THIN STATIONARY SETS AND DISJOINT CLUB SEQUENCES

SY-DAVID FRIEDMAN AND JOHN KRUEGER

Abstract. We describe two opposing combinatorial properties related to adding clubs to ω_2: the existence of a thin stationary subset of $P_{\omega_1}(\omega_2)$ and the existence of a disjoint club sequence on ω_2. A special Aronszajn tree on ω_2 implies there exists a thin stationary set. If there exists a disjoint club sequence, then there is no thin stationary set, and moreover there is a fat stationary subset of ω_2 which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2. We prove that the existence of a disjoint club sequence follows from Martin’s Maximum and is equiconsistent with a Mahlo cardinal.

Suppose that S is a fat stationary subset of ω_2, that is, for every club set $C \subseteq \omega_2$, $S \cap C$ contains a closed subset with order type $\omega_1 + 1$. A number of forcing posets have been defined which add a club subset to S and preserve cardinals under various assumptions. Abraham and Shelah [1] proved that, assuming CH, the poset consisting of closed bounded subsets of S ordered by end-extension adds a club subset to S and is ω_1-distributive. S. Friedman [5] discovered a different poset for adding a club subset to a fat set $S \subseteq \omega_2$ with finite conditions. This finite club poset preserves all cardinals provided that there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$, that is, a stationary set $T \subseteq P_{\omega_1}(\omega_2)$ such that for all $\beta < \omega_2$, $|\{a \cap \beta : a \in T\}| \leq \omega_1$. This notion of stationarity appears in [9] and was discovered independently by Friedman. The question remained whether it is always possible to add a club subset to a given fat set and preserve cardinals, without any assumptions.

J. Krueger introduced a combinatorial principle on ω_2 which asserts the existence of a disjoint club sequence, which is a pairwise disjoint sequence $\langle C_\alpha : \alpha \in A \rangle$ indexed by a stationary subset of $\omega_2 \cap \text{cof}(\omega_1)$, where each C_α is club in $P_{\omega_1}(\omega_1)$. Krueger proved that the existence of such a sequence implies there is a fat stationary set $S \subseteq \omega_2$ which cannot acquire a club subset by any forcing poset which preserves ω_1 and ω_2.

We prove that a special Aronszajn tree on ω_2 implies there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$. On the other hand assuming Martin’s Maximum there exists a disjoint club sequence on ω_2. Moreover, we have the following equiconsistency result.

Theorem 0.1. Each of the following statements is equiconsistent with a Mahlo cardinal: (1) There does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. (2) There exists a disjoint club sequence on ω_2. (3) There exists a fat stationary set $S \subseteq \omega_2$ such that any forcing poset which preserves ω_1 and ω_2 does not add a club subset to S.

Date: June 2005.

2000 Mathematics Subject Classification. 03E35; 03E40.

Both authors were supported by FWF project number P16790-N04.

1A similar poset was defined independently by Mitchell [7].
Our proof of this theorem gives a totally different construction of the following result of Mitchell [8]: If \(\kappa \) is Mahlo in \(L \), then there is a generic extension of \(L \) in which \(\kappa = \omega_2 \) and there is no special Aronszajn tree on \(\omega_2 \). The consistency of Theorem 0.1(3) provides a negative solution to the following problem of Abraham and Shelah [1]: if \(S \subseteq \omega_2 \) is fat, does there exist an \(\omega_1 \)-distributive forcing poset which adds a club subset to \(S \)?

Section 1 outlines notation and background material. In Section 2 we discuss thin stationarity and prove that a special Aronszajn tree implies the existence of a thin stationary set. In Section 3 we introduce disjoint club sequences and prove that the existence of such a sequence implies there is a fat stationary set in \(\omega_2 \) which cannot acquire a club subset by any forcing poset which preserves \(\omega_1 \) and \(\omega_2 \). In Section 4 we prove that Martin’s Maximum implies there exists a disjoint club sequence. In Section 5 we construct a model in which there is a disjoint club sequence using an RCS iteration up to a Mahlo cardinal.

Sections 3 and 4 are due for the most part to J. Krueger. We would like to thank Boban Veličković and Mirna Dzamonja for pointing out Theorem 2.3 to the authors.

1. Preliminaries

For a set \(X \) which contains \(\omega_1 \), \(P_{\omega_1}(X) \) denotes the collection of countable subsets of \(X \). A set \(C \subseteq P_{\omega_1}(X) \) is club if it is closed under unions of countable increasing sequences and is cofinal. A set \(S \subseteq P_{\omega_1}(X) \) is stationary if it meets every club. If \(C \subseteq P_{\omega_1}(X) \) is club then there exists a function \(F : X^{< \omega} \to X \) such that every \(a \) in \(P_{\omega_1}(X) \) closed under \(F \) is in \(C \). If \(F : X^{< \omega} \to P_{\omega_1}(X) \) is a function and \(Y \subseteq X \), we say that \(Y \) is closed under \(F \) if for all \(\bar{y} \in Y^{< \omega} \), \(F(\bar{y}) \subseteq Y \). A partial function \(H : P_{\omega_1}(X) \to X \) is regressive if for all \(a \) in the domain of \(H \), \(H(a) \) is a member of \(a \). Fodor’s Lemma asserts that whenever \(S \subseteq P_{\omega_1}(X) \) is stationary and \(H : S \to X \) is a total regressive function, there is a stationary set \(S^* \subseteq S \) and a set \(x \) in \(X \) such that for all \(a \) in \(S^* \), \(H(a) = x \).

If \(\kappa \) is a regular cardinal let \(\text{cof}(\kappa) \) (respectively \(\text{cof}(< \kappa) \)) denote the class of ordinals with cofinality \(\kappa \) (respectively cofinality less than \(\kappa \)). If \(A \) is a cofinal subset of a cardinal \(\lambda \) and \(\kappa < \lambda \), we write for example \(A \cup \text{cof}(\kappa) \) to abbreviate \(A \cup (\lambda \cap \text{cof}(\kappa)) \).

A stationary set \(S \subseteq \kappa \) is fat if for every club \(C \subseteq \kappa \), \(S \cap C \) contains closed subsets with arbitrarily large order types less than \(\kappa \). If \(\kappa \) is the successor of a regular uncountable cardinal \(\mu \), this is equivalent to the statement that for every club \(C \subseteq \kappa \), \(S \cap C \) contains a closed subset with order type \(\mu + 1 \). In particular, if \(A \subseteq \kappa^+ \cap \text{cof}(\mu) \) is stationary then \(A \cup \text{cof}(< \mu) \) is fat.

We write \(\theta \gg \kappa \) to indicate \(\theta \) is larger than \(2^{\text{hght}(\kappa)} \).

A tree \(T \) is a special Aronszajn tree on \(\omega_2 \) if:

1. \(T \) has height \(\omega_2 \) and each level has size less than \(\omega_2 \),
2. each node in \(T \) is an injective function \(f : \alpha \to \omega_1 \) for some \(\alpha < \omega_2 \),
3. the ordering on \(T \) is by extension of functions, and if \(f \) is in \(T \) then \(f \upharpoonright \beta \) is in \(T \) for all \(\beta < \text{dom}(f) \).

By [8] if there does not exist a special Aronszajn tree on \(\omega_2 \), then \(\omega_2 \) is a Mahlo cardinal in \(L \).

If \(V \) is a transitive model of \(\text{ZFC} \), we say that \(W \) is an outer model of \(V \) if \(W \) is a transitive model of \(\text{ZFC} \) such that \(V \subseteq W \) and \(W \) has the same ordinals as \(V \).
A forcing poset \mathbb{P} is κ-distributive if forcing with \mathbb{P} does not add any new sets of ordinals with size κ.

If \mathbb{P} is a forcing poset, \dot{a} is a \mathbb{P}-name, and G is a generic filter for \mathbb{P}, we write a for the set \dot{a}^G.

Martin’s Maximum is the statement that whenever \mathbb{P} is a forcing poset which preserves stationary subsets of ω_1, then for any collection \mathcal{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| \leq \omega_1$, there is a filter $G \subseteq \mathbb{P}$ which intersects each dense set in \mathcal{D}.

A forcing poset \mathbb{P} is proper if for all sufficiently large regular cardinals $\theta > 2^{2^{\aleph_0}}$, there is a club of countable elementary substructures $N(\mathcal{H}(\theta), \in)$ such that for all $p \in N \cap P$, there is $q \leq p$ which is generic for N, i.e. q forces $N[\dot{G}] \cap \mathbb{On} = N \cap \mathbb{On}$.

If \mathbb{P} is proper then \mathbb{P} forces ω_1 and preserves stationary subsets of $P_\alpha(\lambda)$ for all $\lambda \geq \omega_1$. A forcing poset \mathbb{P} is semiproper if the same statement holds as above except the requirement that q is generic is replaced by q being semigeneric, i.e. q forces $N[\dot{G}] \cap \omega_1 = N \cap \omega_1$. If \mathbb{P} is semigeneric then \mathbb{P} preserves ω_1 and preserves stationary subsets of ω_1.

