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CHAPTER 1

Ordinal and Cardinal Arithmetic

1. The Axiomatic System of Zermelo-Fraenkel

1.1. ZFC. In the following, we will formulate the axiomatic system of Zermelo-Fraenkel. For
this we work in the language of set theory, which has only one non-logical symbol, the binary
relation, membership! The language of set theory is denoted Lc. The Axioms (universal closure
of the following statements):

e Axiom 1 (Extensionality)

Vz(zex < zey)>x=y

Axiom 2 (Foundation)

Jy(yex) > y(yexn-3z(zexAnzey))

Axiom 3 (Comprehension Scheme) For each formula ¢ without y free:

IVr(zey < xevap(x))

Axiom 4 (Pairing)
Jz(reznyez)

Axiom 5 (Union)
JAVYVz(x e Y AY e F>x € A)

Axiom 6 (Replacement Scheme) For each formula ¢ in which B is not a free variable

Vo e Alyp(z,y) > 3BVx € Ay € Bp(x,y)

REMARK 1.1. To formulate the last three axioms, we need some defined notions, namely the

notions of a subset, emptyset, successor of a set, intersection and singleton:
(1) zcyiff Vz(zex > z€ey)

(2) x=giff Vz(z ¢ )
(3) y=S(z) iff Vz(zey< zexvz=x)
4) y=vnwiff Ve(zey >z ecvrzew)
(5) Sing(y) iff Iy e xVz e x(z = y).

Note that S(x) = zu {z}, Sing(y) = {y} and the ordered pair (z,y) is the set {{z},{z,y}}.
We continue with the axioms.

e Axiom 7 (Infinity)
Jx(@exAVyex(S(y) ex))

5



6 1. ORDINAL AND CARDINAL ARITHMETIC

e Axiom 8 (Power Set)
JyVz(zcx - zey)
e Axiom 9 (Axiom of Choice)

¢ FAVre FVye F(r+y—>xny=@) > 3ICVx € F(Sing(C nx))

We refer to the above system of Axioms as ZFC. Note that ZFC is an infinite set of Axioms,
because Axioms 3 (Comprehension) and 6 (Replacement) are in fact axiom schemes (one axiom
for each formula). Moreover ZFC is not finitely axiomatizable.

1.2. Relations and Functions.

DEFINITION 1.2. Binary relation A set R is said to be a binary relation iff R is a set of ordered
pairs, i.e. for each u € R there are x,y such that u = (z,y) = {{z},{z,y}}.

REMARK 1.3. Recall the following notions associated to a binary relation R:

(1) R is a pre-order on A if R is reflexive and transitive on A.

(2) R partially orders A non-strictly if R is a pre-order on A and satisfies —3z,y € A(zRy A
yRx Az + ).

(3) R is a total-order on A if R is irreflexive, transitive and satisfies trichotomy, i.e. for any
a,b e A either aRb, or bRa or a =b.

DEFINITION 1.4. A binary relation R is a function if for every x there is at most one y such
that (x,y) € R. If there is y such that xRy then R(x) denotes that unique y.

DEFINITION 1.5. For any set A, idy = {(x,x) : z € A} is the identity function of A.

ProOOF. (Justification of existence) Note that we can justify the existence of id4 as follows:
iy = {(z,2) € P(P(A)) s € A}.
O

REMARK 1.6. Note (z,z) = {{z},{z,z}} = {{z},{z}} = {{z}} and whenever z € A and x € B,
then

(z,y) = {{z},{z,y}} ¢ P(P(Au B)).
DEFINITION 1.7. Ax B ={(z,y):xe€ Arnye B}

PROOF. (Justification of existence) The existence of A x B follows from the Axioms of Power
Set and Comprehension, since A x B = {(x,y) = {{z},{z,y}} e P(P(AuB)):x e AnyeB}. O

REMARK 1.8. To claim that Ax B is a set, alternatively one can use the Axioms of Replacement
and Union. By Replacement for each y € B, A x {y} = {(x,y) : x € A} is a set. Again by
Replacement S = {A x {y} :y € B} is a set. Now, by the Union Axiom U S is a set. Thus, we can
define AxB=US5.

DEFINITION 1.9. (Domain and Range) For every set R define
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(1) dom(R) = {z: Jy((z,y) € R)},
(2) ran(R) = {y : 3z((z,y) € R)}.

PrOOF. (Justification of existence: Using Union and Comprehension) If {{z},{z,y}} € R,
then {x},{z,y} belong to UR and so z,y € JUR. Thus, dom(R) = {x e UUR: Jy((z,y) € R)},
and ran(R) ={y e UUR: 3z((z,y) € R)}. O

Note that alternatively, one can use Replacement.
DEFINITION 1.10. (Restriction) R} A= {(z,y) e R:x € A}
PROOF. (Justification of existence) By the Axiom of Comprehension. O

REMARK 1.11. The notions of a function, injection, bijection, surjection, can be defined in a
similar way.

LeEMMA 1.12. Assume Vz € A3lyp(x,y) and assume the Axiom of Replacement. Then there

is a function f such that dom(f) = A and such that Vz € A, f(x) is the unique y such that
p(z,y).
DEFINITION 1.13. (A set of functions) Given sets A, B let
B*="B={f|f:A~B}.
PROOF. (Justification of existence: Power set and Comprehension) If f is a function from A

to B, then f ¢ A x B. Therefore 1B ¢ P(A x B). O

DEFINITION 1.14. Let A be a set and let R be a relation on A. Then, we say that

(1) R totally orders A strictly if R is transitive, irreflexive, satisfies trichotomy on A.
(2) R well-orders A iff R totally orders A and R is well-founded on A, i.e. every B ¢ A has
an R-minimal element.

