UE Grundzüge der mathematischen Logik (SS 2017) Ausgewählte Lösungen - Übungsblatt 10

Joaquín Padilla Montani (a1408360@unet.univie.ac.at)

8. Juni 2017

Aufgabe 1. Sei \mathcal{L} eine beliebige Sprache und sei T eine widerspruchsfreie Theorie. Zeigen Sie, dass T eine vollständige Erweiterung hat.

Proof. Let φ be an \mathcal{L} -sentence. In class we proved that $T \cup \{\varphi\}$ and $T \cup \{\neg\varphi\}$ cannot both be simultaneously inconsistent.

Assume \mathcal{L} is an enumerable language. Consider, for each $n \in \mathbb{N}$, the set W_n of finite words of length n using the alphabet of \mathcal{L} and the symbols in $\{\neg, \land, \doteq, \exists, (,), v_0, v_1, v_2, \ldots\}$. Using **Übungsblatt 8 Aufgabe 8 (2)** we can prove that W_n is enumerable, and using **Übungsblatt 8 Aufgabe 8 (1)** we can prove that $\bigcup \{W_n : n \in \mathbb{N}\}$ is enumerable. Then any \mathcal{L} -sentence φ is an element of $\bigcup \{W_n : n \in \mathbb{N}\}$, and therefore the set of \mathcal{L} -sentences is enumerable. We can now construct a complete theory T^* as done in class, by attaching to T either φ_i or $\neg \varphi_i$ from our listing of \mathcal{L} -sentences $\{\varphi_0, \varphi_1, \varphi_2, \ldots\}$.

Now assume \mathcal{L} is not enumerable. Let A be a set and let < be an ordering on A (an antireflexive and transitive relation). A set $C \subseteq A$ is called a *chain* if and only if $< \upharpoonright C$ is a linear ordering on C (an anti-reflexive and transitive relation with trichotomy law). Recall the statement of

Zorn's lemma. Let A be a nonempty set and let < be an ordering on A, such that for any chain $C \subseteq A$ there exists an $x \in A$ such that there is no $y \in C$ with x < y. Then there exists an $x_{max} \in A$ such that no $y \in A$ satisfies $x_{max} < y$. In words, if every chain in A has an upper bound in A, then A contains at least one maximal element.

We will prove in class that Zorn's lemma is equivalent to (AC). Consider the set S of all \mathcal{L} -sentences. Then the set of all consistent extensions of T, call it A, satisfies $A \subseteq \mathcal{P}(S)$. The set A has a natural ordering given by \subsetneq . For $C \subseteq A$ a chain, define $T_C \coloneqq \bigcup C$. Then for any $y \in C$ it is true that $y \subseteq T_C$, i.e., T_C is an upper bound for C, provided that $T_C \in A$. Indeed, suppose that T_C is inconsistent, then we can find $\psi_1, \ldots, \psi_n \in T_C$ such that $\vdash_{\mathcal{L}} \neg (\psi_1 \land \cdots \land \psi_n)$. But then, since we have finitely many sentences ψ_1, \ldots, ψ_n and C is a chain, we could find $y \in C$ such that $\psi_1, \ldots, \psi_n \in y$, so $y \in A$ would be inconsistent, and that contradicts the definition of A. Using Zorn's lemma, there exists $T^* \in A$ maximal. That is, we found an extension T^* of T which is consistent and such that any other consistent

extension of T is a subset of T^* . To show that T^* is complete, it remains to argue why T^* contains any sentence or its negation. Indeed, for any \mathcal{L} -sentence φ , if $T^* \cup \{\varphi\}$ is consistent, then $\varphi \in T^*$ by the maximality of T^* , and if $T^* \cup \{\varphi\}$ is inconsistent, then we proved in class that $T^* \cup \{\neg\varphi\}$ is consistent, and we get $\neg \varphi \in T^*$ again by the maximality of T^* . \Box

Aufgabe 2. Zeigen Sie mit Hilfe des Auswahlsaxioms: Eine lineare Ordnung < auf einer Menge M ist genau dann eine Wohlordnung, wenn es keine Folge $\langle x_n : n \in \mathbb{N} \rangle$ von Elementen von M mit $x_{n+1} < x_n$ für alle $n \in \mathbb{N}$ gibt.

Proof. Let < be a linear ordering (anti-reflexive, transitive relation with trichotomy law) on a set M. Assume that M is not well-ordered by <. By definition, this means that there exists a nonempty set $A \subseteq M$ with no <-minimal element, which implies that, for each $a \in A$, the set $B_a = \{x \in A \mid x < a\} \subseteq A$ is nonempty. Applying the axiom of choice to the nonempty set of nonempty sets $C = \{B_a \subseteq A \mid a \in A\}$ we can find a choice function $f: C \to \bigcup C$ such that, for each $a \in A$, $f(B_a) \in B_a$ and therefore $f(B_a) < a$. Now we can inductively define a sequence $\langle x_n : n \in \mathbb{N} \rangle$ of elements of A by setting $x_0 = a_0$ and $x_{n+1} = f(B_{x_n})$, where $a_0 \in A$ is some arbitrary element of A. By definition of f we have that $x_{n+1} < x_n$. This proves the direction of the statement which we did not prove in class. \Box

UE Grundzüge der mathematischen Logik (SS 2017) Ausgewählte Lösungen - Übungsblatt 10

Joaquín Padilla Montani (a1408360@unet.univie.ac.at)

8. Juni 2017

Aufgabe 1. Sei \mathcal{L} eine beliebige Sprache und sei T eine widerspruchsfreie Theorie. Zeigen Sie, dass T eine vollständige Erweiterung hat.

