Suppose M is a countable transitive model of ZFC
Then M has many set-generic extensions (uncountably many)

Turn this around:
M is a set-generic restriction of V iff
V is a set-generic extension of M

Questions:
1. How many set-generic restrictions does a countable V have?
2. Can we “characterise” the set-generic restrictions of V?
Laver’s Theorem

In fact, a countable V has only countably many set-generic restrictions:

Theorem

(Laver) Suppose that V is a set-generic extension of M. Then M is a definable inner model of V (with parameters).

Proof. Choose a V-regular κ so that P belongs to $H(\kappa)^M$, where V is P-generic over M. We need three facts:

1. M κ-covers V: Any subset X of M in V of size $< \kappa$ in V is a subset of such a set in M.

This is because if f maps some ordinal $\alpha < \kappa$ onto X then for each $i < \alpha$ there are $< \kappa$ possibilities for $f(i)$, given by the $< \kappa$ different forcing conditions.
2. $M \kappa$-approximates V: If X is a subset of M in V all of whose size $< \kappa$ M-approximations (i.e., intersections with size $< \kappa$ elements of M) belong to M, then X also belongs to M.

This is because if \dot{X} is forced not to be in M then we can choose for each condition a set in M whose membership in \dot{X} is not decided by that condition; no condition can force the intersection of \dot{X} with the resulting size $< \kappa$ set of elements of M to be in M.
Laver’s Theorem

3. If N is an inner model which κ-covers and κ-approximates V such that M, N have the same $H(\kappa^+)$ then $M = N$.

By κ-approximation it’s enough to show that any set X of ordinals of size $<\kappa$ in M also belongs to N (and vice-versa). Build a κ-chain $X = X_0 \subseteq X_1 \subseteq \cdots$ of sets of size $<\kappa$ such that $X_{2\alpha+1}$ belongs to M and $X_{2\alpha+2}$ belongs to N. If Y is the union of the X_α’s then by κ-approximation, Y belongs to $M \cap N$. But as M, N have the same $H(\kappa^+)$ they also have the same subsets of the ordertype of Y and therefore the same subsets of Y. It follows that X belongs to N.

Finally: All of this holds with M, V replaced by $H(\lambda)^M, H(\lambda)$ for V-regular cardinals $\lambda > \kappa^+$. So $H(\lambda)^M$ is definable in V from λ, $H(\kappa^+)^M$ uniformly in λ, so M is V-definable.
Another easy consequence of set-genericity is the following.

Proposition

Suppose that V is a set-generic extension of M. Then M globally covers V: For some V-regular κ, if $f : \alpha \to M$ belongs to V then there is $g : \alpha \to M$ in M such that $f(i) \in g(i)$ and $g(i)$ has V-cardinality $< \kappa$ for all $i < \alpha$.

To see this define $g(i)$ to be the set of possible values of $f(i)$ given by the different forcing conditions. We can choose any κ so that the forcing is κ-cc.

Surprisingly, we now know enough to characterise set-generic restrictions.
Theorem

(Bukovsky) Suppose that M is a definable inner model which globally covers V. Then V is a set-generic extension of M.

I’ll give a proof of this and discuss some refinements and open questions.

First suppose that $V = M[A]$ for some set of ordinals A; we’ll get rid of this extra hypothesis later.

Fix a V-regular κ such that A is a subset of κ and M globally κ-covers V, i.e., if $f : \alpha \to M$ in V then there is $g : \alpha \to M$ in M so that $f(i) \in g(i)$ and $g(i)$ has V-cardinality $< \kappa$ for each $i < \alpha$.
Bukovsky’s Theorem

The language \(\mathcal{L}^{QF}_\kappa (M) \)

The formulas of \(\mathcal{L}^{QF}_\kappa (M) \) are defined inductively by:

1. Basic formulas \(\alpha \in \dot{\Lambda}, \alpha \notin \dot{\Lambda} \) for \(\alpha < \kappa \).
2. If \(\Phi \in M \) is a size \(< \kappa \) set of formulas then so are \(\bigvee \Phi \) and \(\bigwedge \Phi \).

Each formula can be regarded as an element of \(H(\kappa)^M \). The set of formulas forms a \(\kappa \)-complete Boolean algebra in \(M \), denoted by \(B^M_\kappa \).

\(A \subseteq \kappa \) satisfies \(\varphi \) iff \(\varphi \) is true when \(\dot{\Lambda} \) is replaced by \(A \).

