HOD in $M_n(x, g)$

Sandra Uhlenbrock

January 25th-30th, 2017

work in progress with Grigor Sargsyan

Arctic Set Theory Workshop 3, Kilpisjärvi, Finland
Some like it HOD

UC Irvine, July 18 – 29, 2016

Drawing by Martin Zeman.
Want to understand HOD^M for various inner models M like $L(\mathbb{R})$, $L[x]$ or $M_n(x)$ (assuming determinacy).
Want to understand HOD^M for various inner models M like $L(\mathbb{R}), L[x]$ or $M_n(x)$ (assuming determinacy).

Test question: Is HOD^M a model of GCH?
Motivation

- Want to understand HOD^M for various inner models M like $L(\mathbb{R})$, $L[x]$ or $M_n(x)$ (assuming determinacy).
- Test question: Is HOD^M a model of GCH?
- Goal: Show that HOD^M is a core model (i.e. a fine structural model).
Motivation

- Want to understand HOD^M for various inner models M like $L(\mathbb{R})$, $L[x]$ or $M_n(x)$ (assuming determinacy).
- Test question: Is HOD^M a model of GCH?
- Goal: Show that HOD^M is a core model (i.e. a fine structural model).
- This would imply that we have GCH, ♦, □, ... in HOD^M.
What is known about $\text{HOD}^L(\mathbb{R})$

Assume $\text{AD}^L(\mathbb{R})$.
What is known about $\text{HOD}^{L(\mathbb{R})}$

Assume $\text{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $\text{HOD}^{L(\mathbb{R})} \models \text{GCH}_\alpha$ for all $\alpha < \omega_1^V$.

(Steel, Woodin, 1993) $\text{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_\omega \cap \mathbb{R}$.

(Steel, Woodin, 1993) $\text{HOD}^{L(\mathbb{R})} \cap P(\omega_{V_1}) = N \cap P(\omega_{V_1})$, where N is the ω_{V_1}-th iterate of M_ω by its least measure.

(Steel, 1995) $\text{HOD}^{L(\mathbb{R})} \cap V(\delta_{21}) = M_\infty \cap V(\delta_{21})$, where M_∞ is a direct limit of iterates of M_ω, and $(\delta_{21})_{L(\mathbb{R})} = \sup \{ \alpha | \exists f (f: \mathbb{R} \to \alpha \text{ and } f \text{ is surjective and } \Delta_{L(\mathbb{R})}^1) \}$.

(Woodin, ≈ 1996) $\text{HOD}^{L(\mathbb{R})} = L[M_\infty, \Lambda]$, where Λ is a partial iteration strategy for M_∞.

Sandra Uhlenbrock
What is known about $\text{HOD}^{L(\mathbb{R})}$

Assume $\text{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $\text{HOD}^{L(\mathbb{R})} \models \text{GCH}_\alpha$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\text{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_\omega \cap \mathbb{R}$.
What is known about $\text{HOD}^L(\mathbb{R})$

Assume $\text{AD}^L(\mathbb{R})$.

- (Becker, 1980) $\text{HOD}^L(\mathbb{R}) \models \text{GCH}_\alpha$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\text{HOD}^L(\mathbb{R}) \cap \mathbb{R} = M_\omega \cap \mathbb{R}$.
- (Steel, Woodin, 1993)

$$\text{HOD}^L(\mathbb{R}) \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),$$

where N is the ω_1^V-th iterate of M_ω by its least measure.
What is known about \(\text{HOD}^{L(\mathbb{R})} \)

Assume \(\text{AD}^{L(\mathbb{R})} \).

- (Becker, 1980) \(\text{HOD}^{L(\mathbb{R})} \models \text{GCH}_\alpha \) for all \(\alpha < \omega_1^V \).
- (Steel, Woodin, 1993) \(\text{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_\omega \cap \mathbb{R} \).
- (Steel, Woodin, 1993)

\[
\text{HOD}^{L(\mathbb{R})} \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),
\]

where \(N \) is the \(\omega_1^V \)-th iterate of \(M_\omega \) by it’s least measure.

- (Steel, 1995)

\[
\text{HOD}^{L(\mathbb{R})} \cap V(\delta_1^2)^{L(\mathbb{R})} = M_\infty \cap V(\delta_1^2)^{L(\mathbb{R})},
\]

where \(M_\infty \) is a direct limit of iterates of \(M_\omega \), and

\[
(\delta_1^2)^{L(\mathbb{R})} = \sup\{ \alpha \mid \exists f (f : \mathbb{R} \to \alpha \text{ and } f \text{ is surjective and } \Delta_1^{L(\mathbb{R})}) \}.
\]
What is known about $\text{HOD}^{L(\mathbb{R})}$

