Using almost disjoint coding we prove the consistency of the existence of a Π^1_2 definable ω-mad family of infinite subsets of ω (resp. functions from ω to ω) together with $b = 2^\omega = \omega_2$.

1. Introduction

A classical result of Mathias [7] states that there exists no Σ^1_1 definable mad family of infinite subsets of ω. One of the two main results of [4] states that there is no Σ^1_1 definable ω-mad family of functions from ω to ω. It is the purpose of this paper to analyse how low in the projective hierarchy one can consistently find a mad subfamily of $[\omega]^\omega$ or ω^ω.

Recall that $a, b \in [\omega]^\omega$ are called almost disjoint, if $a \cap b$ is finite. An infinite set A is said to be an almost disjoint family of infinite subsets of ω (or an almost disjoint subfamily of $[\omega]^\omega$) if $A \subset [\omega]^\omega$ and any two elements of A are almost disjoint. A is called a mad family of infinite subsets of ω (abbreviated from “maximal almost disjoint”), if it is maximal with respect to inclusion among almost disjoint families of infinite subsets of ω. Given an almost disjoint family $A \subset [\omega]^\omega$, we denote by $L(A)$ the set $\{b \in [\omega]^\omega : b$ is not covered by finitely many $a \in A\}$. Following [6] we define a mad subfamily A of $[\omega]^\omega$ to be ω-mad, if for every $B \in [L(A)]^\omega$ there exists $a \in A$ such that $|a \cap b| = \omega$ for all $b \in B$.

Two functions $a, b \in \omega^\omega$ are called almost disjoint, if they are almost disjoint as subsets of $\omega \times \omega$, i.e. $a(k) \neq b(k)$ for all but finitely many $k \in \omega$. A set A is said to be an almost disjoint family of functions (or an almost disjoint subfamily of ω^ω) if $A \subset \omega^\omega$ and any two elements of A are almost disjoint. A is called a mad family of functions, if it is maximal with respect to inclusion among almost disjoint families of functions. Given an almost disjoint family $A \subset \omega^\omega$, we denote by $\mathcal{L}(A)$ the set $\{b \in \omega^\omega : b$ is not covered by finitely many $a \in A\}$. A mad subfamily A of ω^ω is ω-mad\(^1\), if for every $B \in [\mathcal{L}(A)]^\omega$ there exists $a \in A$ such that $|a \cap b| = \omega$ for all $b \in B$.

The following theorems are the main results of this paper.

Theorem 1. It is consistent that $2^\omega = b = \omega_2$ and there exists a Π^1_2 definable ω-mad family of infinite subsets of ω.

2000 Mathematics Subject Classification. Primary: 03E15, 03E35; Secondary: 03E17, 03E45.

Key words and phrases. Almost disjoint coding, mad families, projective sets and wellorders.

The authors would like to acknowledge the support of FWF grant P19898-N18.

\(^1\)Such families of functions are called strongly maximal in [4, 9]. We call them ω-mad just to keep the analogy with the case of subsets of $[\omega]^\omega$.

Theorem 2. It is consistent that $2^\omega = b = \omega_2$ and there exists a Π^1_2 definable ω-mad family of functions.

By [8, Theorem 8.23], in L there exists a mad subfamily of $[\omega]^\omega$ which is Π^1_2 definable. Moreover, $V = L$ implies the existence of a Π^1_2 definable ω-mad subfamily A of ω^ω, see [4, §3]. It is easy to check that $A \cup \{ \{ n \} \times \omega : n \in \omega \}$ is actually an ω-mad family of subsets of $\omega \times \omega$ for every ω-mad subfamily A of ω^ω, and hence Π^1_2 definable ω-mad subfamilies of $[\omega]^\omega$ exist under $V = L$ as well.

Regarding the models of \negCH, it is known that ω-mad subfamilies of $[\omega]^\omega$ remain so after adding any number of Cohen subsets, see [5] and references therein. Combining Corollary 53 and Theorem 65 from [9], we conclude that the ground model ω-mad families of functions remain so in forcing extensions by countable support iterations of a wide family of posets including Sacks and Miller forcings. If $A \in V$ is a Π^1_2 definable almost disjoint family whose Π^1_2 definition is provided by formula $\varphi(x)$, then $\varphi(x)$ defines an almost disjoint family in any extension V' of V (this is a straightforward consequence of the Shoenfield’s Absoluteness Theorem). Thus if a ground model Π^1_2 definable mad family remains mad in a forcing extension, it remains Π^1_2 definable by means of the same formula. From the above it follows that the Π^1_2 definable ω-mad family in L of functions constructed in [4, §3] remains Π^1_2 definable and ω-mad in $L[G]$, where G is a generic over L for the countable support iteration of Miller forcing of length ω_2. Thus the essence of Theorems 1 and 2 is the existence of projective ω-mad families combined with the inequality $b > \omega_1$, which rules out all mad families of size ω_1.

It is not known whether in ZFC one can prove the existence of Σ^1_1 mad families of functions or of ω-mad families of functions; see [9].

2. Preliminaries

In this section we introduce some notions and notation needed for the proofs of Theorems 1 and 2, and collect some basic facts about T-proper posets, see [2] for more details.

Proposition 3. (1) There exists an almost disjoint family $R = \{ r_{(\zeta,\xi)} : \zeta \in \omega \cdot 2, \xi \in \omega_1^\\}$ in L of infinite subsets of ω such that $R \cap M = \{ r_{(\zeta,\xi)} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^\\)^M \}$ for every transitive model M of ZF^-.