If \mathbb{P} is ω_1-c.c. and N is a countable elementary substructure of $H(\theta)$, then \mathbb{P} forces $N[\dot{G}] \cap \mathbb{On} = N \cap \mathbb{On}$; so every condition in \mathbb{P} is generic for N.

We let $<^\omega \text{On}$ denote the class of finite strictly increasing sequences of ordinals. If η and ν are in $<^\omega \text{On}$, write $\eta \leq \nu$ if η is an initial segment of ν, and write $\eta < \nu$ if $\eta \leq \nu$ and $\eta \neq \nu$. Let $l(\eta)$ denote the length of η. A set $T \subseteq <^\omega \text{On}$ is a tree if for all η in T and $k < l(\eta)$, $\eta \upharpoonright k$ is in T. A cofinal branch of T is a function $b : \omega \to \kappa$ such that for all $n < \omega$, $b \upharpoonright n$ is in T.

Suppose I is an ideal on a set X. Then I^+ is the collection of subsets of X which are not in I. If S is in I^+ let $I \upharpoonright S$ denote the ideal $I \cap \mathcal{P}(S)$. For example if $I = NS_\kappa$, the ideal of non-stationary subsets of κ, a set S is in I^+ iff S is stationary. In this case $NS_\kappa \upharpoonright S$ is the ideal of non-stationary subsets of S and $(NS_\kappa \upharpoonright S)^+$ is the collection of stationary subsets of S.

If κ is regular and $\lambda \geq \kappa$ is a cardinal, then $\text{Coll}(\kappa, \lambda)$ is a forcing poset for collapsing λ to have cardinality κ: conditions are partial functions $p : \kappa \to \lambda$ with size less than κ, ordered by extension of functions.

2. Thin Stationary Sets

Let T be a cofinal subset of $P_\omega(\omega_2)$. We say that T is thin if for all $\beta < \omega_2$ the set $\{a \cap \beta : a \in T\}$ has size less than ω_2. Note that if CH holds then $P_\omega(\omega_2)$ itself is thin. A set $S \subseteq P_\omega(\omega_2)$ is closed under initial segments if for all a in S and $\beta < \omega_2$, $a \cap \beta$ is in S.

Lemma 2.1. If $S \subseteq P_\omega(\omega_2)$ is stationary and closed under initial segments, then for all uncountable $\beta < \omega_2$, the set $S \cap P_\omega(\beta)$ is stationary in $P_\omega(\beta)$.

Proof. Consider $\beta < \omega_2$ and let $C \subseteq P_\omega(\beta)$ be a club set. Then the set $D = \{a \in P_\omega(\omega_2) : a \cap \beta \in C\}$ is a club subset of $P_\omega(\omega_2)$. Fix a in $S \cap D$. Since S is closed under initial segments, $a \cap \beta$ is in $S \cap C$. \qed

Lemma 2.2. If there exists a thin stationary subset of $P_\omega(\omega_2)$, then there is a thin stationary set S such that for all uncountable $\beta < \omega_2$, $S \cap P_\omega(\beta)$ is stationary in $P_\omega(\beta)$.

Proof. Let T be a thin stationary set. Define $S = \{a \cap \beta : a \in T, \beta < \omega_2\}$. Then S is thin stationary and closed under initial segments. \qed
A set $S \subseteq P_{\omega_1}(\omega_2)$ is a local club if there is a club set $C \subseteq \omega_2$ such that for all uncountable α in C, $S \cap P_{\omega_1}(\alpha)$ contains a club in $P_{\omega_1}(\alpha)$ (see [3]). Note that local clubs are stationary.

Theorem 2.3. If there is a special Aronszajn tree on ω_2, then there is a thin local club subset of $P_{\omega_1}(\omega_2)$.

Proof. Let T be a special Aronszajn tree on ω_2. For each f in T with $\text{dom}(f) \geq \omega_1$, define $S_f = \{f^{-1}_i : i < \omega_1\}$. Note that S_f is a club subset of $P_{\omega_1}(\text{dom}(f))$. For each uncountable $\beta < \omega_2$ define $S_\beta = \bigcup\{S_f : f \in T, \text{dom}(f) = \beta\}$. Then S_β has size ω_1. Now define $S = \bigcup\{S_\beta : \omega_1 \leq \beta < \omega_2\}$. Clearly S is a local club. To show S is thin, it suffices to prove that whenever $\beta < \gamma$ are uncountable and a is in S_γ, then $a \cap \beta$ is in S_β. Fix f in T and $i < \omega_1$ such that $a = f^{-1}_i$. Then $f \upharpoonright \beta$ is in T, so $(f \upharpoonright \beta)^{-1}_i = (f^{-1}_i)^{-1}_i = \beta = a \cap \beta$. □

In later sections of the paper we will construct models in which there does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. Theorem 2.3 shows that in such a model there cannot exist a special Aronszajn tree on ω_2, so by [8] ω_2 is Mahlo in L. Mitchell [8] constructed a model in which there is no special Aronszajn tree on ω_2 by collapsing a Mahlo cardinal in L to become ω_2 with a proper forcing poset. However, in Mitchell’s model the set $(P_{\omega_1}(\kappa))^L$ is a thin stationary subset of $P_{\omega_1}(\omega_2)$.

Lemma 2.4. Suppose $S \subseteq P_{\omega_1}(\omega_2)$ is a local club. Then S is a local club in any outer model W with the same ω_1 and ω_2.

Proof. Let C be a club subset of ω_2 such that for every uncountable α in C, $S \cap P_{\omega_1}(\alpha)$ contains a club in $P_{\omega_1}(\alpha)$. Then C remains club in W. For each uncountable α in C, fix a bijection $g_\alpha : \omega_1 \rightarrow \alpha$. Then $(g_\alpha \upharpoonright i : i < \omega_1)$ is a club subset of $P_{\omega_1}(\alpha)$. By intersecting this club with S, we get a club subset of $S \cap P_{\omega_1}(\alpha)$ of the form $(a^\alpha_i : i < \omega_1)$ which is increasing and continuous. Clearly this set remains a club subset of $P_{\omega_1}(\alpha)$ in W. □

Proposition 2.5. (1) Suppose there exists a thin local club in $P_{\omega_1}(\omega_2)$. Then there exists a thin local club in any outer model with the same ω_1 and ω_2. (2) Suppose κ is a cardinal such that for all $\mu < \kappa$, $\mu^\omega < \kappa$, and assume \mathbb{P} is a proper forcing poset which collapses κ to become ω_2. Then \mathbb{P} forces there is a thin stationary subset of $P_{\omega_1}(\omega_2)$.

Proof. (1) is immediate from Lemma 2.4 and the absoluteness of thinness. (2) Let G be generic for \mathbb{P} over V and work in $V[G]$. Since \mathbb{P} is proper, ω_1 is preserved and the set $S = (P_{\omega_1}(\kappa))^V$ is stationary in $P_{\omega_1}(\omega_2)$. We claim that S is thin. If $\beta < \omega_2$ then $\{a \cap \beta : a \in S\} = (P_{\omega_1}(\beta))^V$. By the assumption on κ, there is $\xi < \kappa$ and a bijection $f : \xi \rightarrow (P_{\omega_1}(\beta))^V$ in V. In $V[G]$ there is a surjection of ω_1 onto ξ and hence a surjection of ω_1 onto $\{a \cap \beta : a \in S\}$. □

As we mentioned above, if CH holds then the set $P_{\omega_1}(\omega_2)$ itself is thin. We show on the other hand that if CH fails then no club subset of $P_{\omega_1}(\omega_2)$ is thin. The proof is actually due to Baumgartner and Taylor [2] who proved that for any club set $C \subseteq P_{\omega_1}(\omega_2)$, there is a countable set $A \subseteq \omega_2$ such that $C \cap P(A)$ has size at least 2^ω. Their method of proof, which is described in the next lemma, is key to several of our results later in the paper.
Lemma 2.6. Suppose Z is a stationary subset of $\omega_2 \cap \text{cof}(\omega)$ and for each α in Z, M_α is a countable cofinal subset of α. Then there is a sequence $\langle Z_s, \xi_s : s \in <\omega^2 \rangle$ satisfying:

1. each Z_s is a stationary subset of Z,
2. if $s \leq t$ then $Z_t \subseteq Z_s$,
3. if α is in Z_s then ξ_s is in M_α,
4. if α is in Z_{s-0} and β is in Z_{s-1}, then ξ_{s-0} is not in M_β and ξ_{s-1} is not in M_α.