LeEMMA 1.15. If R is a well-order on a set A and X ¢ A, then R is a well-order on X.

ProoF. Clearly R is a total order on X. Moreover, every subset of X has an R-minimal
element. 0

2. Ordinal Arithmetic
2.1. Ordinals.

DEFINITION 2.1. A set z is an ordinal if z is transitive, i.e. Va(z € z - x € z) and the
membership relation € is a well-order on z.

EXAMPLE 2.2.
° @,
o {2},
o {o.{2}},
e {o.{2}.,{2,{2}}}
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° -
REMARK 2.3. Every natural number is an ordinal.
NoTATION. ON denotes the collection of all ordinals. Greek letters are used to denote ordinals.
LEMMA 2.4. Suppose « is an ordinal, z € . Then z is also an ordinal.

PROOF. By transitivity of «, z € a. Thus € is well-founded on z. We need to check if z is
transitive. Let x € z and y € x. Then z € a. But « is transitive and so z € a. Thus y € a.
Therefore x,y, z are elements of . But € is transitive on « and so we have y e x Ax €z - y € 2.
Thus y € z. That is x € z, i.e. z is transitive. O

LEMMA 2.5. Let «, 8 be ordinals. Then an S is an ordinal.

PROOF. Since an 8 ¢ «, the € is well-founded on an 3. We need to show that an g is
transitive. Let reanfand yex. ThenzCanfandsoyean. Thusxcanpg,ie. anfisa
transitive set. O

LEMMA 2.6. Let a, 8 be ordinals. Then a € 8 if and only if a« € fva = p.

PROOF. («=) If a € 3, then by transitivity of 3, we have a ¢ 8. Therefore o € v = 3 implies
that a € 5.

(=) If a = 3, then clearly we are done. So, suppose « # 8. Thus X = S\« # @ and so there is
¢ =min S\c. Then

(efand € ¢a.

We will show that £ = a. First we will show that £ € . Let p € £&. Then by transitivity of 3,
we have £ € 5 and so p € 8. If u ¢ «, we get a contradiction to the minimality of £&. Thus p € «
and so & € . Now, suppose £ € a, but £ # a! Then take any pick € @\¢. Then u € 8 (because
a € 8 by hypothesis) and £ € 3, since £ = min f\a. Thus, by the trichotomy of € on § we get
p=E&vpelvEep.

(1) However u € o, but £ ¢ . Thus p#¢&.

(2) By the choice of pu, u ¢ €.

(3) Thus & € p.
Since p € a and « is transitive, £ € «, which is a contradiction to the choice of £! Therefore
¢£=a. O O

THEOREM 2.7. (The collection of all ordinals “behaves” like an ordinal)

(1) (Transitivity) For all o, 5 and ~y ordinals, if « € BN €~y then aery.

(2) (Irreflexivity) for every ordinal ., =(« € @).

(8) (Trichotomy) for all o, B ordinals: ae v eava=0.

(4) (Well-foundedness) If X + @ is a set of ordinals, then X has an e-least element.
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PROOF. (1) Since 7 is a transitive set, 8 €~ and so a € 7.

(2) Suppose « € . That is « is an element of «. But € is irreflexive on « and so —(« € ). This
is a contradiction. Therefore « ¢ a.

(3) Let 6 =an . Then 6 € o, § € 3. But then by a previous Lemma we have:
deavéi=aand defvi=p4

e If =q,then acf and so e fva=0.

e If 0=p4, then fcaandso feaVvF=a.

e Thus suppose § £ a, 6 # 8. Therefore § € « and 6 € 5, i.e. d € an B =0, which is a
contradiction to (2).

(4) Let X # @ and X be a set of ordinals. Let a € X. If @ = min X, then we are done. Otherwise
Xo={¢:£e X néea}+@. Then pu=min X exists, because Xy € «. Thus g =min X n . Note
that g = min X. Consider any § € X and suppose § € u. Then ¢ € a (since p € «), which is a
contradiction to = min X na. O

REMARK 2.8. The above theorem shows that the collection of all ordinals, “behaves" like an
ordinal. However, one may ask: Is the collection of all ordinals a set? Is there a set containing
all ordinals?

THEOREM 2.9. (Bourali-Forty Paradoz) There is no set containing all ordinals.
PROOF. Suppose not and let X be a set containing all ordinals. Then let
Y ={ye X :yis an ordinal}.

By the Axiom of Comprehension Y is a set. By the previous theorem ¢ is well-founded on Y and
Y is a transitive set. Thus, Y is an ordinal. But then Y €Y, contradiction to (2) of the previous
theorem. Thus, there is no such X. ] ]

NoTATION. We will use the following notation:
(1) With ON we denote the class of all ordinals.
(2) Let «, 8 be ordinals. Then « < 8 denotes a € § and « < 3 denotes a € S v a = 3.
LEMMA 2.10. Let «, 8 be ordinals. Then
anf=min{a, B} and au S = max{a, 8}.