Proof. Let φ be an \mathcal{L} -sentence. In class we proved that $T \cup \{\varphi\}$ and $T \cup \{\neg\varphi\}$ cannot both be simultaneously inconsistent.

Assume \mathcal{L} is an enumerable language. Consider, for each $n \in \mathbb{N}$, the set W_n of finite words of length n using the alphabet of \mathcal{L} and the symbols in $\{\neg, \land, \doteq, \exists, (,), v_0, v_1, v_2, \ldots\}$. Using **Übungsblatt 8 Aufgabe 8 (2)** we can prove that W_n is enumerable, and using **Übungsblatt 8 Aufgabe 8 (1)** we can prove that $\bigcup \{W_n : n \in \mathbb{N}\}$ is enumerable. Then any \mathcal{L} -sentence φ is an element of $\bigcup \{W_n : n \in \mathbb{N}\}$, and therefore the set of \mathcal{L} -sentences is enumerable. We can now construct a complete theory T^* as done in class, by attaching to T either φ_i or $\neg \varphi_i$ from our listing of \mathcal{L} -sentences $\{\varphi_0, \varphi_1, \varphi_2, \ldots\}$.

Now assume \mathcal{L} is not enumerable. Recall the statement of the

Hausdorff maximal principle. Let F be a set and let \mathcal{F} be a collection of subsets of F with the property that for any chain $\overline{\mathcal{F}} \subseteq \mathcal{F}$ (i.e. $X \subseteq Y$ or $Y \subseteq X$ for any $X, Y \in \overline{\mathcal{F}}$) it is true that $\bigcup \overline{\mathcal{F}} = \{a \in F \mid a \in X \text{ for some } X \in \overline{\mathcal{F}}\}$ is an element of \mathcal{F} . Then there exists an $x_{max} \in \mathcal{F}$, such that no proper superset of x_{max} is also an element of \mathcal{F} .

Let F be the set of all \mathcal{L} -sentences. Then the set of all consistent extensions of T, call it \mathcal{F} , satisfies $\mathcal{F} \subseteq \mathcal{P}(F)$. For $\overline{\mathcal{F}} \subseteq \mathcal{F}$ a chain, we want to show that $\bigcup \overline{\mathcal{F}} \in \mathcal{F}$, that is, we want to show that the theory $\bigcup \overline{\mathcal{F}}$ is consistent (the fact that it contains T is clear). Indeed, suppose that $\bigcup \overline{\mathcal{F}}$ is inconsistent, then we can find $\psi_1, \ldots, \psi_n \in \bigcup \overline{\mathcal{F}}$ such that $\vdash_{\mathcal{L}} \neg(\psi_1 \land \cdots \land \psi_n)$. But then, since we have finitely many sentences ψ_1, \ldots, ψ_n and $\overline{\mathcal{F}}$ is a chain, we could find $y \in \overline{\mathcal{F}}$ such that $\psi_1, \ldots, \psi_n \in y$, so $y \in \mathcal{F}$ would be inconsistent, and that contradicts the definition of \mathcal{F} . By the Hausdorff maximal principle, there exists $T^* \in \mathcal{F}$ maximal. That is, we found an extension T^* of T which is consistent and such that any other consistent extension of T is a subset of T^* . To show that T^* is complete, it remains to argue why T^* contains any sentence or its negation. Indeed, for any \mathcal{L} -sentence φ , if $T^* \cup {\varphi}$ is consistent, then $\varphi \in T^*$ by the maximality of T^* , and if $T^* \cup {\varphi}$ is inconsistent, then we proved in class that $T^* \cup {\neg \varphi}$ is consistent, and we get $\neg \varphi \in T^*$ again by the maximality of T^* . \Box

Michael Konig

Bonus Blaff:

eine uneudliche Karle (C,N) ist vier farbbar gaw. 2.2. jede endl. Teilkarte vierfairbbar ist. Himweis: KCIND, C... Menge der Länder Nachbarschafts- N... Menge der Poare Ec, d3 = angren zende Länder. bezishung Vierfarbbar wenn: BF: C-> [1,2,3,4], s.d. F(c) + F(d) wenn EcdgeN Grendl. Barachte: rienge EAi, jijen mit c; ist land, j ist Forbe. Menge & aller Aussagenlogischer Formeln: 1) Aij DTAil und Ail DTAij wobei jeg 1,..., 43 und Ecj, cj3EN 2) Ain V Aiz VAins VAint for i EN 3) A: ; >7A: 1 für j'EE1..., 43 [3]; ien In der Graphentheorie bedeuten die Aussagen 1-3 Rolgondes: 1) ... Nachbarn haben unterschiedliche Farbe 2)... jedes land muss gefärbt werden mit einer der 4-Farben 3)... kein Land kann 2 Farben bekommen. endl. Bew: ,=> trivial wenn unendliche karle viergebärbt ist, dann auch jede Teilkarle , E" Ang. jede endliche Teickarle von (C,N) ist vier farbbar. =>)jear endliche TM von & ist erfüllbar, da & Lediglich die Aussagen aus Graphentheorie in Logik übersetzt. (siehe 1-3) ·) Betrachte eine Belegung By MANN, St. B = \$ Dies in einer Zulässige Färbong von (C,N), da (1,2,3) Korrekt ist. es cristient => I ist erfollbar adw. Eine vierfarbong von (CIN) dies gilt laut Annahme för jede endl. Teilkarte also auch för jede endl. ·) Kompaktheitssatz: wenn jede endliche TM von Derfillbær ist, denn auch o =) die Behauptung, da & widerum in die Graphentheorie öbersetzt werden kann und somit die unendliche karte Vierfarbbar ist.