(2) There exists an almost disjoint family $F = \{ f_{(\zeta,\xi)} : \zeta \in \omega \cdot 2, \xi \in \omega_1^\\} \in L$ of functions such that $F \cap M = \{ f_{(\zeta,\xi)} : \zeta \in \omega \cdot 2, \xi \in (\omega_1^\\)^M \}$ for every transitive model M of ZF^-.

Proof sketch. Let $r^*_{\zeta,\xi}$ be the L-least real coding the ordinal $(\omega^2 \cdot \xi) + \zeta$ and let $r_{\zeta,\xi}^*$ be the set of numbers coding a finite initial segment of $r^*_{\zeta,\xi}$. Similarly for functions. □

One of the main building blocks of the required ω-mad family will be suitable sequences of stationary in L subsets of ω_1 given by the following proposition which may be proved in the same way as [1, Lemma 14].

Say that a transitive ZF^- model M is suitable iff $M \models \omega_2$ exists and $\omega_2 = \omega_2^L$.
Proposition 4. There exists a Σ_1 definable over L_{ω_2} tuple $\langle T_0, T_1, T_2 \rangle$ of mutually disjoint L-stationary subsets of ω_1 and Σ_1 definable over L_{ω_2} sequences $\bar{S} = \langle S_\alpha : \alpha < \omega_2 \rangle$, $\bar{S}' = \langle S'_\alpha : \alpha < \omega_2 \rangle$ of pairwise almost disjoint L-stationary subsets of ω_1 such that

- $S_\alpha \subset T_2$ and $S'_\alpha \subset T_1$ for all $\alpha \in \omega_2$;
- Whenever M, N are suitable models of ZF^- such that $\omega_1^M = \omega_1^N$, \bar{S}^M agrees with \bar{S}^N on $\omega_2^M \cap \omega_2^N$. Similarly for \bar{S}'.

The following standard fact gives an absolute way to code an ordinal $\alpha < \omega_2$ by a subset of ω_2.

Fact 5. There exists a formula $\phi(x, y)$ and for every $\alpha < \omega_2^f$ a set $X_\alpha \in (\omega_1^{\omega_1^\omega})^L$ such that

1. For every suitable model M containing $X_\alpha \cap \omega_1^M$, $\phi(x, X_\alpha \cap \omega_1^M)$ has a unique solution in M, and this solution equals α provided $\omega_1^M = \omega_1^f$;
2. For arbitrary suitable models M, N with $\omega_1^M = \omega_1^N$ and $X_\alpha \cap \omega_1^M \in M \cap N$, the solutions of $\phi(x, X_\alpha \cap \omega_1^M)$ in M and N coincide.

Let γ be a limit ordinal and $r : \gamma \to 2$. We denote by $\text{Even}(r)$ the set \{ $\alpha < \gamma : r(2\alpha) = 1$ \}. For ordinals $\alpha < \beta$ we shall denote by $\beta - \alpha$ the ordinal γ such that $\alpha + \gamma = \beta$. If B is a set of ordinals above α, then $B - \alpha$ stands for \{ $\beta - \alpha : \beta \in B$ \}. Observe that if ζ is an indecomposable ordinal (e.g., ω_1^M for some countable suitable model of ZF^-), then $((\alpha + B) \cap \zeta) - \alpha = B \cap \zeta$ for all B and $\alpha < \zeta$. This will be often used for $B = X_\alpha$.

For $x, y \in \omega^\omega$ we say that y dominates x and write $x \leq^* y$ if $x(n) \leq y(n)$ for all but finitely many $n \in \omega$. The minimal size of a subset B of ω^ω such that there is no $y \in \omega^\omega$ dominating all elements of B is denoted by b. It is easy to see that $\omega < b \leq 2^\omega$. We say that a forcing notion \mathbb{P} adds a dominating real if there exists $y \in \omega^\omega \cap V^\mathbb{P}$ dominating all elements of $\omega^\omega \cap V$.

Definition 6. Let $T \subset \omega_1$ be a stationary set. A poset \mathbb{P} is T-proper, if for every countable elementary submodel M of H_θ, where θ is a sufficiently large cardinal, such that $M \cap \omega_1 \in T$, every condition $p \in \mathbb{P} \cap M$ has an (M, \mathbb{P})-generic extension q.

The following theorem includes some basic properties of T-proper posets.

Theorem 7. Let T be a stationary subset of ω_1.

1. Every T-proper poset \mathbb{P} preserves ω_1. Moreover, \mathbb{P} preserves the stationarity of every stationary set $S \subset T$.
2. Let $\langle \mathbb{P}_\xi, \mathbb{Q}_\zeta : \xi \leq \delta, \zeta < \delta \rangle$ be a countable support iteration of T-proper posets. Then \mathbb{P}_δ is T-proper. If, in addition, CH holds in V, $\delta \leq \omega_2$, and the \mathbb{Q}_ζ’s are forced to have size at most ω_1, then \mathbb{P}_δ is ω_2-c.c. If, moreover, $\delta < \omega_2$, then CH holds in $V^{\mathbb{P}_\delta}$.

\[\text{In what follows the phrase "X codes an ordinal } \beta \text{ in a suitable } ZF^- \text{ model } M\text{" means that there exists } \alpha < \omega_2^f \text{ such that } X = \omega_1^M \cap X_\alpha \in M \text{ and } \phi(\beta, X) \text{ holds in } M.\]
3. Proof of Theorem 1

We start with the ground model \(V = L \). Recursively, we shall define a countable support iteration \(\langle P_\alpha, \check{Q}_\beta : \alpha \leq \omega_2, \beta < \omega_2 \rangle \). The desired family \(A \) is constructed along the iteration: for cofinally many \(\alpha \)'s the poset \(Q_\alpha \) takes care of some countable family \(B \) of infinite subsets of \(\omega \) which might appear in \(L(A) \) in the final model, and adds to \(A \) some \(a_\alpha \in [\omega]^{>\omega} \) almost disjoint from all elements of \(A_\alpha \) such that \([a \cap b] = \omega \) for all \(b \in B \) (here \(A_\alpha \) stands for the set of all elements of \(A \) constructed up to stage \(\alpha \)). Our forcing construction will have some freedom allowing for further applications.