LEMMA 2.11. If A # & is a set of ordinals, then
(1) NA=min A,
(2) UAcON
(3) If Voo e A3B € A(a < 3), then U A is the smallest ordinal that exceeds all ordinals in A.
Thus, we denote U A also sup A.
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PROOF. (2) We need to show that U A is a transitive set and € is well-founded on U A. Let
a € UA. Thus there is 8 € A such that o € 5. But § is transitive and so o € 8. Therefore o € |J A.
To show well-foundedness of €, let X € JA. Thus Vx € X there is a, € A such that x € a;. Now
{a, :x € X} is a set of ordinals and so by well-foundedness of the membership relation on ON,
there is ap = min{ay : @ € X}. Then either ap = min X or ap N X # @, in which case min(agn X)
is as desired.
(3) Let 6 = UA. Then § = {a: 30 € A(a € 8)}. Since for every a € A there is § € A such that
«a < 3, we get that every a € A is an element of §. Also, if a < 4, then v € § and so there is S € A
such that o € 5. But, then 8 ¢ a and so « does not exceed all elements of A. O

LeEMMA 2.12. Let o be an ordinal. Then
(1) S(a) = au{a} is an ordinal,
(2) a<S(a) and
(3) for all ordinals v, v < S(a) iff v < .
PROOF. The membership relation is well-founded on S(«) and clearly S(«) is a transitive
set. The rest is straightforward. O
DEFINITION 2.13. (Successor and Limit Ordinals) An ordinal f is

(1) a successor iff there is an ordinal a such that 8 = S(«) = au {a},
(2) a limit ordinal iff 8 # 0 and $ is not a successor ordinal,
(3) a finite ordinal or a natural number if and only if Ya < f(a =0V « is a successor).

REMARK 2.14. If n is a natural number, then S(n) is a natural number and every element of
n is a natural number.

THEOREM 2.15. (Principle of ordinary induction) If @ € X and for all y € X(S(y) € X), then
every natural number is in X.

PROOF. Suppose not and let n e N\X. Consider Y = S(n)\X. ThenneY andso Y # @. Let
k=minY. Thus k <n. Therefore k = & or k is a successor. However & ¢ Y, because & € X and so
k = S(i) for some i. By minimality of k, we must have i € X. But then also k = S(7) € X, which
is a contradiction. O

REMARK 2.16. Recall the Axiom of Infinity: J2(@ € X AVy € 2(S(y) € x)). Thus if X is a
set which contains all natural numbers, then {n € X : n is a natural number} is a set.

LEMMA 2.17. Let X be a set of ordinals, which is an initial segment of ON. That is
Ve XVa< f(aeX)).
Then X is an ordinal itself.

PRrROOF. Note that € is a well-order on X. Since X is an initial segment of the ordinals, X is
also a transitive set. Thus X is an ordinal. O

REMARK 2.18. So in particular, every transitive set of ordinals is an ordinal.
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DEFINITION 2.19. Let w denote the set of all natural numbers.

REMARK 2.20. Note that w is an initial segment of ON and so w is an ordinal. Moreover w
is not a successor ordinal and w is not finite. Thus, w is the first limit ordinal.

DEFINITION 2.21. Assume the Axiom of Infinity and for each n € N let
B"="B={F|F:n—- B}.
Then let
B =“B:=| J{B":new}.

PROOF. (Justification of existence) Use the Power Set Axiom or the Axiom of Replacement.
O

REMARK 2.22. Let £ = (C,F,R) be a first order language and let B be the set of all logical
and non-logical symbols of £. Then the set of formulas of L is a subset of B<“. Thus, in particular
in a countable first order language (assuming AC) there are only countably many formulas.

Next, we will introduce the notion of an order type.

LEMMA 2.23. Let «, 8 be ordinals and suppose that f: («a,€) - (3,¢€) is an order preserving
bijection (i.e. an isomorphism). Then o = 8 and f =id.

PROOF. Let £ € a. Then f(§) € 8. Furthermore, since f is order preserving f(&) = {f(u) :
w< &} Suppose Xg={eca: f(§) #E&} + 3. Then Xy has a minimal element pu. Thus for all
§<p, f(§) =€ and so

) ={f(€): E<ny={&:&<pu}=p,
which is a contradiction. Therefore Xg =@ and so f is the identity. O

THEOREM 2.24. Let A be a set and let R be a well-order on A. Then there is a unique ordinal
a such that (A, R) = (a,¢€).

REMARK 2.25. Uniqueness follows from the previous statement.
PRrOOF. (Existence) For a € A let a |:= {x € A: xRa} and let
G={aecA:3¢, cO0ON((al,R) = (&,¢))}.

Since A is a set, by the Axiom of Comprehension G is also a set. Since Va € G 3¢, as above, by
Replacement there is a set X ¢ ON and a function f: G — X such that for all a € G, f(a) =&,.
Then € is a well-order on range(f) ¢ X. Moreover range(f) is a transitive and so it is an ordinal,
say a. Then f:(G,R) = («,€). Note that:
o if G = A, then we are done.
e if GC Aand G # A, let e =ming(A\G). Then e |=G and f: (e |,R) = (a,€). That is
& = a. But, this implies that e € G, which is a contradiction. Thus G = A.
]

DEFINITION 2.26. (Order Type) Let R be a well-order on A. Then type(A, R) is the unique
ordinal « such that (A4, R) 2 («,€). We denote this ordinal by type(A4, R).
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2.2. Ordinal Arithmetic.

DEFINITION 2.27. Let «, 8 be ordinals. Then
(1) The ordinal multiplication of o and 3, denoted « - 3, is the ordinal
type(B x @, <ler).
(2) The ordinal addition of a and 3, denoted « + 3, is the ordinal
type({0} x ar U {1} x 8, <jeqr)-
LEMMA 2.28. If R well-orders A and X ¢ A, then R well-orders X and
type(X, R) <type(4, R).

