Strongly surjective linear orders

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/
Project goal: study uncountable linear orders L so that

$$K \leftrightarrow L \text{ if and only if } L \rightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Project goal: study uncountable linear orders L so that

$$K \hookrightarrow L \text{ if and only if } L \twoheadrightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Project goal: study uncountable linear orders L so that

$$K \leftrightarrow L \text{ if and only if } L \rightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Introduction

Project goal: study uncountable linear orders L so that

$$K \rightarrow L \text{ if and only if } L \rightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Project goal: study uncountable linear orders L so that

$$K \hookrightarrow L \text{ if and only if } L \twoheadrightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Project goal: study uncountable linear orders L so that

$$K \leftrightarrow L \text{ if and only if } L \twoheadrightarrow K.$$

[R. Camerlo, R. Carroy and A. Marcone]

- disclaimer and introduction;
- various consistency results;
- is there an example in ZFC?
- open problems along the way.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only **minimal** linear orders;
- \mathbb{Q} is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?
- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\rightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\rightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- \(\omega \) and \(-\omega\) are the only minimal linear orders;
- \(\mathbb{Q} \) is the unique dense l.o. without endpoints.

How about uncountable linear orders?

\(\omega_1 \) and \(-\omega_1\) are minimal,

\(L \) is short if \(\omega_1, -\omega_1 \not\hookrightarrow L \)

- suborders of \(\mathbb{R} \), or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:

- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\hookrightarrow L$,
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:

- ω and $-\omega$ are the only **minimal** linear orders;
- \mathbb{Q} is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\hookrightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not
\rightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only **minimal** linear orders;
- \mathbb{Q} is the **unique dense** l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\rightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?
- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\rightarrow L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.

Dániel Soukup (KGRC)
Strongly surjective linear orders
MFO, 2017 February
Introduction

Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?

- ω_1 and $-\omega_1$ are minimal,

L is short if $\omega_1, -\omega_1 \not\to L$

- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
Consider the class of linear orders with order preserving embeddings.

Among countable linear orders:
- ω and $-\omega$ are the only minimal linear orders;
- \mathbb{Q} is the unique dense l.o. without endpoints.

How about uncountable linear orders?
- ω_1 and $-\omega_1$ are minimal,
- L is short if $\omega_1, -\omega_1 \not\to L$
- suborders of \mathbb{R}, or
- lex. ordered Aronszajn trees.
If $f : L \to K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \hookrightarrow L$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \leftrightarrow L$ implies $L \rightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.
If $f : L \rightarrow K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{\ell_k : k \in K\} \rightarrow L$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \leftrightarrow L$ implies $L \rightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.
If $f : L \rightarrow K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{ \ell_k : k \in K \} \hookrightarrow L$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,
- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.
If \(f : L \rightarrow K \) then \(L = \sum_{k \in K} f^{-1}(k) \).

Select \(\ell_k \in f^{-1}(k) \) and note that \(K \simeq \{ \ell_k : k \in K \} \hookrightarrow L \).

[CCM 2015] When is this implication reversible?

\(L \) is strongly surjective if \(K \hookrightarrow L \) implies \(L \twoheadrightarrow K \).

- \(\omega, -\omega \) and \(\mathbb{Q} \) are strongly surjective,
- strongly surjective \(\Rightarrow \) short \(\Rightarrow \) size \(\leq 2^{\aleph_0} \).

If \(L \subseteq \mathbb{R} \) is Borel and strongly surjective then \(|L| \leq \omega \).
Strongly surjective linear orders

If \(f : L \to K \) then \(L = \sum_{k \in K} f^{-1}(k) \).

Select \(\ell_k \in f^{-1}(k) \) and note that \(K \cong \{ \ell_k : k \in K \} \to L \).

[CCM 2015] When is this implication reversible?

\[L \text{ is strongly surjective if } K \leftarrow L \text{ implies } L \to K. \]

- \(\omega, -\omega \) and \(\mathbb{Q} \) are strongly surjective,
- strongly surjective \(\Rightarrow \) short \(\Rightarrow \) size \(\leq 2^{\aleph_0} \).

If \(L \subseteq \mathbb{R} \) is Borel and strongly surjective then \(|L| \leq \omega \).
If $f : L \to K$ then $L = \sum_{k \in K} f^{-1}(k)$.