\(T \models \varphi \) iff for all \(A \subseteq \kappa \) (in a set-generic extension of \(M \)), if \(A \) satisfies all formulas in \(T \) then \(A \) also satisfies \(\varphi \).

The above is expressible in \(M \) for \(T, \varphi \) in \(M \) and by Lévy absoluteness, \(T \models \varphi \) in \(M \) iff \(T \models \varphi \) in \(V \).
Bukovsky’s Theorem

Quotients of \mathcal{B}_κ^M: Suppose that T is a set of formulas in $\mathcal{B}_\kappa^M(2^{<\kappa})^+$. Then \mathcal{I}_T is the ideal of formulas in \mathcal{B}_κ^M which are inconsistent with T.

Now we prove the genericity of A over M. Recall that M globally κ-covers V. Let f be a function in V from subsets of \mathcal{B}_κ^M in M to \mathcal{B}_κ^M such that:
If A satisfies some $\psi \in \Phi$ then A satisfies $f(\Phi) \in \Phi$.
Using a wellorder in M we can regard f as a function from some ordinal into M. Apply global κ-covering to get g in M so that $g(\Phi) \subseteq \Phi$ has size $< \kappa$ and $f(\Phi) \in g(\Phi)$ for each Φ.
Consider the following set of formulas T in $\mathcal{B}_\kappa^M(2^{<\kappa})^+$:
$$T = \{ (\forall \Phi \rightarrow \forall g(\Phi)) \mid \Phi \subseteq \mathcal{B}_\kappa^M, \ \Phi \in M \}.$$ Let P be the forcing $(\mathcal{B}_\kappa^M \setminus \mathcal{I}_T)/\mathcal{I}_T$ the set of T-consistent formulas modulo T-provability.
Claim 1. \(P = (\mathcal{B}_\kappa^M \setminus \mathcal{I}_T)/\mathcal{I}_T \) is \(\kappa \)-cc.

Proof. Suppose that \(\Phi \) is a maximal antichain in \(P \). We show that \(g(\Phi) = \Phi \) (and therefore \(\Phi \) has size \(< \kappa \)). It suffices to show that any \(\varphi \in \Phi \) is \(T \)-consistent with some element of \(g(\Phi) \). Choose any \(B \subseteq \kappa \) which satisfies \(T \cup \{ \varphi \} \) (this is possible because \(\varphi \) is \(T \)-consistent). As \(T \) includes the formula \(\bigvee \Phi \rightarrow \bigvee g(\Phi) \) it follows that \(B \) also satisfies \(\bigvee g(\Phi) \) and therefore \(\psi \) for some \(\psi \in g(\Phi) \). So \(\varphi \) is \(T \)-consistent with \(\psi \in g(\Phi) \). \(\Box \)

Claim 2. Let \(G(A) \) be \(\{ [\varphi]_{\mathcal{I}_T} \mid \varphi \text{ belongs to } \mathcal{B}_\kappa^M \text{ and } A \text{ satisfies } \varphi \} \). Then \(G(A) \) is \(\mathcal{P} \)-generic over \(M \).

Proof. Suppose that \(\Phi \) consists of representatives of a maximal antichain \(X \) of equivalence classes in \(P \). Then \(T \models \bigvee \Phi \), else the negation of \(\bigvee \Phi \) represents an equivalence class violating the maximality of \(X \). As \(A \) satisfies the theory \(T \) it follows that \(A \) satisfies some element of \(\Phi \) and therefore \(G(A) \) meets \(X \). \(\Box \)
It now follows that $M[A]$ is a P-generic extension of M, as $M[A] = M[G(A)]$.

This proves Bukovsky’s theorem assuming that $V = M[A]$ for some set of ordinals A.

But the same proof shows that $M[A]$ is a κ-cc generic extension of M for any set of ordinals $A \in V$. Choose A so that $M[A]$ contains all subsets of $2^{<\kappa}$ in V. Then $M[A]$ must equal all of V; Otherwise for some set B of ordinals in V, $M[A, B]$ is a nontrivial κ-cc generic extension of $M[A]$ and therefore adds a new subset of $2^{<\kappa}$ to $M[A]$.
The above proof shows that for M a definable inner model of V:

V is a κ-cc forcing extension of M iff

M globally κ-covers V

Is there a similar characterisation with “κ-cc” replaced by “size at most \(\kappa\)”?
Bukovsky’s Theorem: Refinements

\(M \ \kappa \text{-decomposes} \ V \) iff every subset of \(M \) in \(V \) is the union of at most \(\kappa \)-many subsets, each of which belongs to \(M \).