We proceed with the definition of \(P_{\omega_2} \). For successor \(\alpha \) let \(\check{Q}_\alpha \) be a \(P_\alpha \)-name for some proper forcing of size \(\omega_1 \) adding a dominating real. For a subset \(s \) of \(\omega \) and \(l \in |s| \) (= \(\text{card}(s) \leq \omega \)) we denote by \(s(l) \) the \(l \)'th element of \(s \). In what follows we shall denote by \(E(s) \) and \(O(s) \) the sets \(\{ s(2i) : 2i \in |s| \} \) and \(\{ s(2i + 1) : 2i + 1 \in |s| \} \), respectively. Let us consider some limit \(\alpha \) and a \(P_\alpha \)-generic filter \(G_\alpha \). Suppose also that

\[
\forall B \in [A_\alpha]^{<\omega} \forall r \in R \left(|E(r) \setminus B| = |O(r) \setminus B| = \omega \right)
\]

Observe that equation \((*)\) yields \(|E(r) \setminus B| = |O(r) \setminus B| = \omega \) for every \(B \in [R \cup A_\alpha]^{<\omega} \) and \(r \in R \setminus B \). Let us fix some function \(F : \text{Lim} \cap \omega_2 \to L_{\omega_2} \) such that \(F^{-1}(x) \) is unbounded in \(\omega_2 \) for every \(x \in L_{\omega_2} \). Unless the following holds, \(Q_\omega \) is a \(P_\alpha \)-name for the trivial poset. Suppose that \(F(\alpha) \) is a sequence \(\langle b_i : i \in \omega \rangle \) of \(P_\alpha \)-names such that \(b_i = b_i^{G_\alpha} \in [\omega]^{>\omega} \) and none of the \(b_i \)'s is covered by a finite subfamily of \(A_\alpha \). In this case \(Q_\omega := Q_\check{G}_\alpha \) is the two-step iteration \(\mathbb{K}_0 \ast \mathbb{K}_1 \) defined as follows.

In \(V[G_\alpha] \), \(\mathbb{K}_0 \) is some \(T_0 \cup T_2 \)-proper poset of size \(\omega_1 \). Our proof will not really depend on \(\mathbb{K}_0 \). \(\mathbb{K}_0 \) is reserved for some future applications, see section 5.

Let us fix some \(\mathbb{K}_0 \)-generic filter \(h_\alpha \) over \(V[G_\alpha] \) and find a limit ordinal \(\eta_\alpha \in \omega_1 \) such that there are no finite subsets \(J, E \) of \((\omega \cdot 2) \times (\omega_1 \setminus \eta_\alpha) \), \(A_\alpha \), respectively, and \(\in \omega \), such that \(b_i \cup \bigcup_{(i, \xi) \in J} r_{(\xi, \xi)} \cup \bigcup E \). (The almost disjointness of the \(r_{(\xi, \xi)} \)'s imply that if \(b_i \cup \bigcup \cap A' \) for some \(R' \in [R]^{<\omega} \) and \(A' \in [A_\alpha]^{<\omega} \), then \(b_i \setminus A' \) has finite intersection with all elements of \(R \setminus R' \). Together with equation \((*)\) this easily yields the existence of such an \(\eta_\alpha \).) Let \(z_\alpha \) be an infinite subset of \(\omega \) coding a surjection from \(\omega \) onto \(\eta_\alpha \). For a subset \(s \) of \(\omega \) we denote by \(\bar{s} \) the set \(\{ 2k + 1 : k \in s \} \cup \{ 2k : k \in (\sup s \setminus s) \} \). In \(V[G_\alpha \ast h_\alpha] \), \(\mathbb{K}_1 \) consists of sequences \(\langle (s, s^*), (c_k, y_k : k \in \omega) \rangle \) satisfying the following conditions:

\begin{enumerate}
 \item \(c_k \) is a closed, bounded subset of \(\omega_1 \setminus \eta_\alpha \) such that \(S_{\alpha+k} \cap c_k = \emptyset \) for all \(k \in \omega \);
 \item \(y_k : |y_k| = 2, |y_k| > \eta_\alpha, y_k \upharpoonright \eta_\alpha = 0, \text{ and Even}(y_k) = (\{ \eta_\alpha \} \cup \{ \eta_\alpha + X_\alpha \}) \upharpoonright |y_k| ;
 \item \(s \in [\omega]^{<\omega}, s^* \in \{ r_{(m, \xi)} : m \in s, \xi \in c_m \} \cup \{ r_{(\omega+m, \xi)} : m \in s, y_m(\xi) = \emptyset \} \cup A_\alpha \}^{<\omega} \). In addition, for every \(2n \in |s \cap r_{(0,0)}|, n \in z_\alpha \) if and only if there exists \(m \in \omega \) such that \((s \cap r_{(0,0)})2n = r_{(0,0)}(2m) \); and
\end{enumerate}

\footnote{The tuples \((s, s^*) \) and \((c_k, y_k : k \in \omega) \) will be referred to as the \textit{finite part} and the \textit{infinite part} of the condition \(\langle (s, s^*), (c_k, y_k : k \in \omega) \rangle \), respectively.}
(iv) For all $k \in s \cup (\omega \setminus (\max s))$, limit ordinals $\xi \in \omega_1$ such that $\eta_\alpha < \xi \leq |y_k|$, and suitable ZF^- models M containing $y_k \downarrow \xi$ and $c_k \cap \xi$ with $\omega^M_1 = \xi$, ξ is a limit point of c_k, and the following holds in M: (Even(y_k) − min Even(y_k)) $\cap \xi$ codes a limit ordinal $\bar{\alpha}$ such that $S^M_{\bar{\alpha} + k}$ is non-stationary.