Select $\ell_k \in f^{-1}(k)$ and note that $K \simeq \{ \ell_k : k \in K \} \hookrightarrow L$.

[CCM 2015] When is this implication reversible?

L is strongly surjective if $K \hookrightarrow L$ implies $L \twoheadrightarrow K$.

- $\omega, -\omega$ and \mathbb{Q} are strongly surjective,

- strongly surjective \Rightarrow short \Rightarrow size $\leq 2^{\aleph_0}$.

If $L \subseteq \mathbb{R}$ is Borel and strongly surjective then $|L| \leq \omega$.
If \(f : L \to K \) then \(L = \sum_{k \in K} f^{-1}(k) \).

Select \(\ell_k \in f^{-1}(k) \) and note that \(K \cong \{ \ell_k : k \in K \} \hookrightarrow L \).

[CCM 2015] When is this implication reversible?

\(L \) is strongly surjective if \(K \hookrightarrow L \) implies \(L \twoheadrightarrow K \).

- \(\omega, -\omega \) and \(\mathbb{Q} \) are strongly surjective,
- strongly surjective \(\Rightarrow \) short \(\Rightarrow \) size \(\leq 2^{\aleph_0} \).

If \(L \subseteq \mathbb{R} \) is Borel and strongly surjective then \(|L| \leq \omega \).
If \(f : L \rightarrow K \) then \(L = \sum_{k \in K} f^{-1}(k) \).

Select \(\ell_k \in f^{-1}(k) \) and note that \(K \simeq \{ \ell_k : k \in K \} \hookrightarrow L \).

[CCM 2015] When is this implication reversible?

\(L \) is strongly surjective if \(K \hookrightarrow L \) implies \(L \twoheadrightarrow K \).

- \(\omega, -\omega \) and \(\mathbb{Q} \) are strongly surjective,
- strongly surjective \(\Rightarrow \) short \(\Rightarrow \) size \(\leq 2^{\aleph_0} \).

If \(L \subseteq \mathbb{R} \) is Borel and strongly surjective then \(|L| \leq \omega \).
We say that L is strongly surjective if $L \twoheadrightarrow K$ for any $K \hookrightarrow L$.

CCC 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^\alpha m$ where $\alpha < \omega_1$ and $m \in \omega$.

CCC 2016] The set of countable, strongly surjective linear orders is the union of a Π^1_1-complete set (scattered ones) and Σ^1_1-complete set (non-scattered ones).
We say that L is strongly surjective if $L \rightarrow K$ for any $K \hookrightarrow L$.

[CCM 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^\alpha m$ where $\alpha < \omega_1$ and $m \in \omega$.

[CCM 2016] The set of countable, strongly surjective linear orders is the union of a Π^1_1-complete set (scattered ones) and Σ^1_1-complete set (non-scattered ones).
We say that L is strongly surjective if $L \rightarrow K$ for any $K \hookrightarrow L$.

[CCM 2015] $\xi \in \text{ORD}$ is strongly surjective iff $\xi = \omega^\alpha m$ where $\alpha < \omega_1$ and $m \in \omega$.

[CCM 2016] The set of countable, strongly surjective linear orders is the union of a Π^1_1-complete set (scattered ones) and Σ^1_1-complete set (non-scattered ones).
Uncountable suborders of \mathbb{R}

[CCM 2016] If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

[Baumgartner 1970] $\text{PFA} \rightarrow \text{BA}_{\aleph_1}$ [Neeman ?] $\text{Con} (\text{BA}_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $\text{MA}_{\aleph_1} + \text{OCA} + \text{ISA}$.
Uncountable suborders of \mathbb{R}

[CCM 2016] If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

[Baumgartner 1970] PFA \rightarrow BA_{\aleph_1} [Neeman ?] $\text{Con}(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $\text{MA}_{\aleph_1} + \text{OCA} + \text{ISA}$.
Uncountable suborders of \mathbb{R}

[CCM 2016] If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $\text{Con}(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $MA_{\aleph_1} + OCA + ISA$.
Uncountable suborders of \(\mathbb{R} \)

[CCM 2016] If \(A \) is the unique \(\kappa \)-dense suborder of \(\mathbb{R} \) (i.e. \(\text{BA}_\kappa \) holds) then \(A \) is strongly surjective.