PROOF. We can assume that type(A, R) = (a,€) and that X, A are sets of ordinals. Let
d = type(X,R) and let f : (X,R) 2 (d,€). Suppose Xy = { € X : f(§) > &} + @ and let
pu=min Xg. Then f(u)>p and VEe X nu(f(€) <€). Since f is an isomorphism
fp) ={f(€): &<} <p,
which is a contradiction. Therefore for all £ € X, f(§) <. Then

0={f(€):(eX}caandsodca.

EXAMPLE 2.29.
(1) w+w
0,1, n,n+1, - w=w+0,w+1l,w+2, - w+n, -
(2) w-2= type({ov 1} X W, <1ex)
(0,0),(0,1),“‘,(0,71),"',(1,0),(1,1),"',(1,71),"'

Thus w +w = w -2 (because the order type is unique!).
(3) However 1 +w =w, while w<w+1. Thus 1 +w #w + 1.
(4) Also 2-w = type(w x {0,1},<}py) = w, while w-2 = w +w > w.
(5) More precisely, what is 2-w?

(0,0),(0,1),(1,0),(1,1),(2,0),(2,1),---,(n,0), (n, 1),

(6) In particular 2-w #w-2.
(7) Both, ordinal multiplication and ordinal addition are associative, but not commutative.

THEOREM 2.30. (Transfinite Induction on ON) Let ¥(«) be a formula. If there is an ordinal
a such that (), then there is a least ordinal £ such that 1 (§).

PROOF. Fix « such that ¥(«). If « is least, then we are done. Otherwise, X = {£ € a :
()} #+ @ and so £ =min X is as desired. O
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THEOREM 2.31. (Primitive Recursion on ON) Suppose for all s there is a unique y such that
©(s,y) and define G(s) to be this unique y. Then there is a formula 1 for which the following
two properties are provable:

(1) Yx3lyyp(x,y). Thus, ¢ defines a function F, where F(x) is such that (x, F(x)).
(2) V§€ e ON(F () = G(F(£)))-

PRrROOF.

d-approximations to F': Let § € ON and let App(d,h) abbreviate

h is a function,dom(h) = 6, Y€ € 5h(€) = G(h | £).

Uniqueness: We will show that
5 <6 AApp(6,h) A App(8',h) = h=h"14.

In particular, the case 6 = ¢’ gives the uniqueness of h. Fix §,0’, h, h’ as above. Suppose h #h' | 4.
Then X ={€<d:h(&) +h' ()} # @ and so there is = min X. Then for all £ < u h(§) = h'(&).
That is h t pu=h't p. But then h(p) = G(h I pn) = G(h' 1 p) = A’ (i), which is a contradiction.
Therefore X =@ and h=h" | 4.

Ezistence: By transfinite induction on ON show that Vé3hApp(d, h). Suppose not and let § € ON
be least such that -3hApp(d, h). Thus in particular V& < §3he such that App(§, he).

Case 1: 0 = @ - impossible, since App(0, ).
Case 2:1f 6 = f+11let f = hgu{(B,G(hg))}. Then App(0, f) which contradicts our hypothesis.
Case 3: ¢ is a limit ordinal. Let f = U{he¢ : & < 6}. Then uniqueness implies that f is a

function and furthermore App(d, f), which is a contradiction to the choice of 4.
Thus V§ € ON3hApp(d,h). Let ¢(x,y) be the following formula:
(x ¢ ONAy=0)Vv (zeONAI§>xIh(App(d,h) Ah(x) =y)).
The uniqueness and existence of h imply that Ya3lyy(z,y) and so ¢ (x,y) defines a function F.
Now, let £ € ON. Then pick any § > £ and h such that App(d,h). Then
F(§)=h(€)=G(h 1§ =G 1)
as desired. (]

REMARK 2.32. One can define ordinal addition and exponentiation by transfinite recursion
on the ordinals as follows:
Ordinal addition Let o € ON. Recursively over 8 € ON define o + 5 as follows:
(1) a+0=aqa,

(2) a+B=S(a+y)if g=5(v).
(3) o+ =Uyep(a+7)if B is a limit > 0.

Ordinal multiplication Let « € ON. By recursion over 8 € ON define the ordinal « - 8 as follows:
(1) a-0=0,
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(2) a-B=(a-7)+a,if §=5(v),
(3) a-B=Uyep(a-7),if B is a limit > 0.

Exgrcise 1. The latter two definitions are equivalent to the definitions of ordinal addition
and ordinal multiplication respectively, which we gave earlier in the lecture.

DEFINITION 2.33. (Ordinal Exponentiation) Recursively, one can define ordinal exponentia-
tion as follows:

a’=1, %P =af ., a” =supa? for ~ limit.
B<y

3. Cardinal Arithmetic

3.1. Comparing infinities.

DEFINITION 3.1. Let X,Y be sets.

(1) X <Y iff there is an injective function f: X - Y
(2) X »Y iff there is a bijection f: X - Y.

REMARK 3.2. Note that

e < is transitive and reflexive, and that
e ~ is an equivalence relations.

So, we can think of different infinite sizes as equivalence classes, consisting of sets any two of
which are in bijective correspondence.

LEMMA 3.3. If B ¢ A and there is an injective f: A - B then A~ B.
PRrROOF. Using the fact that f(A) € B ¢ A obtain:
A2B2f(A)2f(B)2fX(A)2f4(B)2f3A)2..
Let f© =id and for each n e N let
Hy = ["(A\["(B), Ky = ["(B)\["(A).
We will show that for each n, the functions
fVYHy Hy—» Hpyp and f M Kyt Ky — Kpi
are bijections.
Cramm 34. f I Hy,: H, - Hyp,1 is a bijection, where H,, = f*(A)\f™(B).