For conditions $\bar{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle$ and $\bar{q} = \langle \langle t, t^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$ in $K^1_{\omega_1}$, we let $\bar{q} \leq \bar{p}$ (by this we mean that \bar{q} is stronger than \bar{p}) if and only if

(v) (t, t^*) extends (s, s^*) in the almost disjoint coding, i.e. t is an end-extension of s and $t \setminus s$ has empty intersection with all elements of s^*;

(vi) If $m \in \bar{t} \cup (\omega \setminus (\max \bar{t}))$, then d_m is an end-extension of c_m and $y_m \subseteq z_m$.

This finishes our definition of \mathbb{P}_{ω_2}. Before proving that the statement of our theorem holds in $V^\mathbb{R}_{\omega_2}$ we shall establish some basic properties of $K^1_{\omega_1}$.

Claim 8. (Fischer, Friedman [1, Lemma 1].) For every condition $\bar{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \in K^1_{\omega_1}$ and every $\gamma \in \omega_1$ there exists a sequence $\langle d_k, z_k : k \in \omega \rangle$ such that $\langle \langle s, s^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle \in K^1_{\omega_1}$, $\langle \langle s, s^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle \leq \bar{p}$, and $|z_k|, \max d_k \geq \gamma$ for all $k \in \omega$.

Claim 9. For every $\bar{p} \in K^1_{\omega_1}$ and open dense $D \subset K^1_{\omega_1}$ there exists $\bar{q} \leq \bar{p}$ with the same finite part as \bar{p} such that whenever \bar{p}_1 is an extension of \bar{q} meeting D with finite part $\langle r_1, r^*_1 \rangle$, then already some condition \bar{p}_2 with the same infinite part as \bar{q} and finite part $\langle r_1, r^*_2 \rangle$ for some r^*_2 meets D.

Proof. Let $\bar{p} = \langle \langle t_0, t^*_0 \rangle, \langle d^0_k, z^0_k : k \in \omega \rangle \rangle$ and let \mathcal{M} be a countable elementary submodel of H_θ containing $K^1_{\omega_1}$, \bar{p}, X_α, and D, and such that $j := \mathcal{M} \cap \omega_1 = \bigcup_{\epsilon \in X_\alpha \cup \omega (\max \epsilon)} S_{\alpha + k}$.

Let $\{\langle \bar{r}_n, s_n \rangle : n \in \omega \}$ be a sequence in which every pair $\langle \bar{r}, s \rangle \in (K^1_{\omega_1} \cap \mathcal{M}) \times [\omega]^<\omega$ with $\bar{p} \geq \bar{r}$ appears infinitely often. Let $\langle j_n : n \in \omega \rangle$ be increasing and cofinal in j. Using Claim 8, by induction on n construct sequences $\langle d^n_k, z^n_k : k \in \omega \rangle$ in \mathcal{M} as follows:

If there exists $\bar{r}_{n, n} \in D \cap \mathcal{M}$ below both \bar{r}_n and $\langle \langle t_0, t^*_0 \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle$ and with finite part of the form $\langle s_n, s^*_n \rangle$ for some s^*_n, then let $\langle d^{n + 1}_k, z^{n + 1}_k : k \in \omega \rangle$ be the infinite part of $\bar{r}_{1, n}$, extended further in such a way that $\langle \langle t_0, t^*_0 \rangle, \langle d^{n + 1}_k, z^{n + 1}_k : k \in \omega \rangle \rangle \in K^1_{\omega_1}$ and $|z^{n + 1}_k|, \max d^{n + 1}_k \geq j_n$ for all $n \in \omega$ and $k \in t_0 \cup \langle \omega \setminus (\max t_0) \rangle$. If there is no such $\bar{r}_{1, n}$, then let $d^{n + 1}_k$ be an arbitrary end-extension of d^n_k and $z^{n + 1}_k$ be an extension of z^n_k such that $|z^{n + 1}_k|, \max d^{n + 1}_k \geq j_n$ for all $n \in \omega$ and $k \in t_0 \cup \langle \omega \setminus (\max t_0) \rangle$, and $\langle \langle t_0, t^*_0 \rangle, \langle d^{n + 1}_k, z^{n + 1}_k : k \in \omega \rangle \rangle \in K^1_{\omega_1}$.

Set $d_k = \bigcup_{n \in \omega} d^n_k \cup \{j\}$ and $z_k = \bigcup_{n \in \omega} z^n_k$ for all $k \in \omega \setminus F$, $d_k = z_k = \emptyset$ for $k \in F$, and $\bar{q} = \langle \langle t_0, t^*_0 \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$. We claim that \bar{q} is as required.