Proof. Let $Z() = Z$ and $\xi()$ is undefined. Suppose Z_s is given. Define X_s as the set of ξ in ω_2 such that the set $\{ \alpha \in Z_s : \xi \in M_\alpha \}$ is stationary. A straightforward argument using Fodor’s Lemma shows that X_s is unbounded in ω_2. For each α in Z_s such that $X_s \cap \alpha$ has size ω_1, there exists $\xi < \alpha$ in X_s such that ξ is not in M_α.

By Fodor’s Lemma there is a stationary set $Z' \subseteq Z_s$ and $\xi' \in X_s$ such that for all α in $Z' \subseteq Z_s$, $\xi' \in M_\alpha$, which is stationary since $\xi' \in X_s$. Define Y_s as the set of ξ in ω_2 such that $\alpha \in Z'$ so that $Y_s \cap \alpha$ has size ω_1, there is $\xi < \alpha$ in Y_s which is not in M_α. By Fodor’s Lemma there is ξ_1 in Y_s and $Z_0 \subseteq Z' \subseteq Z_1$ stationary such that for all α in Z_1, ξ_1 is not in M_α. Now define Z_0 as the set of α in $Z_1 \subseteq Z_0$ such that ξ_1 is in M_α.

Theorem 2.7. Assume CH fails. Then for any club set $C \subseteq P_{\omega_1}(\omega_2)$, C is not thin.

Proof. Let $F : \omega^2 \rightarrow \omega_2$ be a function such that any α in $P_{\omega_1}(\omega_2)$ closed under F is in C. Let Z be the stationary set of α in $\omega_2 \cap \text{cof}(\omega)$ closed under F. For each α in Z fix a countable set $M_\alpha \subseteq \alpha$ such that sup(M_α) = α and M_α is closed under F. Fix a sequence $\langle Z_s, \xi_s : s \in <\omega^2 \rangle$ as described in Lemma 2.6.

For each function $f : \omega \rightarrow 2$ define $b_f = \text{cl}_F(\{ \xi_{f|n} : n < \omega \})$. Then b_f is in C. Note that if $n < \omega$ and α is in $Z_f|n$, then $\text{cl}_F(\{ \xi_{f|m} : m \leq n \}) \subseteq M_\alpha$. For by Lemma 2.6(2), for $m \leq n$, $Z_f|n \subseteq Z_f|m$. So α is in $Z_f|m$, and hence $\xi_{f|m}$ is in M_α by (3). But M_α is closed under F.

Let $\gamma = \text{sup}(\{ \xi_{s+1} : s \in <\omega^2 \})$. Since $<\omega^2$ has size ω, γ is less than ω_2. We claim that for distinct f and g, $b_f \cap \gamma \neq b_g \cap \gamma$. Let $n < \omega$ be least such that $f(n) \neq g(n)$. If $b_f \cap \gamma = b_g \cap \gamma$, then there is $k > n$ such that $\xi_{g|(n+1)}$ is in $\text{cl}_F(\{ \xi_{f|m} : m \leq k \})$.

Fix α in $Z_f|k$. By the last paragraph, $\xi_{g|(n+1)}$ is in M_α. But α is in $Z_f|(n+1)$ by (2), which contradicts (4).

Let κ be an uncountable cardinal. The Weak Reflection Principle at κ is the statement that whenever S is a stationary subset of $P_{\omega_1}(\kappa)$, there is a set Y in $P_{\omega_2}(\kappa)$ such that $\omega_1 \subseteq Y$ and $S \cap P_{\omega_1}(Y)$ is stationary in $P_{\omega_1}(Y)$. Martin’s Maximum implies the Weak Reflection Principle holds for all uncountable cardinals κ [4].

The Weak Reflection Principle at ω_2 is equivalent to the statement that for every stationary set $S \subseteq P_{\omega_1}(\omega_2)$, there is a stationary set of uncountable $\beta < \omega_2$ such that $S \cap P_{\omega_1}(\beta)$ is stationary in $P_{\omega_1}(\beta)$. This is equivalent to the statement that every local club subset of $P_{\omega_1}(\omega_2)$ contains a club. The Weak Reflection Principle at ω_2 is equiconsistent with a weakly compact cardinal [3].

Corollary 2.8. Suppose CH fails and there is a special Aronszajn tree on ω_2. Then the Weak Reflection Principle at ω_2 fails.
Proof. By Theorems 2.3 and 2.7, there is a thin local club subset of \(P_{\omega_1}(\omega_2) \) which is not club. Hence the Weak Reflection Principle at \(\omega_2 \) fails. \(\square \)

In Sections 4 and 5 we describe models in which there is no thin stationary subset of \(P_{\omega_1}(\omega_2) \). On the other hand S. Friedman proved there always exists a thin cofinal set.

Theorem 2.9 (Friedman). There exists a thin cofinal subset of \(P_{\omega_1}(\omega_2) \).

Proof. We construct by induction a sequence \(\langle S_\alpha : \omega_1 \leq \alpha < \omega_2 \rangle \) satisfying the properties: (1) each \(S_\alpha \) is a cofinal subset of \(P_{\omega_1}(\alpha) \) with size \(\omega_1 \), (2) for uncountable \(\beta < \gamma \), if \(\alpha \) is in \(S_\beta \), then \(a \cap \beta \) is in \(\bigcup \{ S_\gamma : \omega_1 \leq \alpha \leq \beta \} \), and (3) if \(\beta < \gamma < \omega_2 \), \(a \) is in \(P_{\omega_1}(\gamma) \), and \(a \cap \beta \) is in \(S_\beta \), then there is \(b \) in \(S_\gamma \) such that \(a \subseteq b \) and \(a \cap \beta = b \cap \beta \).

Let \(S_{\omega_1} = \omega_1 \). Given \(S_\alpha \), let \(S_{\alpha+1} \) be the collection \(\{ b \cup \{ \alpha \} : b \in S_\alpha \} \). Conditions (1), (2), and (3) follow by induction. Suppose \(\gamma < \omega_2 \) is an uncountable limit ordinal and \(S_\alpha \) is defined for all uncountable \(\alpha < \gamma \). If \(cf(\gamma) = \omega_1 \) then let \(S_\gamma = \bigcup \{ S_\alpha : \omega_1 \leq \alpha < \gamma \} \). The required conditions follow by induction.

Assume \(cf(\gamma) = \omega \). Fix an increasing sequence of uncountable ordinals \(\langle \gamma_n : n < \omega \rangle \) unbounded in \(\gamma \). Let \(T_\alpha \) be some cofinal subset of \(P_{\omega_1}(\gamma) \) with size \(\omega_1 \). Fix \(n < \omega \). For each \(x \) in \(T_\gamma \) and \(a \) in \(S_{\gamma_n} \) define a set \(b(a, x, n) \) in \(P_{\omega_1}(\gamma) \) inductively as follows. Let \(b(a, x, n) \cap \gamma_m = a \). Given \(b(a, x, n) \cap \gamma_m \) in \(S_{\gamma_m} \) for some \(m \geq n \), apply condition (3) to \(\gamma_m, \gamma_{m+1} \), and the set

\[
(b(a, x, n) \cap \gamma_m) \cup (x \cap [\gamma_m, \gamma_{m+1}])
\]

to find \(y \) in \(S_{\gamma_{m+1}} \) such that \(y \cap \gamma_m = b(a, x, n) \cap \gamma_m \) and \(x \cap [\gamma_m, \gamma_{m+1}] \subseteq y \). Let \(b(a, x, n) \cap \gamma_{m+1} = y \). This completes the definition of \(b(a, x, n) \). Clearly \(b(a, x, n) \cap \gamma_m = a \), \(x \setminus \gamma_m \subseteq b(a, x, n) \), and for all \(k \geq n \), \(b(a, x, n) \cap \gamma_k \) is in \(S_{\gamma_k} \).

Now define \(S_\gamma = \{ b(a, x, n) : n < \omega, a \in S_{\gamma_n}, x \in T_\gamma \} \). We verify conditions (1), (2), and (3). Clearly \(S_\gamma \) has size \(\omega_1 \). Let \(\beta < \gamma \) and consider \(b(a, x, n) \) in \(S_\gamma \). Fix \(k > n \) such that \(\beta < \gamma_k \). Then \(b(a, x, n) \cap \gamma_k \) is in \(S_{\gamma_k} \). So by induction \(b(a, x, n) \cap \beta \) is in \(\bigcup \{ S_\gamma : \omega_1 \leq \alpha \leq \beta \} \). Now assume \(a \) is in \(P_{\omega_1}(\gamma) \), \(\beta < \gamma \), and \(a \cap \beta \) is in \(S_\beta \). Choose \(x \) in \(T_\gamma \) such that \(a \subseteq x \). Fix \(k \) such that \(\beta < \gamma_k \). By the induction hypothesis there is \(a' \) in \(S_{\gamma_k} \) such that \(a \cap \gamma_k \subseteq a' \) and \(a' \cap \beta = a \cap \beta \). Let \(c = b(a', x, k) \). Then \(c \) is in \(S_\gamma \), \(c \cap \beta = (c \cap \gamma_k) \cap \beta = a' \cap \beta = a \cap \beta \), and \(a \subseteq c \).

