ESI Workshop

ESI = Erwin Schrödinger Institut, Vienna

ESI WORKSHOP ON LARGE CARDINALS AND DESCRIPTIVE SET THEORY
June 14–25, 2009

1st week: June 14–18 Emphasis on Large Cardinals
2nd week: June 21–25 Emphasis on Descriptive Set Theory

All are welcome; no registration fee

For further information:

KGRC Webpage: http://www.logic.univie.ac.at/

Contact person: Jakob Kellner
email: esi2009@logic.univie.ac.at
φ is *internally consistent* iff φ is true in some inner model.

Assumption: There are inner models of V with large cardinals.

A new type of (relative) consistency result.

$\text{Con}(\text{ZFC} + \varphi) = \text{ZFC} + \varphi$ is consistent

$I\text{Con}(\text{ZFC} + \varphi) = \text{ZFC} + \varphi$ holds in some inner model.
Internal Consistency

Consistency result:
Con(ZFC + LC) \rightarrow Con(ZFC + φ),
where LC is a large cardinal axiom

Internal consistency result:
$ICon(ZFC + LC) \rightarrow ICon(ZFC + \varphi)$
Internal consistency is stronger than consistency

Example

Con(ZFC) → Con(ZFC + GCH fails at all regular cardinals)
(Force with an Easton product over L)

$ICon(ZFC + 0\# \text{ exists}) →$
$ICon(ZFC + GCH fails at all regular cardinals)$
(Force with a reverse Easton iteration over L, build a generic using the Silver indiscernibles)

Proving Internal Consistency *demands new techniques*
Two types of internal consistency results:

Type 1. \(\lnot \text{Con}(\text{ZFC} + 0^\# \text{ exists}) \rightarrow \lnot \text{Con}(\text{ZFC} + \varphi) \)

Build generics by cohering partial generics along Silver indiscernibles.

Two techniques:
Easier cases: \textit{Generic modification} (F-Ondrejović)
Harder cases: \textit{Partial master conditions} (F-Thompson)

Key to Type 2 results: Show that the relevant forcings preserve measurability
2 Types of Internal Consistency Results

Type 2. First show:

(*) \(\text{ZFC + LC} \rightarrow \) In some set-forcing extension, \(\varphi \) holds in \(V_\kappa \) for some measurable \(\kappa \)

Then we have:

\[\text{ICon}(\text{ZFC + LC}) \rightarrow \text{ICon}(\text{ZFC + } \varphi \text{ holds in } V_\kappa, \kappa \text{ measurable}) \]
(Force with a countable p.o. over an inner model)

and also:

\[\text{ICon}(\text{ZFC + } \varphi \text{ holds in } V_\kappa, \kappa \text{ measurable}) \rightarrow \text{ICon}(\text{ZFC + } \varphi) \]
(Iterate the measure to \(\infty \))

So we conclude:

\[\text{ICon}(\text{ZFC + LC}) \rightarrow \text{ICon}(\text{ZFC + } \varphi) \]
2 Types of Internal Consistency Results

How do we show (∗)?

(∗) ZFC + LC → In some set-forcing extension, φ holds in V_κ for some measurable κ

In easier cases: Master conditions (Silver), Partial master conditions (Magidor, F-Honzík) or Generic modification (Woodin)
In harder cases: κ-Tree forcings (F-Thompson for κ-Sacks products, Dobrinen-F for κ-Sacks iterations, F-Zdomskyy for κ-Miller iterations)
Examples of Internal Consistency

Some Internal Consistency Results

Cardinal Exponentiation: F-Ondrejović, F-Honzík

Costationarity of the Ground Model: Dobrinen-F

Global Domination: F-Thompson

Tree Property: Dobrinen-F

Embedding Complexity: F-Thompson

Cofinality of the Symmetric Group: F-Zdomskyy
Internal Consistency: Cardinal Exponentiation

Cardinal Exponentiation

Easton function:
\[F : \text{Reg} \rightarrow \text{Card}, \ F \text{ nondecreasing}, \ \text{cof}(F(\kappa)) > \kappa \text{ for all } \kappa \in \text{Reg} \]

Easton: \(F \) a provably definable Easton function. Then
\[\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + 2^\kappa = F(\kappa) \text{ for all regular } \kappa) \]

Easton used an Easton product

This gives *no* internal consistency result
Internal Consistency: Cardinal Exponentiation

F-Ondrejović: Instead use Easton iteration of Easton products and *generic modification*