Let us show first that $\bar{q} \in K^1_{\omega_1}$. Only item (iv) of the definition of $K^1_{\omega_1}$ for $k \in t_0 \cup \langle \omega \setminus (\max t_0) \rangle$ and $\xi = j$ must be verified. Fix such a k and suitable ZF^- model M containing z_k and d_k with $\omega^M_1 = j$. Let \bar{M} be the Mostowski collapse of \mathcal{M} and $\pi : \mathcal{M} \rightarrow \bar{M}$ be the corresponding
Let us note that $j = \omega_1^M = \omega_1^\alpha$. Since $X_\alpha \in M$, and M is elementary submodel of H_θ, α is the unique solution of $\phi(x, X_\alpha)$ in M, and hence $\alpha := \pi(\alpha)$ is the unique solution of $\phi(x, X_\alpha \cap j = \pi(X_\alpha))$ in M. In addition, $S^M_{\alpha+k} = \pi(S_{\alpha+k}) = S_{\alpha+k} \cap j$ for all $k \in \omega$. Applying Fact 5(2) and Proposition 4, we conclude that $\phi(\alpha, X_\alpha \cap j)^M$ holds and $S^M_{\alpha+k} = S^M_{\alpha+k} = S_{\alpha+k} \cap j$. Since $d_k \in M$, $d_k \cap S_{\alpha+k} = \emptyset$, and $d_k \setminus \{j\}$ is unbounded in $j = \omega_1^M$ by the construction of d_k, we conclude that $S^M_{\alpha+k}$ is not stationary in M. This proves that $\vec{q} \in \mathbb{K}^1_\alpha$.

Now suppose that $\vec{p}_1 = \langle \langle t_1, c_1, y_1 : k \in \omega \rangle \rangle \leq \vec{q}$ and $\vec{p}_2 \in D$. Since $r_1, r_1^* \in \omega$ are finite, there exists $m \in \omega$ such that $\vec{r} := \langle \langle r_1, r_1^* \cap \mathcal{M}, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle \cap \mathcal{M}$. Let $n \geq m$ be such that $\vec{s}_n, s_n = r_1 \in \mathcal{M}$. Since \vec{p}_1 is obviously a lower bound of \vec{r}_n and $\langle \langle t_0, t_0^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle$ with finite part $\langle s_n, r_1^* \rangle$, there exists $\vec{p}_2 \in \mathcal{M} \cap D$ below both \vec{r}_n and $\langle \langle t_0, t_0^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle$ with finite part $\langle s_n, r_2^* \rangle$ for some suitable $r_2^* \in \mathcal{M}$. Thus the first (nontrivial) alternative of the construction of d_{k+1}^n, z_{k+1}^n’s took place. Without loss of generality, $r_1, n = r_2$. A direct verification shows that $\vec{p}_2 = \langle \langle s_n = r_1, r_2^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$ is as required.

Claim 10. Let \mathcal{M} be a countable elementary submodel of H_θ for sufficiently large θ containing all relevant objects with $i = \mathcal{M} \cap \omega_1$ and $\vec{p} \in \mathcal{M} \cap \mathbb{K}^1_\alpha$. If $\vec{q} \not\in \bigcup_{\vec{i} \in \mathbb{K}^1_\alpha} S_{\alpha+n}$ then there exists an $(\mathcal{M}, \mathbb{K}^1_\alpha)$-generic condition $\vec{q} \leq \vec{p}$ of the same finite part as \vec{p}.

Proof. Let $\vec{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \langle D_n : n \in \omega \rangle$ and $\langle D_n : n \in \omega \rangle$ be the collection of all open dense subsets of \mathbb{K}^1_α which are elements of \mathcal{M}, and $\langle i_n : n \in \omega \rangle$ be an increasing sequence of ordinals converging to i. Using Claims 8 and 9, inductively construct a sequence $\langle \vec{q}_n : n \in \omega \rangle \subset \mathcal{M} \cap \mathbb{K}^1_\alpha$, where $\vec{q}_n = \langle \langle s, s^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle$ and $\vec{q}_0 = \vec{p}$, such that

(i) d^n_{k+1} is an end-extension of d^n_k and z^{n+1}_k is an extension of z^n_k for all $n \in \omega$ and $k \in s \cup (\omega \setminus (\text{max} s))$;

(ii) $|z^n_k|, \max d^n_k \geq i_n$ for all $n \geq 1$ and $k \in s \cup \omega \setminus (\text{max} s)$ and

(iii) For every $n \geq 1$ and $\vec{r} = \langle \langle r, r^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle \leq \vec{q}_n, \vec{r} \in \mathcal{D}_n$, there exists r^*_2 such that $\vec{r}_2 := \langle \langle r_1, r_2^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle \in \mathcal{D}_n$ and $\vec{r}_2 \leq \vec{q}_n$.

Set $d_k = \bigcup_{n \in \omega} d^n_k \cup \{i\}$ and $z_k = \bigcup_{n \in \omega} z^n_k$ for all $k \in s \cup (\omega \setminus (\text{max} s))$, $d_k = z_k = \emptyset$ for all other $k \in \omega$, and $\vec{q} = \langle \langle t_0, t_0^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle$. We claim that \vec{q} is as required, i.e., $\vec{q} \in \mathbb{K}^1_\alpha$ and $\mathcal{D}_n \cap \mathcal{M}$ is pre-dense below \vec{q} for every $n \in \omega$. The fact that $\vec{q} \in \mathbb{K}^1_\alpha$ can be shown in the same way as in the proof of Claim 9.

Let us fix $n \in \omega$ and $\vec{r}_1 = \langle \langle t_1, t_1^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle \leq \vec{q}$.

Without loss of generality, $\vec{r}_1 \in \mathcal{D}_n$. Since $\vec{r}_1 \leq \vec{q}_n$, $\vec{r}_1 \in \mathcal{D}_n$. It is clear that $\vec{r}_2 \in \mathcal{M}$. We claim that \vec{r}_2 and \vec{r}_1 are compatible. Indeed, set $\vec{r}_3 = \langle \langle t_1, t_2^* \cup t_1^* \rangle, \langle d^n_k, z^n_k : k \in \omega \rangle \rangle$ and note that $\vec{r}_3 \leq \vec{r}_1, \vec{r}_2$.