PRrOOF. Let g = f | H,. Clearly since f is injective, then also g is injective. We need to show
that g is onto. Let x € Hy,1. Thus z € f*"1(A)\f**1(B). So clearly, there is y € f*(A) such that
x = f(y). We need to show that y ¢ f*(B). However, if y € f*(B) then f(y) =z € f*"1(B) which
is a contradiction. Thus, z = f(y) for some y € H, = f"(A)\f"(B), i.e. g is a bijection. O
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Consider the set P =Npew f(A) = Nnew [(B). Then
A=PuUHyuH{uHyu---UKquKjuU--
B=PuH{uUHyuH3u---uKjyuKju--

are partitions of A, B. Then the function k: A - B defined by
e k| Hy,=f1 H, for each n,
e k| P=id and
e k| K, =1id for each n,
is a bijection from A to B. O

THEOREM 3.5. (Schréder-Bernstein) A~ B iff A<B and B < A.

PROOF. (=) If f: A - B is a bijection, then f witnesses A < B and f~! witnesses B < A.

(<) Suppose f: A— B and h: B - A are injective. Let B= h(B). Then BcAand h:B— Bis
a bijection. Thus, by definition B ~ B. On the other hand B ¢ A and so ho f: A - B witnesses
A < B. Thus, by the previous Lemma A ~ B. Since B ~ B we obtain A~ B. ]

DEFINITION 3.6. X <Y iff X <Y and it is not the case that Y < X.

REMARK 3.7. By the theorem of Schroder-Bernstein, X <Y means that X can be mapped
injectively into Y, but there is no bijection between X and Y.

LEMMA 3.8. (Cantor’s Diagonal Element) If F' is a function, dom(f) = Aand D={xe A:x ¢
f(z)} then D ¢ ran(f).

PROOF. Suppose D € ran(f). Then there is x € A such that D = f(x). There are two
possibilities: If x € f(x), then z €D (since f(z) = D) and so z satisfies the defining characteristic
of D, i.e. zis an element of A such that = ¢ f(z). This is a contradiction. If x ¢ f(z), then since
x € A we have that x satisfies the defining characteristic of D and so we must have that x €D, i.e.
x € f(x). Again we reach a contradiction. Therefore D ¢ ran( f). O

THEOREM 3.9. A<P(A).

PRrROOF. Clearly A <P(A) witnessed by the mapping x — {x} for each z € A. We claim that
P(A) £ A. Well, suppose to the contrary that P(A) < A. Then by Schréder-Bernstein P(A) ~ A
and so there is a bijection f: A - P(A). Then since D ={z e A:xz ¢ f(x)} € P(A) and f
is onto we must have D = {z € A:z ¢ f(x)} € ran(f) contradicting Cantor’s Diagonal Element
Lemma. U

COROLLARY 3.10. N<P(N).

REMARK 3.11. Characteristic Functions Let A be a set and let B ¢ A. Then we refer to
xB:A—>2={0,1} defined by
1 ifaeB

0 otherwise

x5(a) ={
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as the characteristic function of B. The mapping B ~ xp where B € P(A) is a bijection between
42 and P(A). Thus 42 ~ P(A). In particular N2 = 2N ~ P(N).

REMARK 3.12. P(N) ~ (0,1).

DEFINITION 3.13. (Finite, countable and uncountable sizes)
(1) A set A is said to be countable, if A <w.
(2)
(3) Infinite means not finite. Uncountable means not countable.
(4) A countably infinite set is a countable set which is infinite.

A set A is said to be finite if A <n for some n € w.

3.2. Cardinal Numbers.

Facr 1.
(1) If B ¢ « then type(B,¢€) < a.
(2) If B <, then B~ ¢ for some ¢ < a.
(3) Fa<p<yand aw~y then ar~f~7.

ProoOF. (2) If B < a, then B ~ ¢ for some § < a (identify B with a subset of a and apply
part (1)). To see item (3) notice that a € 8 and 8 < « imply that a ~ 3. O

Thus, the ordinals come in blocks of the same size. Informally, the first ordinal in a block is
called a cardinal.

DEFINITION 3.14. A cardinal is an ordinal « such that £ < « for all £ € a.

REMARK 3.15. Thus, an ordinal « fails to be a cardinal iff there is £ < « such that £ » a. We
denote by CD the collection of all cardinals.

THEOREM 3.16.

(1) If a>w is a cardinal, then « is a limit ordinal.
(2) Every natural number is a cardinal.

(8) If A is a set of cardinals, then sup A is a cardinal.
(4) w is a cardinal.

PrROOF. (1) Let o > w be an infinite cardinal. Suppose « is a successor ordinal. Thus
a=0+1=0uU{d}. Then f:5uU{0} - § defined by f(§) =0, f(n) =n+1forall newand f(§) =&
for all £ such that w < £ < § is a bijection. Thus § € a, but § £ «, which is a contradiction to «
being a cardinal.

(2) Proceed by induction. Now, 0 is trivially a cardinal. Suppose n is a cardinal and suppose

S(n) =n+1is not a cardinal. Then 3¢(¢ < S(n)) such that £ ~ S(n). Thus there is a bijection

f:&—S(n)=nu{n}. Clearly £ # 0 and so £ = S(m) for some m < n. But, then
fmu{m}->nu{n}

is a bijection. We have the following options: If f(m)=n, then f | m : m — n is a bijection,
contradiction to the assumption that n is a cardinal. Otherwise f(m) =jen. Now n € ran(f)
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and so there is ¢ € m such that f(i) = n. Consider the mapping g : m — n defined by g¢(7) =
jand g } m\{i} = f. Then g is a bijection, again a contradiction to the assumption that n is a
cardinal.