Theorem

F a provably definable Easton function. Then

$ICon(ZFC + 0\# \text{ exists}) \rightarrow ICon(ZFC + 2^\kappa = F(\kappa) \text{ for all regular } \kappa)*

Type 2 result (F-Honzík): *F a provably definable Easton function, \(\kappa \) is \(H(F(\kappa)) \)-hypermeasurable witnessed by \(j \) with \(j(F)(\kappa) \geq F(\kappa) \). Then in a set-generic extension, \(\kappa \) is measurable and \(F \) is realised below \(\kappa \) (in fact, everywhere). Sample corollary:*

Theorem

$ICon(ZFC + \text{ There is a } P_{2\kappa} \text{ hypermeasurable}) \rightarrow ICon(ZFC + 2^\kappa = \kappa^{++} \text{ for all regular } \kappa + \text{ There is a proper class of Ramsey cardinals})$
Internal Consistency: Global Domination

Global Domination

\(\kappa \) an infinite regular cardinal
Suppose \(f, g : \kappa \to \kappa \)
\(f \) dominates \(g \) iff \(f(\alpha) > g(\alpha) \) for sufficiently large \(\alpha < \kappa \)
\(\mathcal{F} \) is a dominating family iff
every \(g : \kappa \to \kappa \) is dominated by some \(f \) in \(\mathcal{F} \)
\(d(\kappa) = \) the smallest cardinality of a dominating family

Fact: \(\kappa < d(\kappa) \leq 2^\kappa \) for all infinite regular \(\kappa \)

Global Domination: \(d(\kappa) < 2^\kappa \) for all infinite regular \(\kappa \)
Internal Consistency: Global Domination

Cummings-Shelah: Global Domination is consistent
Proof uses κ-Cohen and κ-Hechler forcings
Corollary to their proof:
$I\text{Con}(\text{ZFC} + \text{a supercompact cardinal}) \rightarrow I\text{Con}(\text{ZFC} + \text{Global Domination})$

F-Thompson: Instead use κ-Sacks product (and tuning forks)

Theorem
$I\text{Con}(\text{ZFC} + 0^\# \text{ exists}) \rightarrow I\text{Con}(\text{ZFC} + \text{Global Domination})$

Theorem
If κ is $P_{2\kappa}$ hypermeasurable then in a set-generic extension, κ is measurable and global domination holds below κ (in fact, everywhere).
Internal Consistency: Global Domination

In the previous two theorems, \((d(\kappa), 2^\kappa) = (\kappa^+, \kappa^{++})\)

What about other possibilities for \((d(\kappa), 2^\kappa)\)?

Global Domination Pair \((d, F)\): For regular \(\kappa\), \(\kappa < d(\kappa) \leq F(\kappa)\), \(d(\kappa)\) regular, \(F\) an Easton function

Realising arbitrary global domination pairs seem to require very large cardinals:

Definition. \(\infty\) is *super-Woodin* iff for any class \(A \subseteq \text{Ord}\) there is \(\kappa\) such that for any \(\lambda\), some \(j\) witnessing that \(\kappa\) is \(\lambda\)-supercompact satisfies \(j(A) \cap \lambda = A \cap \lambda\)

(Follows from a stationary class of almost-huge cardinals)
Internal Consistency

Theorem

Assume GCH and ∞ super-Woodin. Then if φ defines a global domination pair there are inner models $W_0 \subseteq W_1$ such that φ defines in W_0 the global domination pair realised in W_1.

Uses κ-Cohen and κ-Hechler forcing, as in Cummings-Shelah, but preserving the measurability of κ.
Internal Consistency: The Tree Property

The Tree Property

\(\kappa \) regular

A \(\kappa \)-Aronszajn tree is a tree of height \(\kappa \) with no \(\kappa \)-branch

\(\kappa \) has the tree property iff there is no \(\kappa \)-Aronszajn tree

Mitchell: \(\text{Con}(\text{ZFC} + \text{Proper class of weakly compact cardinals}) \rightarrow \text{Con}(\text{ZFC} + \alpha^{++} \text{ has the tree property for all inaccessible } \alpha) \)

Proof uses "Mitchell forcing"

Corollary to proof:

\(\text{ICon}(\text{ZFC} + \text{a supercompact cardinal}) \rightarrow \text{ICon}(\text{ZFC} + \alpha^{++} \text{ has the tree property for all inaccessible } \alpha) \)
Dobrinen-F: Instead use iterated κ-Sacks forcing

Theorem

$ICon(\text{ZFC} + \exists \# \exists) \rightarrow ICon(\text{ZFC} + \exists \# \exists)$

$ICon(\text{ZFC} + \alpha^++ \text{ has the tree property for all inaccessible } \alpha)$

Theorem

If κ is weakly compact hypermeasurable then in a set-generic extension, κ remains measurable and the tree property holds at κ^++.