To prove \(S_\gamma \) is cofinal consider \(a \) in \(P_{\omega_1}(\gamma) \). Fix \(x \) in \(T_\gamma \) such that \(a \subseteq x \). By induction \(S_{\gamma_0} \) is cofinal in \(P_{\omega_1}(\gamma_0) \). So let \(y \) be in \(S_{\gamma_0} \) such that \(x \cap \gamma_0 \subseteq y \). Then \(a \) is a subset of \(b(y, x, 0) \).

Now define \(S = \bigcup \{ S_\beta : \omega_1 \leq \beta < \omega_2 \} \). Conditions (1) and (2) imply that \(S \) is thin and cofinal in \(P_{\omega_1}(\omega_2) \). \(\square \)

3. DISJOINT CLUB SEQUENCES

We introduce a combinatorial property of \(\omega_2 \) which implies there does not exist a thin stationary subset of \(P_{\omega_1}(\omega_2) \). This property follows from Martin’s Maximum and is equiconsistent with a Mahlo cardinal. It implies there exists a fat stationary subset of \(\omega_2 \) which cannot acquire a club subset by any forcing poset which preserves \(\omega_1 \) and \(\omega_2 \).

Definition 3.1. A disjoint club sequence on \(\omega_2 \) is a sequence \(\langle C_\alpha : \alpha \in A \rangle \) such that \(A \) is a stationary subset of \(\omega_2 \cap \text{cof}(\omega_1) \), each \(C_\alpha \) is a club subset of \(P_{\omega_1}(\alpha) \), and \(C_\alpha \cap C_\beta \) is empty for all \(\alpha < \beta \) in \(A \).
Proposition 3.2. Suppose there is a disjoint club sequence on \(\omega_2 \). Then there does not exist a thin stationary subset of \(P_{\omega_1}(\omega_2) \).

Proof. Let \(\langle C_\alpha : \alpha \in A \rangle \) be a disjoint club sequence. Suppose for a contradiction there exists a thin stationary set. By Lemma 2.2 fix a thin stationary set \(T \subseteq P_{\omega_1}(\omega_2) \) such that for all uncountable \(\beta < \omega_2 \), \(T \cap P_{\omega_1}(\beta) \) is stationary in \(P_{\omega_1}(\beta) \). Then for each \(\beta \in A \) we can choose a set \(a_\beta \in C_\beta \cap T \). Since \(\text{cf}(\beta) = \omega_1 \), \(\sup(a_\beta) < \beta \).

By Fodor’s Lemma there is a stationary set \(B \subseteq A \) and a fixed \(\gamma < \omega_2 \) such that for all \(\beta \in B \), \(\sup(a_\beta) = \gamma \). If \(\alpha < \beta \) are in \(B \), then \(a_\alpha \neq a_\beta \) since \(C_\alpha \cap C_\beta \) is empty. So the set \(\{a_\beta : \beta \in B \} \) witnesses that \(T \) is not thin, which is a contradiction. \(\square \)

Lemma 3.3. Suppose there is a disjoint club sequence \(\langle C_\alpha : \alpha \in A \rangle \) on \(\omega_2 \). Let \(W \) be an outer model with the same \(\omega_1 \) and \(\omega_2 \) in which \(A \) is still stationary. Then there is a disjoint club sequence \(\langle D_\alpha : \alpha \in A \rangle \) in \(W \).

Proof. By the proof of Lemma 2.4, each \(C_\alpha \) contains a club set \(D_\alpha \) in \(W \). Since \(\omega_1 \) is preserved, each \(\alpha \in A \) still has cofinality \(\omega_1 \). \(\square \)

Theorem 3.4. Suppose \(\langle C_\alpha : \alpha \in A \rangle \) is a disjoint club sequence on \(\omega_2 \). Then \(A \cup \text{cof}(\omega) \) does not contain a club.

Proof. Suppose for a contradiction that \(A \cup \text{cof}(\omega) \) contains a club. Without loss of generality \(2^{\omega_1} = \omega_2 \). Otherwise work in a generic extension \(W \) by \(\text{Coll}(\omega_2, 2^{\omega_1}) \): in \(W \) the set \(A \cup \text{cof}(\omega) \) contains a club and by Lemma 3.3 there is a disjoint club sequence \(\langle D_\alpha : \alpha \in A \rangle \).

Since \(2^{\omega_1} = \omega_2 \), \(H(\omega_2) \) has size \(\omega_2 \). Fix a bijection \(h : H(\omega_2) \rightarrow \omega_2 \). Let \(A \) denote the structure \((H(\omega_2), \in, h) \). Define \(B \) as the set of \(\alpha \in \omega_2 \cap \text{cof}(\omega_1) \) such that there exists an increasing and continuous sequence \(\langle N_i : i < \omega_1 \rangle \) of countable elementary substructures of \(A \) such that:

1. For \(i < \omega_1 \), \(N_i \) is in \(N_{i+1} \).
2. The set \(\{N_i \cap \omega_2 : i < \omega_1 \} \) is in \(P_{\omega_1}(\alpha) \).

We claim that \(B \) is stationary in \(\omega_2 \). To prove this let \(C \subseteq \omega_2 \) be club. Let \(B \) be the expansion of \(A \) by the function \(\alpha \mapsto \text{min}(C \setminus \alpha) \). Define by induction an increasing and continuous sequence \(\langle N_i : i < \omega_1 \rangle \) of elementary substructures of \(B \) such that for all \(i < \omega_1 \), \(N_i \) is in \(N_{i+1} \). Let \(N = \bigcup\{N_i : i < \omega_1 \} \). Then \(\omega_1 \subseteq N \) so \(N \cap \omega_2 \) is an ordinal. Write \(\alpha = N \cap \omega_2 \). Then \(\alpha \) is in \(C \) and \(\{N_i \cap \omega_2 : i < \omega_1 \} \) is club in \(P_{\omega_1}(\alpha) \). So \(\alpha \) is in \(B \cap C \).

Since \(A \cup \text{cof}(\omega) \) contains a club, \(A \cap B \) is stationary. For each \(\alpha \in A \cap B \) fix a sequence \(\langle N_0^\alpha : i < \omega_1 \rangle \) as described in the definition of \(B \). Then \(\{N_0^\alpha \cap \omega_2 : i < \omega_1 \} \cap C_\alpha \) is club in \(P_{\omega_1}(\alpha) \). So there exists a club set \(c_\alpha \subseteq \omega_1 \) such that \(\{N_0^i \cap \omega_2 : i \in c_\alpha \} \) is club and is a subset of \(C_\alpha \). Write \(i_\alpha = \text{min}(c_\alpha) \) and let \(d_\alpha = c_\alpha \setminus \{i_\alpha\} \).

Define \(S = \{N_0^\alpha : \alpha \in A \cap B, i \in d_\alpha \} \). If \(N \) is in \(S \) then there is a unique pair \(\alpha \) in \(A \cap B \) and \(i \) in \(d_\alpha \) such that \(N = N_0^\alpha \). For if \(N = N_0^i = N_0^j \), then \(N \cap \omega_2 \) is in \(C_\alpha \cap C_\beta \), so \(\alpha = \beta \). Clearly then \(i = j \). Also note that if \(N_0^\alpha \) is in \(S \) then \(N_0^\alpha \) is in \(N_0^\beta \).

So the function \(H : S \rightarrow H(\omega_2) \) defined by \(H(N_0^\alpha) = N_0^\alpha \) is well-defined and regressive.

We claim that \(S \) is stationary in \(P_{\omega_1}(H(\omega_2)) \). To prove this let \(F : H(\omega_2)^{<\omega} \rightarrow H(\omega_2) \) be a function. Define \(G : \omega_2^{<\omega} \rightarrow \omega_2 \) by letting \(G(\alpha_0, \ldots, \alpha_n) \) be equal to \(h(F(h^{-1}(\alpha_0), \ldots, h^{-1}(\alpha_n))) \). Let \(E \) be the club set of \(\alpha \) in \(\omega_2 \) closed under \(G \). Fix \(\alpha \in E \cap A \cap B \). Then there is \(i \) in \(d_\alpha \) such that \(N_0^i \cap \omega_2 \) is closed under \(G \). We claim
that N^α_β is closed under F. Given a_0, \ldots, a_n in N^α_β, the ordinals $h(a_0), \ldots, h(a_n)$ are in $N^\alpha_\beta \cap \omega_2$. So $\gamma = G(h(a_0), \ldots, h(a_n)) = h(F(a_0, \ldots, a_n))$ is in $N^\alpha_\beta \cap \omega_2$. Therefore $h^{-1}(\gamma) = F(a_0, \ldots, a_n)$ is in N^α_β.