[Baumgartner 1970] \(\text{PFA} \rightarrow \text{BA}_{\aleph_1} \) [Neeman ?] \(\text{Con(BA}_{\aleph_2}) \)

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \(\aleph_1 \)-dense, strongly surjective \(L \subseteq \mathbb{R} \) which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, \(\text{MA}_{\aleph_1} + \text{OCA} + \text{ISA} \).
If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

$PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $\text{Con}(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

$\text{Consistently, } MA_{\aleph_1} + OCA + ISA.$
Uncountable suborders of \mathbb{R}

[CCM 2016] If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

[Baumgartner 1970] $PFA \rightarrow BA_{\aleph_1}$ [Neeman ?] $\text{Con}(BA_{\aleph_2})$

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $\text{MA}_{\aleph_1} + \text{OCA} + \text{ISA}$.
[CCM 2016] If A is the unique κ-dense suborder of \mathbb{R} (i.e. BA_κ holds) then A is strongly surjective.

[Baumgartner 1970] PFA \rightarrow BA_{\aleph_1} [Neeman ?] Con(BA_{\aleph_2})

Note: these examples are all minimal and homogeneous under MA.

Consistently, there is an \aleph_1-dense, strongly surjective $L \subseteq \mathbb{R}$ which is not minimal and not homogeneous.

[Abraham, Rubin, Shelah 1985] Consistently, $MA_{\aleph_1} + OCA + ISA$.
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

\[
\text{MA}_{\aleph_1} \not\rightarrow \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R}
\]

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- \(\text{Con}(\text{MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder})\).

Suppose \(L \subseteq \mathbb{R}\) is strongly surjective and rigid. Is \(L\) countable?
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

$\text{MA}_{\aleph_1} \quad \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R}$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- $\text{Con} (\text{MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder})$.

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is L countable?
Some questions

Does **every** uncountable, strongly surjective l.o. **contain a minimal suborder**?

\[\text{MA}_{\aleph_1} \quad \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R} \]

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- \(\text{Con}(\text{MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder}) \).

Suppose \(L \subseteq \mathbb{R} \) is **strongly surjective and rigid**. Is \(L \) countable?
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

\[\text{MA}_{\aleph_1} \Rightarrow \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R} \]

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- \(\text{Con(MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder}) \).

Suppose \(L \subseteq \mathbb{R} \) is strongly surjective and rigid. Is \(L \) countable?
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

\[\text{MA}_{\aleph_1} \quad \rightarrow \quad \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R} \]

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- \(\text{Con}(\text{MA}_{\aleph_1} \quad + \quad \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder}) \).

Suppose \(L \subseteq \mathbb{R} \) is strongly surjective and rigid. Is \(L \) countable?
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

\[\text{MA}_{\aleph_1} \not\implies \text{there is an uncountable, strongly surjective } L \subseteq \mathbb{R} \]

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- \(\text{Con}(\text{MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder}) \).

Suppose \(L \subseteq \mathbb{R} \) is strongly surjective and rigid. Is \(L \) countable?
Some questions

Does every uncountable, strongly surjective l.o. contain a minimal suborder?

$\text{MA}_{\aleph_1} \text{?} \rightarrow$ there is an uncountable, strongly surjective $L \subseteq \mathbb{R}$

There is no 2-entangled, strongly surjective linear order.

- 2-entangled implies no minimal suborder, and
- $\text{Con}(\text{MA}_{\aleph_1} + \text{every uncountable } L \subseteq \mathbb{R} \text{ has a 2-entangled suborder})$.

Suppose $L \subseteq \mathbb{R}$ is strongly surjective and rigid. Is L countable?
The effects of CH and relatives

CH implies $\neg \text{BA}_{\aleph_1}$ and there are no minimal suborders of \mathbb{R}.

[CCM 2016] $2^{\aleph_0} < 2^{\kappa} \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ.