Assume $\text{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $\text{HOD}^{L(\mathbb{R})} \models \text{GCH}_\alpha$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\text{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_\omega \cap \mathbb{R}$.
- (Steel, Woodin, 1993)
 \[
 \text{HOD}^{L(\mathbb{R})} \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),
 \]
 where N is the ω_1^V-th iterate of M_ω by its least measure.
- (Steel, 1995)
 \[
 \text{HOD}^{L(\mathbb{R})} \cap V(\delta_1^2)^{L(\mathbb{R})} = M_\infty \cap V(\delta_1^2)^{L(\mathbb{R})},
 \]
 where M_∞ is a direct limit of iterates of M_ω, and
 \[
 (\delta_1^2)^{L(\mathbb{R})} = \sup\{\alpha \mid \exists f (f : \mathbb{R} \to \alpha \text{ and } f \text{ is surjective and } \Delta_1^{L(\mathbb{R})})\}.
 \]
- (Woodin, ≈1996)
 \[
 \text{HOD}^{L(\mathbb{R})} = L[M_\infty, \Lambda],
 \]
 where Λ is a partial iteration strategy for M_∞.
What is known about $\text{HOD}^{L[x]}$

... very little.

Question

Assume Δ^1_2-determinacy. Do we have $\text{HOD}^{L[x]} \models \text{GCH}$ for a Turing cone of reals x?

What we can do is (under the right determinacy assumption) analyze $\text{HOD}^{L[x]}[G]$ for a Turing cone of reals x, where G is $\text{Col}(\omega, <\kappa_x)$-generic over $L[x]$, and κ_x is the least inaccessible cardinal in $L[x]$.

Sandra Uhlenbrock
HOD in $M_n(x, g)$

January 25th-30th, 2017 5 / 12
... very little.
What is known about $\text{HOD}^{L[x]}$

... very little.

Question

Assume Δ^1_2-determinacy. Do we have

$$\text{HOD}^{L[x]} \models \text{GCH}$$

for a Turing cone of reals x?

What we can do is (under the right determinacy assumption) analyze $\text{HOD}^{L[x][G]}$ for a Turing cone of reals x, where

- G is $\text{Col}(\omega, <\kappa_x)$-generic over $L[x]$, and
- $\kappa_x = \text{least inaccessible cardinal in } L[x]$.
For every real x let κ_x denote the least inaccessible cardinal in $L[x]$.

Theorem (Woodin, 90's)

Assume Δ^1_2-determinacy. For a Turing cone of x,

$$\text{HOD}^{L[x,G]} = L[M_\infty, \Lambda],$$

where G is $\text{Col}(\omega, \langle \kappa_x \rangle)$-generic over $L[x]$, M_∞ is a direct limit of mice, and Λ is a partial iteration strategy for M_∞.
Assume Π_1-determinacy.

Goal: Generalize this analysis to $\text{HOD}_{M_n(x, g)}$ for a Turing cone of reals x, where $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals, g is $\text{Col}(\omega, <\kappa_x)$-generic over $M_n(x)$, and $\kappa_x < \delta_{M_n(x)}$ is an inaccessible strong cutpoint cardinal of $M_n(x)$ such that κ_x is a limit of strong cutpoint cardinals in $M_n(x)$.
Assume Π^1_{n+2}-determinacy.

Goal: Generalize this analysis to $\text{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x.
Assume Π^1_{n+2}-determinacy.

Goal: Generalize this analysis to $\text{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

- $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals,
Assume Π^1_{n+2}-determinacy.

Goal: Generalize this analysis to $\text{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

- $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals,
- g is $\text{Col}(\omega, <\kappa_x)$-generic over $M_n(x)$,
Assume Π_{n+2}^1-determinacy.

Goal: Generalize this analysis to $\text{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

- $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals,
- g is $\text{Col}(\omega, < \kappa_x)$-generic over $M_n(x)$, and
- $\kappa_x < \delta_0^{M_n(x)}$ is an inaccessible strong cutpoint cardinal of $M_n(x)$ such that κ_x is a limit of strong cutpoint cardinals in $M_n(x)$.

Sandra Uhlenbrock
Let x be a real such that $M_{n+1}^\# \in M_n(x)$.
The idea of the proof (very sketchy!)

Let x be a real such that $M_{n+1}^\# \in M_n(x)$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M^+_∞.

M^∞_∞ is well-founded as M_{n+1} is sufficiently iterable.

Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M^∞_∞.

Sargsyan: $M^\infty_\infty = M^\infty_\infty$, so in particular M^∞_∞ is well-founded.

Sargsyan: $\delta M^\infty_\infty = (\kappa + x)_{M_n(x)}$.

By definability of the internal direct limit system we have that $M^\infty_\infty \subseteq HOD_{M_n(x)[g]}$.

Sandra Uhlenbrock
Let x be a real such that $M^\#_{n+1} \in M_n(x)$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M^+_{∞}.