Since S is stationary and $H : S \to H(\omega_2)$ is regressive, there is a stationary set $S^* \subseteq S$ and a fixed N such that for all N^α_β in S^*, $H(N^\alpha_\beta) = N$. The set S^*, being stationary, must have size ω_2. So there are distinct α and β such that for some i in d_α and j in d_β, N^α_β and N^β_β are in S^*. Then $N = N^\alpha_\beta = N^\beta_\beta$. So $N \cap \omega_2$ is in $\mathcal{C}_\alpha \cap \mathcal{C}_\beta$, which is a contradiction. \hfill \Box

Abraham and Shelah [1] asked the following question: Assume that A is a stationary subset of $\omega_2 \cap \text{cof}(\omega_1)$. Does there exist an ω_1-distributed forcing poset which adds a club subset to $A \cup \text{cof}(\omega)$? We answer this question in the negative.

Corollary 3.5. Assume that $\langle C_\alpha : \alpha \in A \rangle$ is a disjoint club sequence. Let W be an outer model of V with the same ω_1 and ω_2. Then in W, $A \cup \text{cof}(\omega)$ does not contain a club subset.

Proof. If A remains stationary in W, then by Lemma 3.3 there is a disjoint club sequence $\langle D_\alpha : \alpha \in A \rangle$ in W. By Theorem 3.4 $A \cup \text{cof}(\omega)$ does not contain a club in W. \hfill \Box

4. Martin’s Maximum

In this section we prove that Martin’s Maximum implies there exists a disjoint club sequence on ω_2. We apply MM to the poset for adding a Cohen real and then forcing a continuous ω_1-chain through $P_{\omega_1}(\omega_2) \setminus V$.

Theorem 4.1 (Krueger). Martin’s Maximum implies there exists a disjoint club sequence on ω_2.

We will use the following theorem from [1].

Theorem 4.2. Suppose P is ω_1-c.c. and adds a real. Then P forces that $(P_{\omega_1}(\omega_2) \setminus V)$ is stationary in $P_{\omega_1}(\omega_2)$.

Note: Gitik [6] proved that the conclusion of Theorem 4.2 holds for any outer model of V which contains a new real and computes the same ω_1.

Suppose that S is a stationary subset of $P_{\omega_1}(\omega_2)$. Following [3] we define a forcing poset $\mathbb{P}(S)$ which adds a continuous ω_1-chain through S. A condition in $\mathbb{P}(S)$ is a countable increasing and continuous sequence $\langle a_i : i \leq \beta \rangle$ of elements from S, where for each $i < \beta$, $a_i \cap \omega_1 < a_{i+1} \cap \omega_1$. The ordering on $\mathbb{P}(S)$ is by extension of sequences.

Proposition 4.3. If $S \subseteq P_{\omega_1}(\omega_2)$ is stationary then $\mathbb{P}(S)$ is ω-distributive.

Proof. Suppose p forces $\dot{f} : \omega \to \text{On}$. Let $\theta \gg \omega_2$ be a regular cardinal such that \dot{f} is in $H(\theta)$. Since S is stationary, we can fix a countable elementary substructure N of the model

$$\langle H(\theta), \in, S, \mathbb{P}(S), p, \dot{f} \rangle$$

such that $N \cap \omega_2$ is in S. Let $\langle D_n : n < \omega \rangle$ be an enumeration of all the dense subsets of $\mathbb{P}(S)$ in N. Inductively define a decreasing sequence $\langle p_n : n < \omega \rangle$ of elements of $N \cap \mathbb{P}(S)$ such that $p_0 = p$ and p_{n+1} is a refinement of p_n in $D_n \cap N$. Write $\bigcup \{p_n : n < \omega \} = \langle b_i : i < \gamma \rangle$. Clearly $\bigcup \{b_i : i < \gamma \} = N \cap \omega_2$. Since $N \cap \omega_2$ is in S,
the sequence $\langle b_i : i < \gamma \rangle \cup \{ (\gamma, N \cap \omega_2) \}$ is a condition below p which decides $f(n)$ for all $n < \omega$.

Theorem 4.4. Suppose P is an ω_1-c.c. forcing poset which adds a real. Let \dot{S} be a name such that P forces $\dot{S} = (P_{\omega_1}(\omega_2) \setminus V)$. Then $P * P(\dot{S})$ preserves stationary subsets of ω_1.

Proof. By Theorem 4.2 and Proposition 4.3, the poset $P * P(\dot{S})$ preserves ω_1. Let A be a stationary subset of ω_1 in V. Suppose $p * q$ is a condition in $P * P(\dot{S})$ which forces C is a club subset of ω_1.

Let G be a generic filter for P over V which contains p. In $V[G]$ fix a regular cardinal $\theta \gg \omega$ and let

$$A = \langle H(\theta), \in, A, S, q, C \rangle.$$

Fix a Skolem function $F : H(\theta)^{<\omega} \rightarrow H(\theta)$ for A. Define $F^* : \omega_2^{<\omega} \rightarrow P_{\omega_1}(\omega_2)$ by letting

$$F^*(\alpha_0, \ldots, \alpha_n) = cl_F(\{\alpha_0, \ldots, \alpha_n\}) \cap \omega_2.$$

Since P is ω_1-c.c. there is a function $H : \omega_2^{<\omega} \rightarrow P_{\omega_1}(\omega_2)$ in V such that for all α in $\omega_2^{<\omega}$, $F^*(\alpha) \subseteq H(\alpha)$. Let Z^* be the stationary set of α in $\omega_2 \cap \text{cof}(\omega)$ closed under H.

Working in V, since A is stationary we can fix for each α in Z^* a countable cofinal set $M_\alpha \subseteq \alpha$ closed under H with $M_\alpha \cap \omega_1 = A$. By Fodor’s Lemma there is $Z \subseteq Z^*$ stationary and δ in A such that for all α in Z, $M_\alpha \cap \omega_1 = \delta$. Fix a sequence $\langle \xi_s, Z_s : s \in \omega_2 \rangle$ satisfying conditions (1)--(4) of Lemma 2.6.

Let $f : \omega \rightarrow 2$ be a function in $V[G] \setminus V$. For each $n < \omega$ let M_n denote

$$cl_H(\delta \cup \{\xi_{f(m)} : m \leq n\}).$$

Define $M = \bigcup\{M_n : n < \omega\}$. Note that M is closed under H and hence it is closed under F^*. Therefore $N = cl_F(M)$ is an elementary substructure of A such that $N \cap \omega_2 = M$.

As in the proof of Theorem 2.7, for all $n < \omega$, if α is in $Z_{f(n)}$, then $M_n \subseteq M_\alpha$. Note that $M \cap \omega_1 = \delta$. For if γ is in $M \cap \omega_1$, there is $n < \omega$ such that γ is in M_n. Fix α in $Z_{f(n)}$. Then γ is in $M_\alpha \cap \omega_1 = \delta$.

We prove that M is not in V by showing how to compute f by induction from M. Suppose $f \upharpoonright n$ is known. Fix $j < 2$ such that $f(n) \neq j$. We claim that $\xi_{f(\upharpoonright n) \upharpoonright -j}$ is not in M. Otherwise there is $k > n$ such that $\xi_{f(\upharpoonright n) \upharpoonright -j}$ is in M_k. Fix α in $Z_{f(j)}$. Then $\xi_{f(\upharpoonright n) \upharpoonright -j}$ is in M_α. But α is in $Z_{f(j \upharpoonright n+1)}$, contradicting Lemma 2.6(4). So $f(n)$ is the unique $i < 2$ such that $\xi_{f(\upharpoonright n) \upharpoonright -j}$ is in M. This completes the definition of f from M. Since f is not in V, neither is M.

Let $(D_n : n < \omega)$ enumerate the dense subsets of $P(S)$ lying in N. Inductively define a decreasing sequence $\langle q_n : n < \omega \rangle$ in $N \cap P(S)$ such that $q_0 = q$ and q_{n+1} is in $D_n \cap N$. Write $\bigcup\{q_n : n < \omega\} = \langle b_i : i < \gamma \rangle$. Clearly $\bigcup\{b_i : i < \gamma \} = N \cap \omega_2 = M$, and since M is not in V, $r = \langle b_i : i < \gamma \rangle \cup \{ (\gamma, M) \}$ is a condition in $P(S)$. By an easy density argument, r forces that $N \cap \omega_1 = \delta$ is a limit point of \dot{C}, and hence is in \dot{C}. Let \dot{r} be a name for r. Then $p * \dot{r} \leq p * \dot{q}$ and $p * \dot{r}$ forces δ is in $A \cap \dot{C}$. □

The proof of Theorem 4.4 above is similar to the proof of Theorem 4.2.