Theorem

$ICon(\text{ZFC} + \exists \# \exists \text{ There is a weakly compact hypermeasurable}) \rightarrow ICon(\text{ZFC} + \exists \# \exists \text{ The tree property holds at } \alpha^++ \text{ for inaccessible } \alpha \text{ and there is a proper class of Ramsey cardinals})$
A related consistency result:

Foreman:
Con(\text{ZFC} + \text{supercompact} + \text{a larger weak compact}) \rightarrow
Con(\text{ZFC} + \text{Tree Property at } \lambda^{++} \text{ for a singular } \lambda)

Theorem
(F-Halilović-Magidor) Con(\text{ZFC} + \kappa \text{ weakly compact hypermeasurable}) \rightarrow Con(\text{Tree property at } \aleph_{\omega+2})
Internal Consistency: Embedding Complexity

Embedding Complexity

\(\alpha \leq \kappa \) infinite and regular

\(G(\alpha, \kappa) = \) Set of graphs of size \(\kappa \) which omit \(\alpha \)-cliques

Embedding complexity of \(G(\alpha, \kappa) = ECG(\alpha, \kappa) \):
Smallest size of a \(U \subseteq G(\alpha, \kappa) \) such that every graph in \(G(\alpha, \kappa) \) embeds into some element of \(U \) (as a subgraph)

What are the possibilities for \(ECG(\alpha, \kappa) \) as a function of \(\alpha \) and \(\kappa \)?
Internal Consistency: Embedding Complexity

Complexity triple \((a, c, F)\):
- \(a, c, F : \text{Reg} \rightarrow \text{Card}\)
- F is an Easton function
- \(a(\kappa) \leq \kappa < c(\kappa) \leq F(\kappa)\) for all \(\kappa\)

Theorem

\((Džamonja-F-Thompson)\) Suppose that \((a, c, F)\) is a provably definable complexity triple. Then \(\text{Con}(\text{ZFC}) \rightarrow \text{Con}(\text{ZFC} + \text{ECG}(a(\kappa), \kappa) = c(\kappa)\) and \(2^\kappa = F(\kappa)\) for all \(\kappa \in \text{Reg}\)
Theorem

(F-Thompson) Suppose that \((a, c, F)\) is a provably definable complexity triple. Then \(\text{ICon}(\text{ZFC} + 0^\# \text{ exists}) \rightarrow \text{ICon}(\text{ZFC} + \text{ECG}(a(\kappa), \kappa) = c(\kappa) \text{ and } 2^\kappa = F(\kappa) \text{ for all } \kappa \in \text{Reg})\)

The generic is built using *partial master conditions*

Consistency with measurability: Looks difficult. Need a “tree-like” forcing to control embedding complexity
Cofinality of the Symmetric Group

\(\kappa \) regular.

\(\text{Sym}(\kappa) = \text{the symmetric group on } \kappa \)

\(\text{cof}(\text{Sym}(\kappa)) = \text{the length of the shortest chain of proper subgroups of } \text{Sym}(\kappa) \text{ whose union is all of } \text{Sym}(\kappa) \)
Internal Consistency: Cofinality of the Symmetric Group

Theorem

(F-Zdomskyy) $\text{Con}(\text{ZFC } + \kappa \text{ is } P_{2\kappa} \text{ hypermeasurable}) \rightarrow \text{Con}(\text{ZFC } + \text{cof}(\text{Sym}(\kappa))) = \kappa^{++} \text{ for a measurable } \kappa$.

Uses an iteration of a special version of κ-Miller forcing.

Theorem

(F-Zdomskyy) $\text{ICon}(\text{ZFC } + 0\# \text{ exists}) \rightarrow \text{ICon}(\text{ZFC } + \text{cof}(\text{Sym}(\alpha))) = \alpha^{++} \text{ for all inaccessible } \alpha$.

Uses the *partial master conditions* of F-Thompson.
Internal Consistency: Open Problems

Type 1 results

What global patterns can be realised in inner models of $L[0^\#]$ for the following characteristics?
Easton functions with parameters
Dominating pairs (d, F)
Sym(κ)
Tree Property (κ)
Stationary reflection at κ
\square_κ

Type 2 results

General open problem: How can one preserve measurability with iteration of “κ-Cohen like” forcings? Is there a general method for converting these into “κ-Tree like” forcings?