Every uncountable, strongly surjective linear order is Aronszajn if

- $2^{\aleph_0} < 2^{\aleph_1}$, or
- we are in an extension by \mathbb{C}_κ for some $\kappa = \text{cf}(\kappa) > \omega_1$.
CH implies \(\neg \text{BA}_{\aleph_1} \) and there are no minimal suborders of \(\mathbb{R} \).

\[
\text{[CCM 2016]} \quad 2^{\aleph_0} < 2^\kappa \Rightarrow \text{no strongly surjective } L \subseteq \mathbb{R} \text{ of size } \kappa.
\]

Every uncountable, strongly surjective linear order is Aronszajn if

1. \(2^{\aleph_0} < 2^{\aleph_1} \), or
2. we are in an extension by \(C_\kappa \) for some \(\kappa = \text{cf}(\kappa) > \omega_1 \).
The effects of CH and relatives

CH implies $\neg\text{BA}_{\aleph_1}$ and there are no minimal suborders of \mathbb{R}.

[CCM 2016] $2^{\aleph_0} < 2^\kappa \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ.

Every uncountable, strongly surjective linear order is Aronszajn if

1. $2^{\aleph_0} < 2^{\aleph_1}$, or
2. we are in an extension by \mathbb{C}_κ for some $\kappa = \text{cf}(\kappa) > \omega_1$.
The effects of CH and relatives

CH implies $\neg\text{BA}_{\aleph_1}$ and there are no minimal suborders of \mathbb{R}.

[CCM 2016] $2^{\aleph_0} < 2^\kappa \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ.

Every uncountable, strongly surjective linear order is Aronszajn if

1. $2^{\aleph_0} < 2^{\aleph_1}$, or
2. we are in an extension by \mathbb{C}_κ for some $\kappa = \text{cf}(\kappa) > \omega_1$.
The effects of CH and relatives

CH implies $\neg \text{BA}_{\aleph_1}$ and there are no minimal suborders of \mathbb{R}.

[CCM 2016] $2^{\aleph_0} < 2^\kappa \Rightarrow$ no strongly surjective $L \subseteq \mathbb{R}$ of size κ.

Every uncountable, strongly surjective linear order is Aronszajn if

1. $2^{\aleph_0} < 2^{\aleph_1}$, or

2. we are in an extension by \mathcal{C}_κ for some $\kappa = \text{cf}(\kappa) > \omega_1$.
A Suslin example

(◊⁺) There is a strongly surjective, lex. ordered Suslin-tree T.

Key property [CCM 2016]:

T is Suslin $+$ doubly isomorphic to all large subtrees.

1. [Baumgartner 1982] the proof is oversimplified (false lemma);
2. [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).
There is a strongly surjective, lex. ordered Suslin-tree T.

Key property [CCM 2016]:

T is Suslin + doubly isomorphic to all large subtrees.

1. [Baumgartner 1982] the proof is oversimplified (false lemma);
2. [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).
A Suslin example

(◊⁺) There is a strongly surjective, lex. ordered Suslin-tree T.

Key property \[\text{[CCM 2016]}\]:

T is Suslin + doubly isomorphic to all large subtrees.

1. \[\text{[Baumgartner 1982]}\] the proof is oversimplified (false lemma);
2. \[\text{[Hajnal, Nagy, Soukup 1990]}\] T is tree-isomorphic to all large subtrees (no lex. order).
(◊⁺) There is a strongly surjective, lex. ordered Suslin-tree \(T \).

Key property [CCM 2016]:

\(T \) is Suslin + doubly isomorphic to all large subtrees.

1. [Baumgartner 1982] the proof is oversimplified (false lemma);
2. [Hajnal, Nagy, Soukup 1990] \(T \) is tree-isomorphic to all large subtrees (no lex. order).
There is a strongly surjective, lex. ordered Suslin-tree T.

Key property [CCM 2016]:

T is Suslin $+$ doubly isomorphic to all large subtrees.

1. [Baumgartner 1982] the proof is oversimplified (false lemma);

2. [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).
A Suslin example

There is a strongly surjective, lex. ordered Suslin-tree T.

Key property [CCM 2016]:

T is Suslin + doubly isomorphic to all large subtrees.

1. [Baumgartner 1982] the proof is oversimplified (false lemma);
2. [Hajnal, Nagy, Soukup 1990] T is tree-isomorphic to all large subtrees (no lex. order).
Are there ZFC examples?
Are there ZFC examples?

Yes. No.
Are there ZFC examples?

Yes.

No.
(CH + axiom (A)) Every strongly surjective linear order is countable.