Now we are ready to prove that MM implies there exists a disjoint club sequence on ω_2.

Proof of Theorem 4.1. Assume Martin’s Maximum. Inductively define A and $\langle C_\alpha : \alpha \in A \rangle$ as follows. Suppose α is in $\omega_2 \cap \text{cof}(\omega_1)$ and $A \cap \alpha$ and $\langle C_\beta : \beta \in A \cap \alpha \rangle$ are defined. Let α be in A iff the set $\bigcup\{C_\beta : \beta \in A \cap \alpha \}$ is non-stationary in $P_{\omega_1}(\alpha)$.
If α is in A then choose a club set $C_\alpha \subseteq P_{\omega_1}(\alpha)$ with size ω_1 which is disjoint from this union.

This completes the definition. We prove that A is stationary. Then clearly

$\langle C_\alpha : \alpha \in A \rangle$ is a disjoint club sequence. Fix a club set $C \subseteq \omega_2$.

Let Add denote the forcing poset for adding a single Cohen real with finite conditions and let \dot{S} be an Add-name for the set $(P_{\omega_1}(\omega_2) \setminus V)$. By Theorem 4.4 the poset $\text{Add} \ast \mathbb{P}(\dot{S})$ preserves stationary subsets of ω_1. We will apply Martin’s Maximum to this poset after choosing a suitable collection of dense sets.

For each $\alpha < \omega_2$ fix a surjection $f_\alpha : \omega_1 \rightarrow \alpha$. If β is in A enumerate C_β as $\langle a_\beta^i : i < \omega_1 \rangle$. For every quadruple i, j, k, l of countable ordinals let $D(i, j, k, l)$ denote the set of conditions $p \ast \dot{q}$ such that:

1. p forces that i and j are in the domain of \dot{q}, and for some β_i and β_j, p forces $\beta_i = \sup(\dot{q}(i))$ and $\beta_j = \sup(\dot{q}(j))$.
2. There is some $\zeta < \omega_1$ such that p forces ζ is the least element in $\text{dom}(\dot{q})$ such that $f_{\beta_i}(\zeta) \in \dot{q}(\zeta)$.
3. There is ξ in C larger than β_i and β_j such that p forces ξ is the supremum of the maximal set in \dot{q}.
4. If $f_{\beta_i}(k) = \gamma$ is in A, then there is z such that p forces z is in the symmetric difference $\dot{q}(i) \triangle a_\beta^\gamma$.

It is routine to check that $D(i, j, k, l)$ is dense.

Let $G \ast H$ be a filter on $\text{Add} \ast \mathbb{P}(\dot{S})$ intersecting each $D(i, j, k, l)$. For $i < \omega_1$ define a_i as the set of β for which there exists some $p \ast \dot{q}$ in $G \ast H$ such that p forces $i \in \text{dom}(\dot{q})$ and p forces β is in $\dot{q}(i)$. The definition of the dense sets implies that $\langle a_i : i < \omega_1 \rangle$ is increasing, continuous, and cofinal in $P_{\omega_1}(\alpha)$ for some α in $C \cap \text{cof}(\omega_1)$. By (4), for each γ in $A \cap \alpha$, $\{a_i : i < \omega_1 \}$ is disjoint from C_γ. Therefore $\bigcup \{C_\gamma : \gamma \in A \cap \alpha \}$ is non-stationary in $P_{\omega_1}(\alpha)$, hence by the definition of A, α is in $A \cap C$. So A is stationary.

5. The Equiconsistency Result

We now prove Theorem 0.1 establishing the consistency strength of each of the following statements to be exactly a Mahlo cardinal: (1) There does not exist a thin stationary subset of $P_{\omega_1}(\omega_2)$. (2) There exists a disjoint club sequence on ω_2. (3) There exists a fat stationary set $S \subseteq \omega_2$ such that any forcing poset which preserves ω_1 and ω_2 does not add a club subset to S.

By [5] if there exists a thin stationary subset of $P_{\omega_1}(\omega_2)$ then for any fat stationary set $S \subseteq \omega_2$, there is a forcing poset which preserves cardinals and adds a club subset to S. So (2) and (3) both imply (1), which in turn implies there is no special Aronszajn tree on ω_2. So ω_2 is Mahlo in L by [8].

In the other direction assume that κ is a Mahlo cardinal. We will define a revised countable support iteration which collapses κ to become ω_2 and adds a disjoint club sequence on ω_2. At individual stages of the iteration we force with either a collapse forcing or the poset $\text{Add} \ast \mathbb{P}(\dot{S})$ from the previous section. To ensure that ω_1 is not collapsed we verify that $\text{Add} \ast \mathbb{P}(\dot{S})$ satisfies an iterable condition known as the \mathbb{I}-universal property. Our description of this construction is self-contained, except for the proof of Theorem 5.9 which summarizes the relevant properties of the RCS iteration. For more information on such iterations and the \mathbb{I}-universal property see [10].
Definition 5.1. A pair $\langle T, I \rangle$ is a tagged tree if:

1. $T \subseteq \omega^{\omega} \text{On}$ is a tree such that each $\eta \in T$ has at least one successor,
2. $I : T \rightarrow V$ is a partial function such that each $I(\eta)$ is an ideal on some set X_η and for each $\alpha \in T$ in the domain of I, the set $\{\alpha : \eta \upharpoonright \alpha \in T\}$ is in $(I(\eta))^+$, and
3. for each cofinal branch b of T, there are infinitely many $n < \omega$ such that $b \upharpoonright n$ is in the domain of I.

If η is in the domain of I, we say that η is a splitting point of T. It follows from (1) and (3) that for every η in T there is $\eta \triangleleft \nu$ which is a splitting point.

Definition 5.2. Let I be a family of ideals and $\langle T, I \rangle$ a tagged tree. Then $\langle T, I \rangle$ is an \mathfrak{I}-tree if for each splitting point η in T, $I(\eta)$ is in \mathfrak{I}.

Suppose $T \subseteq \omega^{\omega} \text{On}$ is a tree. If η is in T, let $T[\eta]$ denote the tree $\{\nu \in T : \nu \subseteq \eta$ or $\eta \subseteq \nu\}$. A set $J \subseteq T$ is called a front if for distinct nodes in J, neither is an initial segment of the other, and for any cofinal branch b of T there is η in J which is an initial segment of b.

Definition 5.3. Suppose $\langle T, I \rangle$ is tagged tree. Let θ be a regular cardinal such that $\langle T, I \rangle$ is in $H(\theta)$, and let $<_\theta$ be a well-ordering of $H(\theta)$. A sequence $\langle N_\eta : \eta \in T \rangle$ is a tree of models for θ provided that:

1. each N_η is a countable elementary substructure of $(H(\theta), \in, <_\theta, (T, I))$,
2. if $\eta \triangleleft \nu$ in T, then $N_\eta \subseteq N_\nu$,
3. for each η in T, η is in N_η.

Definition 5.4. Suppose $\langle T, I \rangle$ is an \mathfrak{I}-tree, and θ is a regular cardinal such that $H(\theta)$ contains a front in $T[\mathfrak{I}]$. Then $\langle T, I \rangle$ is an \mathfrak{I}-suitable tree of models for θ if it is a tree of models for θ and for every η in T and I in $\mathfrak{I} \cap N_\eta$, the set

$\{\nu \in T[\eta] : \nu$ is a splitting point and $I(\nu) = I\}$

contains a front in $T[\mathfrak{I}]$.

Definition 5.5. Let $\langle T, I \rangle$, \mathfrak{I}, and θ be as in Definition 5.4. A sequence $\langle N_\eta : \eta \in T \rangle$ is an ω_1-strictly \mathfrak{I}-suitable tree of models for θ if it is an \mathfrak{I}-suitable tree of models for θ and there exists $\delta < \omega_1$ such that for all η in T, $N_\eta \cap \omega_1 = \delta$.

If $\langle N_\eta : \eta \in T \rangle$ is a tree of models and b is a cofinal branch of T, write N_b for the set $\bigcup\{N_{\eta[n]} : n < \omega\}$. Note that if $\langle N_\eta : \eta \in T \rangle$ is an ω_1-strictly \mathfrak{I}-suitable tree of models for θ, then for any cofinal branch b of T, $N_b \cap \omega_1 = N_0 \cap \omega_1$.

Lemma 5.6. Let $\langle T, I \rangle$, \mathfrak{I}, and θ be as in Definition 5.4, and let $\langle N_\eta : \eta \in T \rangle$ be an ω_1-strictly \mathfrak{I}-suitable tree of models for θ. Suppose $\eta < \nu$ in T and $(N_\nu \cap \omega_2) \setminus N_\eta$ is non-empty. Let γ be the minimum element of $(N_\nu \cap \omega_2) \setminus N_\eta$. Then $\gamma \geq \sup(N_\eta \cap \omega_2)$.