(3) Suppose, by way of contradiction that sup A = U A is not a cardinal. Thus there is £ < sup A
such that £ ~ sup A. Recall that sup A is the least ordinal, which is greater or equal each element
of A. Thus there is « € A such that £ < a. However £ < a < sup A and £ » sup A implies £ » «
which is a contradiction to « being a cardinal.

(4) Note that w = sup,,yn = Upen 7 and so the claim follows from items (2) and (3) above. O

DEFINITION 3.17.

(1) We say that a set A is well-orderable, if there is a relation R on A such that (A, R) is a
well-order.

(2) If A is well-orderable, then the cardinality of A, denoted |A|, is the least ordinal « such
that A ~ .

REMARK 3.18. The cardinality of a set is always a cardinal number. Under the Axiom
of Choice every set can be well-ordered and so under the AC every set is characterised by its
cardinality.

LEMMA 3.19.

(1) If A is a set, which can be well-ordered and f: A — B is an onto mapping, then B can
be well-ordered and |B| < |A|.

(2) Let k be a cardinal and B # @. Then B < & if and only if there is an onto mapping
f:x—>B.

COROLLARY 3.20. (A) set B # @ is countable if and only if there is an onto function f:w — B.
THEOREM 3.21. (Hartogs, 1915) Let A be a set. Then there is a cardinal K such that k ¥ A.

PROOF. Fix A and let W = {(X,R) : X € AA R well-orders X}. Then if « is an ordinal, we
have that
a<Aiff I(X,R) e W s.t. a=type(X,R).
By the Axiom of Replacement Z = {type(X,R) +1:(X,R) € W} is a set. But then § =sup Z is
an ordinal. Moreover, for each a < A, we have that § > a. Thus, 5 £ A. Take k =|3|. Then k ~ 3
and k £ A. O

DEFINITION 3.22. Let A be a set. Then R(A) denotes the least cardinal s such that x £ A.
For ordinals a define a* = R(a).

DEFINITION 3.23. By transfinite recursion on ON, define the cardinal numbers R¢ as follows:
(1) Rg=wp =w

(2) Reyr = weer = (Re)™
(3) Ry =wy, =sup{R¢ : & <n} whenever 7 is a limit ordinal.
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REMARK 3.24. (The class of all cardinals) The collection of all cardinals is a proper class.
Ro = [N <Ry < Rg < e < Rppeee < Ry < Ry < oo

DiscussiON 3.25. The cardinality of the real line How large is R? What is |R|? Note that
IR| = [P(N)| and [P(N) = 2% where 2% is cardinal exponentiation (to be defined shortly) and is
the cardinality of the set of functions from N to 2.

THEOREM 3.26. (Hessenberg, 1906) Suppose o > w is an ordinal. Then |a x af =|a|. Thus in
particular, if kK > w is a cardinal, then |k x k| = k.

REMARK 3.27. Observe that it is sufficient to prove the claim for cardinal numbers. Indeed.
Suppose « is an infinite ordinal and we have proved that ||a| x || = || Now « » |a|, which
induces a bijection witnessing |a x |a| # a x a and so ||af x || = |«

PROOF. Define a relation < on ON x ON as follows: (£1,&2) < (n1,72) iff

e cither max{{y, &} < max{n,n2},
e or max{&1, &2} = max{ny, 2} and (§1,82) <iex (11,72)-

Note that < is a well-order. It is sufficient to show that

CLAIM 3.28. For each infinite cardinal s, type(k x k,<) = K.

PROOF. Proceed by transfinite induction on k. Let x be the least infinite cardinal such that
type(k x k,<) # k. Now, let 0 = type(k x k,<) and let F': (d,<) > (kx Kk, <) be an order preserving
bijection. Since § # k, there are two options § > k or J < k.

Suppose 0 > k. Then F(k) is defined and so 3(£1,£2) € k x k such that F(k) = (&1,§2). Let
a =max{{1,&} + 1. Then since k is a limit ordinal, a < K. Moreover since F' is order preserving,
F"k ¢ ax a. Therefore k < a x a < k, which is clearly a contradiction. Now, suppose d < k. Then
Kk < Kk x Kk~ ¢, which is a contradiction, since k is a cardinal.

Therefore there is no such &, i.e. for each infinite cardinal , |k x k| = k. This proves the claim
and the theorem. 0

O

3.3. Cardinal Arithmetic. Note that

(1) If A< B and C < D, then 4C < BD.
(2) If 2< C, then A < P(A) <40, simply because P(A) ~ 42 <4C.

LEMMA 3.29.
(1) C(BA) ~ CXBA
(2) BUA~BAXxCA, where B and C are disjoint.

PRrOOF. (1) Consider the mapping ®: ¢(BA) - ©*B A defined by
(f)(c,b) = (f(e))(D).

(2) Consider the mapping ¥ : BYCA - BA x € A given by
V(f)=(fIB,fI10).
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O

DEFINITION 3.30. (Cardinal addition, multiplication and exponentiation) Let x and A be
cardinals. Then:

(1) K+ X is defined to be the cardinality of the set {0} x kU {1} x \.
(2) Kk x \is defiend to be the cardinality of the set k x A.
(3) k* is the cardinality of the set "X := {f | f: K — A}.