From [Moore 2007]:

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) \omega_1 and \neg\omega_1 are the only minimal uncountable l. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.
Are there ZFC examples?

(CH + axiom (A)) Every strongly surjective linear order is countable.

From [Moore 2007]:

(A) ≡ any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;

(CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable l. orders;

(A) is forced from CH using a CSI of proper posets with NNR.
(CH + axiom (A)) Every strongly surjective linear order is countable.

From [Moore 2007]:

- (A) ≡ any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- (CH + (A)) ω_1 and $-\omega_1$ are the only minimal uncountable l. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.
Are there ZFC examples?

\[(CH + \text{axiom (A)})\] Every strongly surjective linear order is countable.

From [Moore 2007]:

- (A) \equiv any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- \((CH + (A))\) ω_1 and $-\omega_1$ are the only minimal uncountable l. orders;
- (A) is forced from CH using a CSI of proper posets with NNR.
Are there ZFC examples?

(\(\text{CH} + \text{axiom (A)}\)) Every strongly surjective linear order is countable.

From [Moore 2007]:

- \((A) \equiv \) any ladder system colouring can be uniformized on an arbitrary Aronszajn tree;
- \((\text{CH} + (A)) \) \(\omega_1\) and \(-\omega_1\) are the only minimal uncountable l. orders;
- \((A)\) is forced from \(\text{CH}\) using a CSI of proper posets with NNR.
Open problems

Consistently, are there strongly surjective linear orders of size $> \aleph_2$?

[ARS 1985] Is it consistent that $\neg \text{BA}_{\aleph_1}$ but $A \leftrightarrow B$ or $B \leftrightarrow A$ for any two \aleph_1-dense $A, B \subseteq \mathbb{R}$?

Suppose that L is strongly surjective and $x \in L$. Is $L \setminus \{x\}$ strongly surjective?
Consistently, are there strongly surjective linear orders of size \aleph_2?

[ARS 1985] Is it consistent that $\neg\text{BA}_{\aleph_1}$ but $A \leftrightarrow B$ or $B \leftrightarrow A$ for any two \aleph_1-dense $A, B \subseteq \mathbb{R}$?

Suppose that L is strongly surjective and $x \in L$. Is $L \setminus \{x\}$ strongly surjective?
Consistently, are there strongly surjective linear orders of size \(\aleph_2 \)?

[ARS 1985] Is it consistent that \(\neg \text{BA}_{\aleph_1} \) but \(A \leftrightarrow B \) or \(B \leftrightarrow A \) for any two \(\aleph_1 \)-dense \(A, B \subseteq \mathbb{R} \)?

Suppose that \(L \) is strongly surjective and \(x \in L \). Is \(L \setminus \{x\} \) strongly surjective?
Consistently, are there strongly surjective linear orders of size \aleph_2?

[ARS 1985] Is it consistent that $\neg\text{BA}_{\aleph_1}$ but $A \leftrightarrow B$ or $B \leftrightarrow A$ for any two \aleph_1-dense $A, B \subseteq \mathbb{R}$?

Suppose that L is strongly surjective and $x \in L$. Is $L \setminus \{x\}$ strongly surjective?
Open problems

Can Countryman lines be strongly surjective?
They are minimal under MA_{\aleph_1}.

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?
I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Open problems

Can **Countryman lines** be strongly surjective?

They are minimal under MA_{\aleph_1}.

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Open problems

Can **Countryman lines** be strongly surjective?

They are minimal under MA_\aleph_1.

Is the **universal A-line** η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a **unique Suslin tree**?

I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Open problems

Can **Countryman lines** be strongly surjective?

They are minimal under MA_{\aleph_1}.

Is the **universal A-line** η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a **unique Suslin tree**?

I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Open problems

Can Countryman lines be strongly surjective?

They are minimal under MA_{\aleph_1}.

Is the universal A-line η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a unique Suslin tree?

I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Can **Countryman lines** be strongly surjective?

They are minimal under MA_{\aleph_1}.

Is the **universal A-line** η_C strongly surjective under PFA?

[AS 1985] Is it consistent that there is a **unique Suslin tree**?

I.e. there is a Suslin tree, but any two Suslin trees are isomorphic on a club.
Thank you for your attention!