Proof. Otherwise there is β in $N_\eta \cap \omega_2$ such that $\gamma < \beta$. By elementarity, there is a surjection $f : \omega_1 \rightarrow \beta$ in N_η. So $f^{-1}(\gamma) \in N_\nu \cap \omega_1 = N_\eta \cap \omega_1$. Hence $f(f^{-1}(\gamma)) = \gamma$ is in N_η, which is a contradiction. □

Let \mathfrak{I} be a family of ideals. We say that \mathfrak{I} is restriction-closed if for all I in \mathfrak{I}, for any set A in I^+, the ideal $I \upharpoonright A$ is in \mathfrak{I}. If μ is a regular uncountable cardinal, we say that \mathfrak{I} is μ-complete if each ideal in \mathfrak{I} is μ-complete.

Definition 5.7. Suppose that \mathfrak{I} is a non-empty restriction-closed ω_2-complete family of ideals and let \mathbb{P} be a forcing poset. Then \mathbb{P} satisfies the \mathfrak{I}-universal property
if for all sufficiently large regular cardinals \(\theta \) with \(\mathbb{I} \mid H(\theta) \), if \(\langle N^\eta_\eta ; : \eta \in T \rangle \) is an \(\omega_1 \)-strictly \(\mathfrak{I} \)-suitable tree of models for \(\theta \), then for all \(p \in N^\eta_0 \cap \mathcal{P} \) there is \(q \leq p \) such that \(q \) forces there is a cofinal branch \(b \) of \(T \) such that \(N^\eta_0[\mathcal{G}] \cap \omega_1 = N^\eta_0 \cap \omega_1 \).

Definition 5.7 is Shelah’s characterization of the \(\mathbb{I} \)-universal property given in [10] Chapter XV 2.11, 2.12, and 2.13. Note that in the definition, \(q \) is semigeneric for \(N^\eta_0 \). In 2.12 Shelah proves that there are stationarily many structures \(N \) for which \(N = N^\eta_0 \) for some \(\omega_1 \)-strictly \(\mathfrak{I} \)-suitable tree of models \(\langle N^\eta_\eta ; : \eta \in T \rangle \). So by standard arguments if \(\mathcal{P} \) satisfies the \(\mathbb{I} \)-universal property then \(\mathcal{P} \) preserves \(\omega_1 \) and preserves stationary subsets of \(\omega_1 \). Note that any semiproper forcing poset satisfies the \(\mathbb{I} \)-universal property.

Theorem 5.8. Let \(\mathbb{I} \) be the family of ideals of the form \(NS_{\omega_2} \upharpoonright A \), where \(A \) is a stationary subset of \(\omega_2 \cap \text{cof}(\omega) \). Let \(\dot{S} \) be an \(\text{Add} \) name for the set \(\langle P_{\omega_1}(\omega_2) \setminus V \rangle \). Then \(\text{Add} \ast \mathcal{P}(\dot{S}) \) satisfies the \(\mathbb{I} \)-universal property.

Proof. Fix a regular cardinal \(\theta \gg \omega_2 \) and let \(\langle N^\eta_\eta ; : \eta \in T \rangle \) be an \(\omega_1 \)-strictly \(\mathfrak{I} \)-suitable tree of models for \(\theta \). Let \(p \ast \dot{q} \) be a condition in \(\langle \text{Add} \ast \mathcal{P}(\dot{S}) \rangle \cap N^\eta_0 \). We find a refinement of \(p \ast \dot{q} \) which forces there is a cofinal branch \(b \) of \(T \) such that \(N^\eta_0[\mathcal{G} \ast \dot{H}] \cap \omega_1 = N^\eta_0 \cap \omega_1 \).

We use an argument similar to the proof of Lemma 2.6 to define a sequence \(\langle \eta_\xi, \xi ; : s \in \langle \omega \rangle \rangle \) satisfying:

1. Each \(\eta_\xi \) is in \(T \), each \(\xi_\zeta \) is in \(N^\eta_\eta \cap \omega_2 \), and \(s \prec t \) implies \(\eta_s < \eta_t \).
2. If \(s \prec 0 \) or \(t \) then \(\xi_\zeta-1 \) is not in \(N^\eta_{\eta_0} \), and if \(s \prec 1 \) or \(t \) then \(\xi_\zeta-0 \) is not in \(N^\eta_{\eta_0} \).

Let \(\eta_0 = \emptyset \) and \(\xi_0 = 0 \). Suppose \(\eta_s \) is defined. Choose a splitting point \(\nu_\zeta \) in \(T \) above \(\eta_s \). Let \(Z \) denote the set of \(\alpha < \omega_2 \) such that \(\nu_\zeta \prec \alpha \) is in \(T \). Since \(\nu_\zeta \) is a splitting point, by the definition of \(I \) the set \(Z \) is a stationary subset of \(\omega_2 \cap \text{cof}(\omega) \). For each \(\alpha \) in \(Z \), \(\alpha \) is in \(N^\eta_{\nu_\zeta-\alpha} \) and has cofinality \(\omega \), so \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \) is a countable cofinal subset of \(\alpha \). Define \(X_\zeta \) as the set of \(\xi \) in \(\omega_2 \) such that the set

\[\{ \alpha \in Z : \xi \in N^\eta_{\nu_\zeta-\alpha} \cap \alpha \} \]

is stationary. An easy argument using Fodor’s Lemma shows that \(X_\zeta \) is unbounded in \(\omega_2 \). For all large enough \(\alpha \) in \(Z \), the set \((X_\zeta \setminus \text{sup}(N^\eta_{\nu_\zeta} \cap \omega_2)) \cap \alpha \) has size \(\omega_1 \). So there is a stationary set \(Z_1' \subseteq Z \) and an ordinal \(\xi_\zeta-0 \) in \(X_\zeta \) such that \(\xi_\zeta-0 \) is larger than \(\text{sup}(N^\eta_{\nu_\zeta} \cap \omega_2) \) and for all \(\alpha \) in \(Z_1' \), \(\xi_\zeta-0 \) is not in \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \). Let \(Z_1^0 \) be the stationary set of \(\alpha \) in \(Z_1' \) such that \(\xi_\zeta-0 \) is in \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \). Now define \(Y_\zeta \) as the set of \(\xi \) in \(\omega_2 \) such that the set

\[\{ \alpha \in Z_1' : \xi \in N^\eta_{\nu_\zeta-\alpha} \cap \alpha \} \]

is stationary. Again we can find \(Z_0 \subseteq Z_1^0 \) stationary and \(\xi_\zeta-1 \) in \(Y_\zeta \) such that \(\xi_\zeta-1 \) is larger than \(\text{sup}(N^\eta_{\nu_\zeta} \cap \omega_2) \) and for all \(\alpha \) in \(Z_0 \), \(\xi_\zeta-1 \) is not in \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \). Let \(Z_1 \) be the stationary set of \(\alpha \) in \(Z_1' \) such that \(\xi_\zeta-1 \) is in \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \).

Now define \(\eta_\zeta-0 \) to be equal to \(\nu_\zeta \prec \alpha \) for some \(\alpha \) in \(Z_0 \) larger than \(\xi_\zeta-1 \), and define \(\eta_\zeta-1 \) to be \(\nu_\zeta \prec \beta \) for some \(\beta \) in \(Z_1 \) larger than \(\xi_\zeta-0 \). By definition \(\xi_\zeta-0 \) is in \(N^\eta_{\nu_\zeta-\alpha} \) and \(\xi_\zeta-1 \) is in \(N^\eta_{\nu_\zeta-\alpha} \).

We claim that if \(\eta_\zeta-0 \leq \nu \) in \(T \), then \(\xi_\zeta-1 \) is not in \(N_\nu \). Since \(\alpha \) is in \(Z_0 \), \(\xi_\zeta-1 \) is not in \(N^\eta_{\nu_\zeta-\alpha} \cap \alpha \). But \(\xi_\zeta-1 < \alpha \), so \(\xi_\zeta-1 \) is not in \(N^\eta_{\nu_\zeta-\alpha} \). By Lemma 5.6 the minimum element of \(N^\eta_{\nu_\zeta} \cap \omega_2 \) which is not in \(N^\eta_{\nu_\zeta-\alpha} \) if such an ordinal exists, is at least \(\text{sup}(N^\eta_{\nu_\zeta-\alpha} \cap \omega_2) \geq \alpha > \xi_\zeta-1 \). So \(\xi_\zeta-1 \) is not in \(N^\eta_{\nu_\zeta} \). Similarly if \(\eta_\zeta-1 \leq \nu \) in \(T \), then \(\xi_\zeta-0 \) is not in \(N^\eta_{\nu_\zeta} \). This completes the definition. Conditions (1) and (2) are now easily verified.
Since \(\mathbb{P} \) is \(\omega_1 \)-c.c., the condition \(p \) itself is generic for each \(N_\eta \). Let \(G \) be a generic filter for \(\text{Add} \) over \(V \) which contains \(p \). Then for all \(\eta \) in \(T \), \(N_\eta[G] \cap n = N_\eta \cap n \).