Let H_α be a \mathbb{K}^1_α-generic filter over $L[G_\alpha * h_\alpha]$. Set $Y_{k}^\alpha = \bigcup_{\vec{p} \in H_\alpha} y_k$, $C_k^\alpha = \bigcup_{\vec{p} \in H_\alpha} c_k$, $a_\alpha = \bigcup_{\vec{p} \in H_\alpha} s$, $A_{\alpha+1} = A_\alpha \cup \{a_\alpha\}$, and $S^\alpha = \bigcup_{\vec{p} \in H_\alpha} s^\alpha$, where
\(\bar{p} = \langle (s, s^*), (c_k, y_k : k \in \omega) \rangle\). The following statement is a consequence of the definition of \(K^1_\alpha\) and the genericity of \(H_\alpha\).

Claim 11.

1. \(S^* = \{r_{(m, \xi)} : m \in \overline{\alpha}, \xi \in C_\alpha \} \cup \{r_{(\omega + m, \xi)} : m \in \overline{\alpha}, Y_m(\xi) = 1\} \cup A_\alpha;\)
2. \(a_\alpha \in [\omega]^{\omega};\)
3. If \(m \in \overline{\alpha}\), then \(\text{dom}(Y_m) = \omega_1\) and \(C_\alpha\) is a club in \(\omega_1\) disjoint from \(S_{\alpha + m};\)
4. \(a_\alpha\) is almost disjoint from all elements of \(A_\alpha;\)
5. If \(m \in \overline{\alpha}\), then \(|a_\alpha \cap r_{(m, \xi)}| < \omega\) if and only if \(\xi \in C_\alpha;\)
6. If \(m \in \overline{\alpha}\), then \(|a_\alpha \cap r_{(\omega + m, \xi)}| < \omega\) if and only if \(Y_m(\xi) = 1;\)
7. \(|a_\alpha \cap b_i| = \omega\) for all \(i \in \omega;\)
8. For every \(n \in \omega, n \in z_\alpha\) if and only if there exists \(m \in \omega\) such that \(\langle a_\alpha \cap r_{(0, 0)}(2n) = r_{(0, 0)}(2m)\rangle;\) and
9. Equation (*) holds for \(\alpha + 1, i.e. for every \(r \in R\) and a finite subfamily \(B\) of \(A_{\alpha + 1}\), \(B\) covers neither a cofinite part of \(E(r)\) nor of \(O(r)\).

Proof. Items (1), (2), (4), and (9) are straightforward. Items (2), (5), (6), and (8) follow from the inductive assumption (*). Item (3) is a consequence of Claim 8.

We are left with the task to prove (7). Let us fix \(l, i \in \omega\) and denote by \(D_{l, i}\) the set of conditions \(\langle (s, s^*), (c_k, y_k : k \in \omega) \rangle \in K^1_\alpha\) such that \((s \setminus l) \cap b_i \neq \emptyset\). It suffices to show that \(D_{l, i}\) is dense in \(K^1_\alpha\). Fix a condition \(\bar{p} = \langle (s, s^*), (c_k, y_k : k \in \omega) \rangle \in K^1_\alpha\) and set \(x = b_i \cup s^*\). Note that \(x \in [\omega]^{\omega}\) by our choice of \(\eta_\alpha\) and items (i), (ii) of the definition of \(K^1_\alpha\). Two cases are possible.

1. \(|x \setminus r_{(0, 0)}| = \omega\). Then \(\bar{q} := \langle (s \cup \{\min(x \setminus (r_{(0, 0)} \cup l \cup \max s)\}), s^*), (c_k, y_k : k \in \omega)\rangle\) is an element of \(D_{l, i}\) and is stronger than \(\bar{p}\).
2. \(x \subset^* r_{(0, 0)}\). Without loss of generality, \(x \setminus r_{(0, 0)} \subset l\). Suppose that \(|s \cap r_{(0, 0)}| = 2j - 1\) for some \(j \in \omega\) (the case of even \(|s \cap r_{(0, 0)}|\) is analogous and simpler). Let \(y = r_{(0, 0)} \setminus \max s^*\) and note that \(x \subset^* y\). By (*), \(|y \cap E(r_{(0, 0)})| = |y \cap O(r_{(0, 0)})| = \omega\). Denote by \(m_e\) and \(m_o\) the minima of the sets \((y \cap E(r_{(0, 0)})) \setminus (l \cup (\max s + 1))\) and \((y \cap O(r_{(0, 0)})) \setminus (l \cup (\max s + 1))\), respectively. Set \(\bar{r} := \langle (s \cup \{m_e\} \cup \{\min(x \setminus (m_e + 1))\}, s^*), (c_k, y_k : k \in \omega)\rangle\) if \(j \in z_\alpha\) and \(\bar{r} := \langle (s \cup \{m_o\} \cup \{\min(x \setminus (m_o + 1))\}, s^*), (c_k, y_k : k \in \omega)\rangle\) otherwise. A direct verification shows that \(\bar{r} \in D_{l, i}\) and \(\bar{r} \leq \bar{p}\). \(\square\)

Corollary 12. \(\hat{Q}_\alpha\) is \(T_0\)-proper. Consequently, \(\mathbb{P}_{\omega_2}\) is \(T_0\)-proper and hence preserves cardinals.