LEMMA 3.31. (Monotonicity) Let &, &, A, A" be cardinals such that x < k', A < \’. Then:
(1) k+ A<k + N,
(2) k- A<k N,
(3) KM < (KN,

PROOF. (1) Note that {0} x kU {1} x A€ {0} x " U {1} x \. Thusid: k+ X <k’ + )\ and so
K+ A<k + N

(2) Similarly Kk x A€ k' x X and so id : K- A < k" - X', Therefore k- A <"+ N\

3) Consider the mapping ¢ : *k > M) (k) defined by
g ¥

e () 1A= f and
e o(f)(§)=0forall \<E< N,

When & =+’ = 0, note that 0° = |°0| = [{@}| = 1 and for A >0, 0* = |*0| = |&| = 0. O

LEMMA 3.32. Let k, A, 0 be cardinals. The following properties refer to cardinal arithmetic:
(1) K+ A=A +k,

(2) K- A=Ak,

(3) (k+A)-O0=Kk-0+X-0,

(4) KO0 = ()7,

( ) K(/\+6) ———

PROOF. To see (1) note that AuB = Bu A. To see (2) note that A x B = B x A. To see
(3) observe that (AU B) xC' = Ax C'UBxC. To see (4) note that “(PA) ~“*B A. To see (5)
observe that (PY9) A ~ B A x € A provided that B,C are disjoint. O

ExaMPLE 3.33.

(1) w, w-w, w+w are three different ordinals, all of the same cardinality.

(2) w* as ordinal exponentiation is equal to sup,,, w", which is a countable set.

(3) However, w* as cardinal exponentiation is uncountable: [“w| = [P(w)| = R(° = 2% (to be
proven shortly).

LeMMA 3.34. Let k, A be cardinals and suppose at least one of them is infinite.

(1) Then the cardinal sum of x and A is equal to max{r, \}.
(2) If none of them is 0, then the cardinal product of x and A is equal to max(r, \).
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PrOOF. Let k < A. Thus A is infinite. But then A < k+ XA < A x A\. However we proved that
Ax A~ A\ Therefore A < k+ X and kK + A < \. Therefore k + A\ = max{k, A} = A\. To see the second
claim assume that x < A. Thus A is infinite. Then A<xx A< Ax A~ X and so Kk x A= A O

LEMMA 3.35. If 2 <k < 2* and )\ is infinite, then x* = 2. All exponentiation here is cardinal
exponentiation.

PROOF. 2% < g < (22N < 20A = 24N = 94 O O
COROLLARY 3.36. 2¥ = wY.

REMARK 3.37. (CH and GCH)

(1) For every ordinal v, 2% > R41.

(2) The Continuum Hypothesis(abbreviated CH) is the statement that 2% = Ry.

(3) The Generalized Continuum Hypothesis (abbreviated GCH) is the statement 2% = R,
for all o € ON.

REMARK 3.38. Thus CH is the statement that the cardinality of the real line is the first
uncountable cardinal. If CH holds, then there are no infinite sizes between |N| and |R|.

4. Cofinality and Lemma of Ko6nig
4.1. Cofinality.

DEFINITION 4.1. (Cofinality) If + is a limit ordinal, then the cofinality of 7 is defined as
follows:

cf(y) = min{type(X): X cyAsup(X) =~}.
We say that v is a regular cardinal, if cf(vy) = 7.

REMARK 4.2. Note that cf(y) <.
EXAMPLE 4.3. Rg < Rp < ... <R, <...<R, <... Then cf(Ry,) = w.

LEMMA 4.4. Let v be a limit ordinal. Then:
(1) If Ac+ and sup(A) =+, then cf(y) = cf(type(A)).
(2) cf(cf(y)) = cf(vy). Thus cf(vy) is a regular ordinal.

2)
(3) w<cef(y) <yl <.
(4) If 7 is a regular ordinal, then ~y is a cardinal.

PROOF. (1) Let a = type(A). Since « is limit and A is unbounded in v, a must be limit as
well. Let f:(a,€) - (A,€) be an isomorphism.

cf(y) <cf(a): Y ¢ ais unbounded in «, then f”(Y) is unbounded in 7 and type(f”(Y)) =
type(Y'). Now, take Y € « such that type(Y') = cf(«). Then Y €~ is unbounded in v, type(Y) =
cf(a). Thus cf(v) < cf(a).



4. COFINALITY AND LEMMA OF KONIG 21

cf () < cf(7y): Let X ¢« be unbounded and let type(X) = cf(v) and consider the mapping
h:X — A(c ) given by h(¢) =min{n:ne AAan>(}. Then h is non-decreasing. Consider the
set
X'={neX:¥&e X nn(h(§) <h(n))}.
Therefore h | X' : X’ — A is order preserving and so injective. Thus h(X") is unbounded in A.
However the set A was chosen to be of order type a. Therefore

cf(a) < type(X') < type(X) = cf(7).

(2) Let A €+ be an unbounded subset of v of order type cf(7y). Then by part (1) of this Lemma,
cf(7) = cf(type(A)) = cf(cf(7)).

(3) By definition w < cf(y) and |y| < «. So, we need to show that cf(y) < |y|. For this purpose, let
Kk := || and fix an onto function f:k — . Recursively, define a function g: k - ON as follows:

g9(n) := max{f(n),sup{g(&) + 1: & <n}}.
What can we say about g7
(1) dom(g) = dom(f) = &,
(2) g(n) 2 f(n) for all n e,
(3) if £ <n then g(§) < g(n), because g(n) > g(§) +1> g(£),
(4) If n=C+1, then

9(¢+1) =max{f(¢+1),sup{g(§) +1: £ < C}} = max{f(¢+1),9(C) +1}.