- M^+_{∞} is well-founded as M_{n+1} is sufficiently iterable.
Let x be a real such that $M_{n+1}^# \in M_n(x)$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^+\omega)M_{n+1}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+.

- M_∞^+ is well-founded as M_{n+1} is sufficiently iterable.

- Define an internal direct limit system of suitable strongly s-iterable premise in $M_n(x)[g]$ and call its direct limit M_∞.

Sargsyan: $M_\infty = M_\infty^+$, so in particular M_∞ is well-founded.

Sargsyan: $\delta M_\infty = (\kappa + x)M_n(x)[g]$.

By definability of the internal direct limit system we have that $M_\infty \subseteq HOD M_n(x)[g]$.

The idea of the proof (very sketchy!)

Let x be a real such that $M_{n+1}^\# \in M_n(x)$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_+^∞.

- M_+^∞ is well-founded as M_{n+1} is sufficiently iterable.

- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_∞.

- Sargsyan: $M_\infty = M_+^\infty$, so in particular M_∞ is well-founded.
The idea of the proof (very sketchy!)

Let x be a real such that $M_{n+1}^\# \in M_n(x)$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^+)^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+.
- M_∞^+ is well-founded as M_{n+1} is sufficiently iterable.
- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_∞.
- Sargsyan: $M_\infty = M_\infty^+$, so in particular M_∞ is well-founded.
- Sargsyan: $\delta^{M_\infty} = (\kappa_x^+)^{M_n(x)}$.
Let \(x \) be a real such that \(M_{n+1}^\# \in M_n(x) \).

- Define a direct limit system of iterates of \((\delta_0^+\omega)^{M_{n+1}} \) which have a Woodin cardinal that is countable in \(M_n(x)[g] \) together with iteration embeddings, call the direct limit \(M^+_\infty \).
- \(M^+_\infty \) is well-founded as \(M_{n+1} \) is sufficiently iterable.
- Define an internal direct limit system of suitable strongly \(s \)-iterable premice in \(M_n(x)[g] \) and call its direct limit \(M_\infty \).
- Sargsyan: \(M_\infty = M^+_\infty \), so in particular \(M_\infty \) is well-founded.
- Sargsyan: \(\delta^{M_\infty} = (\kappa_x^+)^{M_n(x)} \).
- By definability of the internal direct limit system we have that

\[
M_\infty \subseteq \text{HOD}^{M_n(x)[g]}.
\]
The idea of the proof (very sketchy!)

Let κ_∞ be the least inaccessible cardinal of M_∞ strictly above δ_∞.
- $M_\infty[H]$ for a $\text{Col}(\omega, <\kappa_\infty)$-generic H is the derived model of M_∞.

Lemma (Derived model resemblance, Woodin)
The derived model $M_\infty[H]$ (adding the theory of M_n on top) is elementary equivalent to $M_n(x)[g]$.

Therefore $M_\infty[H]$ has its own version of the direct limit system, call the direct limit model $M^*_\infty = \left(M_\infty\right)_{M_\infty[H]}$.

M_∞ shows up in this direct limit system, let $\pi_\infty: M_\infty \to M^*_\infty$ be the corresponding map.

In fact, $\pi_\infty|_\alpha \in M_\infty$ for all $\alpha < \delta_\infty$.

Sandra Uhlenbrock

HOD in $M_n(x, g)$

January 25th-30th, 2017 9 / 12
The idea of the proof (very sketchy!)

Let κ_∞ be the least inaccessible cardinal of M_∞ strictly above δ_∞.

- $M_\infty[H]$ for a $\text{Col}(\omega, <\kappa_\infty)$-generic H is the derived model of M_∞.
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\text{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_\infty[H]$ (adding the theory of M_n on top) is elementary equivalent to $M_n(x)[g]$.

Therefore $M_\infty[H]$ has its own version of the direct limit system, call the direct limit model $M^*_\infty = (M_\infty)_{M_\infty[H]}$.

M_∞ shows up in this direct limit system, let $\pi_\infty: M_\infty \to M^*_\infty$ be the corresponding map.

In fact, $\pi_\infty|_{\alpha} \in M_\infty$ for all $\alpha < \delta_\infty$.

Sandra Uhlenbrock

HOD in $M_n(x, g)$

January 25th-30th, 2017
The idea of the proof (very sketchy!)

Let κ_∞ be the least inaccessible cardinal of M_∞ strictly above δ_∞.

- $M_\infty[H]$ for a $Col(\omega, <\kappa_\infty)$-generic H is the derived model of M_∞.
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\text{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_\infty[H]$ (adding the theory of M_n on top) is elementary equivalent to $M_n(x)[g]$.

Sandra Uhlenbrock

HOD in $M_n(x, g)$

January 25th-30th, 2017
The idea of the proof (very sketchy!)

