationary $A \subseteq \kappa^+$ there is a cardinal-preserving forcing extension satisfying GCH which preserves stationary subsets of A in which $\text{NS}_{\kappa^+} \upharpoonright A$ is Δ_1 definable.

The difference now is that only stationary subsets of A, and not of $\sim A$, are preserved. Thus the idea of the proof is to witness the stationarity of subsets of A by selectively killing the stationarity of certain “canonically chosen” subsets of $\sim A$ (obtained via a generic \Box sequence).
Δ_1 Definability of the Nonstationary Ideal: Main Result

Obviously the strategy of making $\text{NS}_{\kappa^+} \upharpoonright A \Delta_1$ definable by killing the stationarity of subsets of $\sim A$ is of no use if one wants to obtain the Δ_1 definability of the full unrestricted NS_{κ^+}.

So a new idea is needed to show (our main result):

Theorem

(SDF-Wu-Zdomskyy) Assume $V = L$ and let λ be any infinite cardinal. Then there is a cardinal-preserving forcing extension satisfying GCH which preserves stationary subsets of λ^+ in which NS_{λ^+} is Δ_1 definable.

Thus we can handle the full NS at all successor cardinals.

I’ll give now an outline of the proof.
Δ_1 Definability of the Nonstationary Ideal: Main Result

Let κ denote λ^+. We want to perform an iteration of length κ^+ which preserves the stationarity of subsets of κ, preserves cardinals and produces “witnesses” to the stationarity of subsets of κ. Note that by Löwenheim-Skolem, if a subset of $\mathcal{P}(\kappa)$ is Σ_1 with a subset of κ as parameter then it is Σ_1 over $H(\kappa^+)$ and therefore our witnesses should be elements of $H(\kappa^+)$. In fact the only parameter we will need is κ and our witnesses will be subsets of κ.

Now suppose that S is a stationary subset of κ and we want to “witness” this fact. The approach of SDF-Hytten-Kulikov was to fix a sequence $(S_i \mid i < \kappa^+)$ of “canonical” stationary subsets of κ and arrange that for some $\alpha < \kappa^+$, the stationarity of the S_i for i in $[\kappa \cdot \alpha, \kappa \cdot \alpha + \kappa)$ is selectively killed so as to code S. But we can’t do this as we want to preserve the stationarity of subsets of κ.

§ 1. Definability of the Nonstationary Ideal: Main Result

So instead we choose “canonical” stationary subsets \((S_i \mid i < \kappa^+)\) of \(\kappa^+\) (concentrating on \(\text{Cof}(\kappa)\)) and arrange that for some \(\alpha < \kappa^+\), the stationarity of the \(S_i\) for \(i\) in \([\kappa \cdot \alpha, \kappa \cdot \alpha + \kappa]\) is selectively killed so as to code \(S\).

But now our witnesses are subsets of \(\kappa^+\) instead of \(\kappa\) so we only get a definition of the collection of stationary subsets of \(\kappa\) which is \(\Sigma_1\) over \(H(\kappa^{++})\) with \(\kappa^+\) as parameter.

How do we convert this into a \(\Sigma_1\) definition over \(H(\kappa^+)\) with \(\kappa\) as parameter?

Here we use localisation (David’s trick).
Instead of just the “global property”

\[S \subseteq \kappa \text{ is stationary iff } S \text{ is coded into the stationarity of the } S_i \subseteq \kappa^+ \text{ for } i \text{ in } [\kappa \cdot \alpha, \kappa \cdot \alpha + \kappa) \text{ for some } \alpha < \kappa^+ \]

we also ensure its “local version”

\[S \subseteq \kappa \text{ is stationary iff for some } X \subseteq \kappa, \text{ every “suitable” model } M \text{ of size } < \kappa \text{ containing } X \cap \kappa^M \text{ (where } \kappa^M \text{ denotes } (\lambda^+)^M) \text{ satisfies that } S \cap \kappa^M \text{ is coded into the stationarity of the } S_i^M \text{ for } i \text{ in } [\kappa^M \cdot \alpha, \kappa^M \cdot \alpha + \kappa^M) \text{ for some } \alpha < (\kappa^M)^+, \]

where \((S_i^M \mid i < ((\kappa^M)^+)^M)\) is \(M\)'s version of \((S_i \mid i < \kappa^+)\).

The local version implies the global one by Löwenheim-Skolem and moreover yields a definition of stationarity for subsets of \(\kappa\) which is \(\Sigma_1\) over \(H(\kappa^+)\), as needed.
In the local version

\(S \subseteq \kappa \) is stationary iff for some \(X \subseteq \kappa \), every “suitable” model \(M \) of size \(< \kappa \) containing \(X \cap \kappa^M \) satisfies that \(S \cap \kappa^M \) is coded into the stationarity of the \(S^i_M \) for \(i \) in \([\kappa^M \cdot \alpha, \kappa^M \cdot \alpha + \kappa^M) \) for some \(\alpha < (\kappa^M)^+ \).

we say that \(X \) is a “local witness” (or “locally witnesses”) that \(S \subseteq \kappa \) is stationary.