Proposition

\(V \) is a size at most \(\kappa \) forcing extension of \(M \) iff \(M \) globally \(\kappa^+ \)-covers and \(\kappa \)-decomposes \(V \).

Proof. For the easy direction, suppose that \(V = M[G] \) where \(G \) is \(P \)-generic and \(P \) has size at most \(\kappa \). As \(P \) is \(\kappa^+ \)-cc it follows that \(M \) globally \(\kappa^+ \)-covers \(V \). To show that \(M \ \kappa \)-decomposes \(V \), suppose that \(X \in V \) is a subset of \(M \) and choose \(Y \in M \) that covers \(X \). Let \(\dot{X} \) be a name for \(X \) and for each \(p \in G \) let \(X_p \) consist of those \(x \in M \) such that \(p \) forces \(x \in \dot{X} \). Then the \(X_p \)'s give the desired \(\kappa \)-decomposition of \(X \).
Conversely, suppose that M globally κ^+-covers and κ-decomposes V. By Bukovsky’s Theorem, V is a P-generic extension of M for some P which is κ^+-cc. We want to argue that P is equivalent to a forcing of size at most κ. We may assume that P is in fact a complete κ^+-cc Boolean algebra which we write as B.

Write V as $M[G]$ where G is B-generic over M. Take a B-name for a κ-decomposition $\dot{G} = \bigcup_{i < \kappa} \dot{G}_i$ of \dot{G}, where each \dot{G}_i is forced to belong to M. For each $i < \kappa$ let X_i be a maximal antichain of conditions in B which decide a specific value in M for \dot{G}_i. For each p in X_i let $p(\dot{G}_i)$ denote the value of \dot{G}_i forced by p and $b(p)$ the meet of the conditions in $p(\dot{G}_i)$; $b(p)$ is a nonzero Boolean value because if G_p is generic below p then G_p must contain a condition below each element of $p(\dot{G}_i)$. Let D be the set of $b(p)$ for p in the union of the X_i’s.
Claim. D is dense in B.

If q belongs to P then some r below q forces that q belongs to \dot{G}_i for some i; we can assume that r extends some element p of X_i. But then as p decides a value for \dot{G}_i, it also forces that q belongs to \dot{G}_i and therefore q is extended by $b(p) \in D$. □

We have characterised κ-cc generic extensions and size at most κ generic extensions in terms of covering and decomposition properties. As a result, these properties are Π_2 properties of V with a predicate for M.

Question. Is the property “V is a set-forcing extension of M” a strictly Σ_3 property of V with a predicate for M?
Bukovsky’s Theorem: Refinements

Class Forcing

I don’t know a good version of Laver, Bukovsky for class forcing. Below is a special case.

Morse-Kelley Class Theory MK: Can form new classes by quantifying over classes.

Models of MK (with global choice) correspond to models of:
1. ZFC$^-$ (without Power)
2. There is an inaccessible cardinal κ
3. Every set has cardinality at most κ

Call this theory SetMK.
Suppose that $M \subseteq V$ are models of SetMK, M is definable in V and κ is the largest cardinal of V. Then every element of V is in a κ-cc set-generic extension of M iff:

\ast For any V-definable function $f : M \rightarrow \kappa$ there is an M-definable $g : M \rightarrow \kappa$ which dominates f.

In terms of models of MK (with global choice) this says:
Bukovsky’s Theorem: Refinements

Theorem

Suppose that \((M, C^M) \subseteq (V, C^V)\) are models of MK with global choice and \(C^M\) is definable in \((V, C^V)\) (by a formula which quantifies over classes). Then each class in \(C^V\) belongs to a class-generic extension of \((M, C^M)\) via a class forcing whose antichains are sets iff:

\((*)\) For any \((V, C^V)\)-definable function \(f\) from \(C^M\) to \(M\) there is an \((M, C^M)\)-definable function \(g\) from \(C^M\) to \(M\) such that \(f(x) \in g(x)\) for each \(x \in C^M\).

If one goes beyond class theory to hyperclass theory (hyperclasses of classes) then the situation simplifies greatly. In the other direction, working with a weak class theory like Gödel-Bernays looks very difficult.