More precisely, for every condition \(\bar{p} = \langle (s, s^*), (c_k, y_k : k \in \omega) \rangle \in K^1_\alpha\) the poset \(\{\bar{r} \in K^1_\alpha : \bar{r} \leq \bar{p}\} \) is \(\omega_1 \setminus \bigcup_{n \in \mathbb{R}(\omega \setminus (\max s))} S_{\alpha + n}\)-proper. Consequently, \(S_{\alpha + n}\) remains stationary in \(V^n_{\omega_2}\) for all \(n \in \omega \setminus \overline{\alpha}\).
For every countable suitable model A is a Π^1_2 definable subset of $[\omega]^\omega$ in $L[G]$ and thus finishes the proof of Theorem 1.

Lemma 13. In $L[G]$ the following conditions are equivalent:

1. $a \in A$;
2. For every countable suitable model M of ZF^- containing a as an element there exists $\bar{a} < \omega_2^M$ such that $S_{\bar{a} + k}^M$ is nonstationary in M for all $k \in \bar{a}$.

Proof. (1) \rightarrow (2). Fix $a \in A$ and find $\alpha < \omega_2$ such that $a = a_\alpha$. Fix also a countable suitable model M of ZF^- containing a_α as an element. By Claim 11(5, 6, 8), $z_\alpha \in M$ and $C^\alpha_k \cap \omega_1^M, Y^\alpha_k \restriction \omega_1^M \in M$ for all $k \in \bar{\alpha}$. Therefore $\eta_{\alpha} < \omega_1^M$. Since $\langle \langle 0, 0 \rangle, (C^\alpha_k \cap (\omega_1^M + 1), Y^\alpha_k \restriction \omega_1^M : k \in \omega) \rangle$ is a condition in \mathbb{K}^1_α, item (iv) of the definition of \mathbb{K}^1_α ensures that for every $k \in \bar{\alpha}$, $\text{Even}(Y^\alpha_k \restriction \omega_1^M) - \text{min Even}(Y^\alpha_k \restriction \omega_1^M)$ codes a limit ordinal $\bar{\alpha}_k \in \omega_2^M$ such that $S_{\bar{\alpha}_k + k}^M$ is nonstationary in M. By item (ii) of the definition of \mathbb{K}^1_α,

$$\text{Even}(Y^\alpha_k \restriction \omega_1^M) - \text{min Even}(Y^\alpha_k \restriction \omega_1^M) = X_\alpha \cap \omega_1^M$$

for every $k \in I$, and hence $\bar{\alpha}_k$’s do not depend on k.

(2) \rightarrow (1). Let us fix a fulfilling (2) and observe that by Löwenheim-Skolem, (2) holds for arbitrary (not necessarily countable) suitable model of ZF^- containing a. In particular, it holds in $M = L_{\omega_2}[G]$. Observe that $\omega_2^M = \omega_2^L[G] = \omega_2^\beta$, $S^M = \tilde{S}$, and the notions of stationarity of subsets of ω_1 coincide in M and $L[G]$. Thus there exists $\alpha < \omega_2$ such that $S_{\bar{\alpha} + k}^M$ is nonstationary for all $k \in \bar{\alpha}$. Since the stationarity of some $S_{\bar{\alpha} + k}$’s has been destroyed, Corollary 12 together with the T_2-properness of \mathbb{K}^0_ξ’s implies that \check{Q}_α is not trivial. Now, the last assertion of Corollary 12 easily implies that $a = a_\alpha$. \hfill \square

4. PROOF OF THEOREM 2

The proof is completely analogous to that of Theorem 1. Therefore we just define the corresponding poset \mathbb{P}_{ω_2}, the use of the poset \mathbb{M}^1_α defined below instead of \mathbb{K}^1_α at the α’s stage of iteration being the only significant change. We leave it to the reader to verify that the proof of Theorem 1 can be carried over.

For successor α let \check{Q}_α be a \mathbb{P}_α-name for some proper forcing of size ω_1 adding a dominating real. Let us consider some limit α and a \mathbb{P}_α-generic filter G_α. Suppose also that we have already constructed an almost disjoint family $A_\alpha \subset \omega^\omega$ such that

$$\forall E \in [A_\alpha]^{<\omega} \forall f \in F \ (\vert f \restriction (2\omega) \setminus E \vert = \vert f \restriction (2\omega + 1) \setminus E \vert = \omega) \quad (**)$$

Equation (**) yields

$$\forall E \in [F \cup A_\alpha]^{<\omega} \forall f \in F \setminus E \ (\vert f \restriction (2\omega) \setminus E \vert = \vert f \restriction (2\omega + 1) \setminus E \vert = \omega).$$

Let $F : \text{Lim} \cap \omega_2 \rightarrow L_{\omega_2}$ be the same as in the proof of Theorem 1. Unless the following holds, \check{Q}_α is a \mathbb{P}_α-name for the trivial poset. Suppose that $F(\alpha)$ is a sequence $\langle b_i : i \in \omega \rangle$ of \mathbb{P}_α-names such that $b_i = b_i^{\check{Q}_\alpha} \in \omega^\omega$.
and none of the \(b_i \)'s is covered by a finite subfamily of \(A_\alpha \). In this case \(\mathcal{Q}_\alpha := \mathcal{Q}_\alpha^G \) is the two-step iteration \(\mathbb{K}_\alpha^0 \ast \mathbb{M}_\alpha \) defined as follows.

In \(V^{\mathcal{P}_\alpha \ast \mathbb{K}_\alpha^0} \), \(\mathbb{K}_\alpha^0 \) is some \(T_0 \cup T_2 \)-proper poset of size \(\omega_1 \).