We produce such a local witness \(X \) in three steps:
\[\Delta_1 \text{ Definability of the Nonstationary Ideal: Main Result} \]

1. Localise below \(\kappa^+ \), i.e. produce \(Y \subseteq \kappa^+ \) such that every "suitable" model \(M \) of size \(\kappa \) containing \(Y \cap (\kappa^+)^M \) satisfies that \(S \) is coded into the stationarity of the \(S_i^M = S_i \cap (\kappa^+)^M \) for \(i \) in \([\kappa \cdot \alpha, \kappa \cdot \alpha + \kappa)\) for some \(\alpha < \kappa^+ \).

This is easy and does not require forcing.

2. Almost disjoint code \(Y \) into a subset \(X_0 \) of \(\kappa \).

Then \(X_0 \) also localises below \(\kappa^+ \) as in 1.

3. Add the desired \(X \subseteq \kappa \) satisfying \(\text{Even}(X) = X_0 \) by forcing with initial segments of length less than \(\kappa \).

The fact that \(X_0 \) localises below \(\kappa^+ \) is sufficient to argue that this forcing is \(\kappa \)-distributive.
Δ₁ Definability of the Nonstationary Ideal: Main Result

Now I can describe the iteration $P = (P_\xi, \dot{Q}_\xi \mid \xi < \kappa^+)$.

In κ^+ steps, choose via bookkeeping names for stationary subsets S of κ, code such S by killing the stationarity of selected canonical stationary subsets S_i of κ^+ and localise these stationary-kills, thereby producing local witnesses to the stationarity of each stationary subset S of κ.

The iteration uses supports of size κ for killing the stationarity of selectd S_i’s and supports of size less than κ for the localisation forcings.

There are three things to check about the iteration:
Δ_1 Definability of the Nonstationary Ideal: Main Result

1. The iteration is κ-distributive.
 We show that P_ξ is κ-distributive by induction on $\xi \leq \kappa^+$. Of course the induction hypothesis is stronger than this; we need to know that we can build conditions which serve as strong master conditions for each model in a sequence of models of length $\lambda + 1$ built by taking successive Skolem hulls. So the argument is Jensen-style, tracing back to his coding work, and not Shelah-style; even in the case $\kappa = \omega_1$ there is no form of properness available.

2. Any stationary subset of κ that arises during the iteration remains forever stationary.
 Again we need to build a strong master condition for each model in a sequence of models built by taking successive Skolem hulls, but now the sequence has arbitrary successor length less than κ. A \square_λ sequence is used to thin out such a sequence to a subsequence of length at most $\lambda + 1$.
3. A canonical stationary set $S_i \subseteq \kappa^+$ remains stationary unless in the course of the iteration its stationarity is explicitly killed in order to code some stationary $S \subseteq \kappa$.

Of course here we use the fact that the forcings to kill stationarity of selected S_i’s (the “upper part”) are κ-closed and the localisation forcings (the “lower part”) are κ^+-cc.

3 implies that κ^+ is preserved.
As the entire iteration has a dense subset of size κ^+ all cardinals are preserved and GCH holds at cardinals $\geq \kappa$.
GCH holds below κ as no bounded subsets of κ are added.
Finally, by localisation together with the fact that no S_i “accidentally” loses its stationarity, we have that $S \subseteq \kappa$ is stationary iff S has a local witness, a Σ_1 property with parameter κ.
So the Theorem is proved.
In classical Baire Space, the Baire Property for all $\Delta_1 (= \Delta^1_2)$ sets of reals is equivalent to the existence of a Cohen real over $L[x]$ for each real x.

In our model where NS_κ is Δ_1 (for a successor κ) we have the existence of a κ-Cohen set over $L[x]$ for each $x \subseteq \kappa$.

As Halko-Shelah showed that NS_κ does not have the Baire Property, our result shows that the classical characterisation of the Δ_1 Baire Property does not generalise to successor κ.

Descriptive Set Theory on κ-Baire Space
Δ₁ Definability of the Nonstationary Ideal: Further Remarks

\textit{When } \kappa = \omega₁

Wu and I showed that NS\(\omega_1\) can be both precipitous and \(\Delta₁\),
starting with a measurable, extending a result of Magidor.
Woodin showed that NS\(\omega_1\) can be \(\omega_1\)-dense, and therefore both \(\Delta₁\)
and saturated, using \(\omega\) Woodin cardinals.
Hoffelner and I get that NS\(\omega_1\) can be saturated and \(\Delta₁\) (together
with a \(\Sigma^1_4\) wellorder of the reals) using just one Woodin cardinal.

There are many further questions to ask about the \(\Delta₁\) definability
of NS\(\kappa\), regarding inaccessible \(\kappa\), failures of GCH and saturation for
\(\kappa > \omega₁\), but I’ll stop here.

THANKS!