So for any cofinal branch \(b \) of \(T \) in \(V[G] \), \(N_b[G] \cap n = \bigcup \{ N_b[n] \cap n : n < \omega \} \); in particular, \(N_b[G] \cap \omega_1 = N_0 \cap \omega_1 \).

Let \(f : \omega \to 2 \) be a function in \(V[G] \setminus V \). Define \(f = \bigcup \{ \eta(f[n] : n < \omega) \} \). We prove that \(N_b \cap \omega_2 \) is not in \(V \) by showing how to define \(f \) inductively from this set. Suppose \(f \downarrow n \) is known. Fix \(j < 2 \) such that \(f(n) \neq j \). We claim that \(\xi^* = \xi_{(f(n))} \) is not in \(N_b \cap n \). Otherwise there is \(k > n \) such that \(\xi^* \) is in \(N_{\eta(k)} \). But \(f \uparrow (n + 1) \approx f \uparrow k \). So by condition (2), \(\xi^* \) is not in \(N_{\eta(k)} \), which is a contradiction. So \(f(n) \) is the unique \(i < 2 \) such that \(\xi_{(f(n))} = i \) in \(N_b \cap \omega_2 \).

Let \(\langle D_\alpha : n < \omega \rangle \) enumerate all the dense subsets of \(\mathbb{P}(S) \) lying in \(N_{b_\alpha}[G] \). Inductively define a sequence \(\langle q_n : n < \omega \rangle \) by letting \(q_0 = q \) and choosing \(q_{n+1} \) to be a refinement of \(q \) in \(D_n \cap N_{b_\alpha}[G] \). Let \(\langle b_i : i < \gamma \rangle = \bigcup \{ q_n : n < \omega \} \). Clearly \(\bigcup \{ b_i : i < \gamma \} = N_{b_\alpha} \cap n \). Since \(N_{b_\alpha} \cap n \) is not in \(V \), \(r = \langle b_i : i < \gamma \rangle \) is a \(\mathbb{P}_\alpha \) family of ideals in \(N_{b_\alpha}[G] \) that satisfies the \(\mathbb{P}_\alpha \) condition below \(q \) and \(r \) and \(r' \) forces \(N_{b_\alpha}[G] \uparrow \omega_1 = N_{b_\alpha}[G] \cap n = N_0 \cap n \). Let \(r \) be a name for \(r \). Then \(p * r \leq p * q \) as required. □

We state without proof the facts concerning RCS iterations which we shall use. These facts follow immediately from [10] Chapter XI 1.13 and Chapter XV 4.15.

Theorem 5.9. Suppose \(\langle \mathbb{P}_1, \mathbb{Q}_1 : i \leq \alpha, j < \alpha \rangle \) is an RCS iteration. Then \(\mathbb{P}_\alpha \) preserves \(\omega_1 \) if the iteration satisfies the following properties:

1. for each \(i < \alpha \) there is \(n < \omega \) such that \(\mathbb{P}_{i+n} \Vdash \langle \mathbb{P}_i \rangle \leq \omega_1 \),
2. for each \(i < \alpha \) there is an uncountable regular cardinal \(\kappa_i \) and a \(\mathbb{P}_i \)-name \(\dot{I}_i \) such that \(\mathbb{P}_i \) preserves \(\dot{I}_i \) as a name for some non-empty restriction-closed \(\kappa_i \)-complete family of ideals in \(\dot{I}_i \) that is \(\omega_1 \)-universal.

Theorem 5.10. Let \(\alpha \) be a strongly inaccessible cardinal. Suppose that \(\langle \mathbb{P}_1, \mathbb{Q}_1 : i \leq \alpha, j < \alpha \rangle \) is a revised countable support iteration such that \(\mathbb{P}_\alpha \) preserves \(\omega_1 \) and for all \(i < \alpha \), \(| \mathbb{P}_i | < \alpha \). Then \(\mathbb{P}_\alpha \) is \(\alpha \)-c.c.

Suppose \(\kappa \) is a Mahlo cardinal and let \(A \) be the stationary set of strongly inaccessible cardinals below \(\kappa \). Define an RCS iteration \(\langle \mathbb{P}_1, \mathbb{Q}_1 : i \leq \alpha, j < \alpha \rangle \) by recursion as follows. Our recursion hypotheses will include that each \(\mathbb{P}_\alpha \) preserves \(\omega_1 \), and is \(\alpha \)-c.c. if \(\alpha \) is in \(A \).

Suppose \(\mathbb{P}_\alpha \) is defined. If \(\alpha \) is not in \(A \) then let \(\mathbb{Q}_\alpha \) be a name for \(\text{Coll}(\omega_1, | \mathbb{P}_\alpha |) \). Suppose \(\alpha \) is in \(A \). By the recursion hypotheses \(\mathbb{P}_\alpha \) forces \(\alpha = \omega_2 \). Let \(\dot{Q}_\alpha \) be a name for the poset \(\text{Add} * \mathbb{P}(S) \).

If \(\alpha \) is not in \(A \) then choose some regular cardinal \(\kappa_\alpha \) larger than \(| \mathbb{P}_\alpha | \), and let \(\dot{I}_\alpha \) be a name for some non-empty restriction-closed \(\kappa_\alpha \)-complete family of ideals on \(\kappa_\alpha \). Then \(\mathbb{P}_\alpha \) is \(\kappa_\alpha \)-c.c., and since \(\mathbb{Q}_\alpha \) is proper, \(\mathbb{P}_\alpha \) forces \(\dot{Q}_\alpha \) satisfies the \(\dot{I}_\alpha \)-universal property. Suppose \(\alpha \) is in \(A \). Then let \(\alpha = \kappa_\alpha \) and define \(\dot{I}_\alpha \) as a name for the family of ideals on \(\omega_2 \) as described in Theorem 5.8. Then \(\mathbb{P}_\alpha \) is \(\kappa_\alpha \)-c.c. and forces \(\dot{Q}_\alpha \) satisfies the \(\dot{I}_\alpha \)-universal property.

Suppose \(\beta \leq \kappa \) is a limit ordinal and \(\mathbb{P}_\alpha \) is defined for all \(\alpha < \beta \). Define \(\mathbb{P}_\beta \) as the revised countable support limit of \(\langle \mathbb{P}_\alpha : \alpha < \beta \rangle \). By Theorem 5.9 and the recursion hypotheses, \(\mathbb{P}_\beta \) preserves \(\omega_1 \). Hence if \(\beta \) is in \(A \cup \{ \kappa \} \), then \(\mathbb{P}_\beta \) is \(\beta \)-c.c. by Theorem 5.10.

This completes the definition. Let \(G \) be generic for \(\mathbb{P}_\kappa \). The poset \(\mathbb{P}_\kappa \) is \(\kappa \)-c.c. and preserves \(\omega_1 \), so in \(V[G] \) we have that \(\kappa = \omega_2 \) and \(A \) is a stationary subset of
\(\omega_2 \cap \text{cof}(\omega_1)\). For each \(\alpha\) in \(A\) let \(C_\alpha\) be the club on \(P_{\omega_2}(\alpha)\) introduced by \(Q_\alpha\). If \(\alpha < \beta\) are in \(A\), then \(C_\alpha\) and \(C_\beta\) are disjoint since \(C_\beta\) is disjoint from \(V[G | G]\). So \(\langle C_\alpha : \alpha \in A \rangle\) is a disjoint club sequence on \(\omega_2\) in \(V[G]\).

We conclude the paper with several questions.

(1) Assuming Martin’s Maximum, the poset \(\text{Add} * P(\dot{S})\) is semiproper. Is this poset semiproper in general?

(2) Is it consistent that there exists a stationary set \(A \subseteq \omega_2 \cap \text{cof}(\omega_1)\) such that neither \(A \cup \text{cof}(\omega)\) nor \(\omega_2 \setminus A\) can acquire a club subset in an \(\omega_1\) and \(\omega_2\) preserving extension?

(3) To what extent can the results of this paper be extended to cardinals greater than \(\omega_2\)? For example, is it consistent that there is a fat stationary subset of \(\omega_3\) which cannot acquire a club subset by any forcing poset which preserves \(\omega_1\), \(\omega_2\), and \(\omega_3\)?

References

Kurt Gödel Research Center for Mathematical Logic, University of Vienna
E-mail address: sdf@logic.univie.ac.at
URL: http://www.logic.univie.ac.at/~sdf

Kurt Gödel Research Center for Mathematical Logic, University of Vienna
E-mail address: jkrueger@logic.univie.ac.at
URL: http://www.logic.univie.ac.at/~jkrueger