Let us fix a recursive bijection \(\psi : \omega \times \omega \rightarrow \omega \) and \(s \in \omega^{<\omega} \). Set \(\text{sq}(s) = \text{dom}(s) \times (\text{dom}(s) + \text{ran}(s)) \) and

\[
\bar{s} = \{2k + 1 : k \in \psi(s)\} \cup \{2k : k \in \psi(\text{sq}(s) \setminus s)\}.
\]

In \(V^{\mathcal{P}_\alpha \ast \mathbb{K}_\alpha^0} \) find an ordinal \(\eta_\alpha \in \omega_1 \) such that there are no finite subsets \(J, E \) of \((\omega \cdot 2) \times (\omega_1 \setminus \eta_\alpha) \), \(A_\alpha \), respectively, and \(i \in \omega \), such that \(b_i \subset \bigcup_{(\xi,\ell) \in J} f(\xi,\ell) \cup E \). \(M_\alpha^1 \) consists of sequences \(\langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \) satisfying the following conditions:

- \((i) _f \) Conditions \((i)-(ii)\) from the definition of \(\mathbb{K}_\alpha^1 \) in the proof of Theorem 1 hold;
- \((ii) _f \) \(s \in \omega^{<\omega} \), \(s^* \in \left\{ \{f(m,\xi) : m \in \bar{s}, \xi \in c_m\} \cup \{f(\omega + m,\xi) : m \in \bar{s}, y_m(\xi) = 1\} \cup A_\alpha \right\}^{<\omega} \). In addition, for every \(2n \in [s \cap f(0,0), \omega_1 \setminus \eta_\alpha] \), \(n \in z_\alpha \) if and only if there exists \(m \in \omega \) such that \(s(j) = f(0,0)(2m) \), where \(j \) is the \(2n \)th element of the domain of \(s \cap f(0,0) \); and
- \((iii) _f \) For all \(m \in \bar{s} \cup \{2k, 2k + 1 : k \in \psi(\omega \setminus \text{dom}(s)) \times \omega) \} \), limit ordinals \(\xi \in \omega_1 \) such that \(\eta_\alpha < \xi \leq |y_m| \), and suitable \(\text{ZF}^- \) models \(M \) containing \(y_m \upharpoonright \xi \) and \(c_m \cap \xi \) with \(\omega_1^M = \xi \), \(\xi \) is a limit point of \(c_m \), and the following holds in \(M \): \((\text{Even}(y_m) - \text{min Even}(y_m)) \cap \xi \) codes a limit ordinal \(\bar{\alpha} \) such that \(S_{\alpha + m}^M \) is non-stationary.

For conditions \(\bar{p} = \langle \langle s, s^* \rangle, \langle c_k, y_k : k \in \omega \rangle \rangle \) and \(\bar{q} = \langle \langle t, t^* \rangle, \langle d_k, z_k : k \in \omega \rangle \rangle \) in \(M_\alpha^1 \), \(\bar{q} \leq \bar{p} \) if and only if

- \((iv) _f \) \(s \subset t \), \(s^* \subset t^* \), and \(t \setminus s \) has empty intersection with all elements of \(s^* \);
- \((v) _f \) If \(m \in \bar{s} \cup \{2k, 2k + 1 : k \in \psi(\omega \setminus \text{dom}(s)) \times \omega) \} \), then \(d_m \) is an end-extension of \(c_m \) and \(y_m \subset z_m \).

5. Final remarks

The fact that \(S_\alpha^1 \cap S_\beta = \emptyset \) for all \(\alpha, \beta < \omega_2 \) together with the freedom to choose \(\mathbb{K}_\alpha^0 \) to be an arbitrary \(T_0 \cup T_2 \)-proper forcing of size \(\omega_1 \) allow for combining the proofs of Theorems 1, 2 and [1, Theorem 1]. In addition, we could take \(\mathbb{K}_\alpha^0 \) to be a name for a two-step iteration with second component equal to the poset used in the proof of [1, Theorem 1] at stage \(\alpha \), and first component equal to a name of a c.c.c poset of size \(\omega_1 \) (Theorem 7(2) allows us to arrange a suitable bookkeeping of such names). This gives us the following statements.

Theorem 14. It is consistent with Martin’s Axiom that there exists a \(\Delta_3^1 \) definable wellorder of the reals and a \(\Pi_3^1 \) definable \(\omega \)-mad family of infinite subsets of \(\omega \).

Theorem 15. It is consistent with Martin’s Axiom that there exists a \(\Delta_3^1 \) definable wellorder of the reals and a \(\Pi_3^1 \) definable \(\omega \)-mad family of functions.
The following questions remain open. In all questions we are interested in families of infinite subsets of ω as well as in families of functions from ω to ω.

Question 16. Is it consistent to have $b > \omega_1$ with a Σ^1_2 definable (ω-)mad family?

Question 17. Is it consistent to have $\omega_1 < b < 2^\omega$ with a Π^1_2 definable (ω-)mad family?

In the proofs of Theorems 1 and 2 we ruled out all mad families of size ω_1 by making b big. Alternatively, one could use the methods developed in [1] and prove the consistency of $\omega_1 = b < a = \omega_2$ together with a Δ^1_3 definable ω-mad family. This suggests the following

Question 18. Is it consistent to have $b < a$ and a Π^1_2 definable (ω-)mad family?

Question 19. Is a projective (ω-)mad family consistent with $b \geq \omega_3$?

References

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: sdf@logic.univie.ac.at

URL: http://www.logic.univie.ac.at/~sdf/

Kurt Gödel Research Center for Mathematical Logic, University of Vienna, Währinger Strasse 25, A-1090 Wien, Austria.

E-mail address: lzdomsky@logic.univie.ac.at

URL: http://www.logic.univie.ac.at/~lzdomsky/