Let κ_∞ be the least inaccessible cardinal of M_∞ strictly above δ_∞.

- $M_\infty[H]$ for a $\text{Col}(\omega, < \kappa_\infty)$-generic H is the derived model of M_∞.
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\text{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_\infty[H]$ (adding the theory of M_n on top) is elementary equivalent to $M_n(x)[g]$.

Therefore $M_\infty[H]$ has its own version of the direct limit system, call the direct limit model $M^*_\infty = (M_\infty)^{M_\infty[H]}$.

Sandra Uhlenbrock
The idea of the proof (very sketchy!)

Let \(\kappa_\infty \) be the least inaccessible cardinal of \(M_\infty \) strictly above \(\delta_\infty \).

- \(M_\infty[H] \) for a \(\text{Col}(\omega, < \kappa_\infty) \)-generic \(H \) is the derived model of \(M_\infty \).
- Use the derived model as a surrogate for \(M_n(x)[g] \) to compute \(\text{HOD}^{M_n(x)[g]} \).

Lemma (Derived model resemblance, Woodin)

The derived model \(M_\infty[H] \) (adding the theory of \(M_n \) on top) is elementary equivalent to \(M_n(x)[g] \).

- Therefore \(M_\infty[H] \) has its own version of the direct limit system, call the direct limit model \(M^*_\infty = (M_\infty)^{M_\infty[H]} \).
- \(M_\infty \) shows up in this direct limit system, let \(\pi_\infty : M_\infty \to M^*_\infty \) be the corresponding map.
The idea of the proof (very sketchy!)

Let κ_∞ be the least inaccessible cardinal of M_∞ strictly above δ_∞.

- $M_\infty[H]$ for a $\text{Col}(\omega, <\kappa_\infty)$-generic H is the derived model of M_∞.

- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\text{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_\infty[H]$ (adding the theory of M_n on top) is elementary equivalent to $M_n(x)[g]$.

- Therefore $M_\infty[H]$ has its own version of the direct limit system, call the direct limit model $M^*_\infty = (M_\infty)^{M_\infty[H]}$.

- M_∞ shows up in this direct limit system, let $\pi_\infty : M_\infty \to M^*_\infty$ be the corresponding map.

- In fact, $\pi_\infty \upharpoonright \alpha \in M_\infty$ for all $\alpha < \delta$.

Sandra Uhlenbrock
Using this we can show:

Theorem

\[\text{HOD}^{M_n(x,g)} \cap V_{\delta_{\infty}} = M_{\infty} \cap V_{\delta_{\infty}}. \]
Using this we can show:

Theorem

\[
\text{HOD}^{M_n(x)[g]} \cap V_{\delta_\infty} = M_\infty \cap V_{\delta_\infty}.
\]

Moreover we are optimistic to show:

Lemma

For some \(M_n(x)[g] \)-definable set \(A \subseteq \omega_2^{M_n(x)[g]} \) we have that

\[
\text{HOD}^{M_n(x)[g]} = M_n(A).
\]
Using this we can show:

Theorem

\[\text{HOD}^{M_n(x)[g]} \cap V_{\delta_{\infty}} = M_{\infty} \cap V_{\delta_{\infty}}. \]

Moreover we are optimistic to show:

Lemma

For some \(M_n(x)[g] \)-definable set \(A \subseteq \omega_2^{M_n(x)[g]} \)* we have that

\[\text{HOD}^{M_n(x)[g]} = M_n(A). \]

This should then give that

\[\text{HOD}^{M_n(x)[g]} = M_n(M_{\infty}, \Lambda), \]

where \(\Lambda \) is a partial iteration strategy for \(M_{\infty} \).
Open questions

Question

Is $\text{HOD}^{L[x]}$ (without the generic G) a core model?
Question
Is HOD$^L[x]$ (without the generic G) a core model?

Proposition (Schlutzenberg, 2016)
Given sufficient large cardinals, there is a cone of reals x such that if \mathcal{F} is a natural candidate for a limit system to analyze HOD$^L[x]$, then \mathcal{F} is not closed under pseudo-comparison of pairs.
Open questions

Question

Is \(\text{HOD}^{L[x]} \) (without the generic \(G \)) a core model?

Proposition (Schlutzenberg, 2016)

Given sufficient large cardinals, there is a cone of reals \(x \) such that if \(\mathcal{F} \) is a natural candidate for a limit system to analyze \(\text{HOD}^{L[x]} \), then \(\mathcal{F} \) is not closed under pseudo-comparison of pairs.

Question

Is \(\text{HOD}^{M_n(x)} \) (without the generic \(g \)) a core model?

It is not even known if \(\text{HOD}^{L[x]} \) and \(\text{HOD}^{M_n(x)} \) are models of GCH.
Thank you for your attention!