In particular we have that g: x 2 ran(g) and so type(ran(g)) = k.

If ran(g) € v, then since g(n) > f(n) and ran(f) = ~, we have ran(g) is unbounded in ~.
Therefore cf(y) <k =|y| and we are done.

If ran(g) ¢ v, we can find 7 € k least such that g(n) >~. Suppose n=¢ +1. Then

g(n) =g(§+1) =max{g(£) +1, f(n)}.

However g(n) > v and f(n) <. Thus g(n) = g(§) + 1. By minimality of 7, g(£) < v and so
g(&) +1 <~y. Therefore g(n) = g(&§) +1 <y < g(n). But then v = g(&) +1 is a successor, which is a
contradiction! Therefore 7 is a limit ordinal and ¢''n is unbounded in . Moreover g I n:n~ g''n.
In particular type(g”n) <n. Then cf(vy) < type(g”n) <n<r =y

(4) This is a direct corollary to (3). Indeed, suppose v is regular. Then v = c¢f(+). However by
item (3) we have that cf(y) <|y| <. Therefore v < |y| <~ and so v = |y| is a cardinal. O

DEFINITION 4.5. (Regular and Singular Cardinals) Let v be an infinite cardinal.
(1) If v = cf(7y), we say that v is regular.
(2) If cf(v) < v, we say that v is singular.

REMARK 4.6. By the previous Lemma, part (1), we have that cf(a+ ) = c¢f(3). Indeed, the
set A={a+&:£< B} is unbounded in a+ 5. Thus, for every limit ordinal v < wy, c¢f(7y) = w. For
every limit ordinal  such that v < wsg, either cf(y) =w or cf(y) = w;.
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LeMMA 4.7. Let v be a limit ordinal.

(1) Suppose v = R,, where a =0 or a =+ 1 is a successor ordinal. Then ~ is regular.
(2) If v = R, for a limit ordinal «, then cf(v) = cf(a).

PrOOF. (1) If a = 0, then Ry = Rp = w and w < cf(w) < |w| € w is regular. Thus, suppose
v =Rgs1. Consider any A € Rgyy such that type(A) < Rgy;. It is sufficient to show that A is not
unbounded in Rg, 1, since then Rg,; < cf(y). But cf(y) < |y] = Rg41 and so cf(Rgi1) = Rge1.

To show that A is not unbounded in ~, consider sup A = UA. Note that |A| < Rg, because
|A| < type(A) < Rgy1. Moreover, every element of A is of cardinality at most Rg. Therefore we
can view A as a collection of < Rg-many sets, each of cardinality at most Rg. Then, by the Axiom
of Choice we obtain that |sup A| = |U A| < Rg (see Lemma 4.10). Thus sup A < R,y (otherwise
contradiction to the notion of a cardinal!) Thus A can not be unbounded in Rg,;.

(2) Let A = {®¢: & <a}. Then A € R, and supA = R,. By a previous Lemma cf(R,) =
cf(type(A)). However cf(type(A)) = cf(a). Thus cf(Ry) = cf (). O
EXAMPLE 4.8.
e cf(R,) =R, for each n € w, and
o cf(Ry) =w.

4.2. Ko6nig’s Lemma.

REMARK 4.9. Let A, B be sets such that A # @. Then there is an injective function g: B - A
if and only if there is an onto function f: A - B.

LeEMMA 4.10. (AC) Let & be an infinite cardinal. If F is a family of sets with |F| < x and
| X| < k for each X € F, then |UF| < k.

PRrROOF. Assume F + @ and @ ¢ F. Then there is an onto function f:x — F. Similarly, for
each B ¢ F fix an onto function
gp:k—> B.

This defines an onto mapping h: k x k - JF given by
h(a, B) = g5y (B)-

Since |k x k| = Kk, we obtain an onto mapping from x onto UF. O

THEOREM 4.11. (AC) Let 0 be a cardinal.

(1) Suppose 0 is reqular and F is a family of sets, such that |F| < 60 and moreover |S| <8 for
all SeF. Then |UF]|<6.

(2) Suppose cf(0) =\ <6. Then there is a family F of subsets of 0 with |F| =X and |UF| =6
such that |S| < 0 for all S € F.

PrROOF. (1) Let X = {|S] : S € F}. Then X c 0, |X| < 0 and so type(X) < 6. Since
0 is regular, type(X) < cf(f) and so X is not unbounded in 6. Thus sup(X) < 6. Consider
k= max{sup(X),|F|}. Then k< 6. If « is infinite, then by Lemma 4.10 |UF| < x. If & is finite,
then UF is finite. In either of those two cases |UF| < 6.
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(2) Just take F to be a subset of 6 such that type(F) = A and sup(F) =UF =6. O
THEOREM 4.12. (Konig) Let k> 2 and X be infinite. Then cf(k) > .

PROOF. Let 6 = k*. Note that € is infinite and 6* = K = k* = 6. Thus, we can enumerate
A is order type 6, i.e. 20 = {f, : a € 8}. There are two options. Either cf(k*) < X or c¢f(s*) > A

If cf (k) < A < 2* <k, then by Theorem 4.11 we have 6 = Ugy S, where each [Se| < 6. Let
g: A= 0 be the function g(¢) = min(0\{fa(£) : @ € S¢}). Then g € 29 and so there is « € 6 such
that g = fo. Take & <X such that o € S¢. Then g(&) # fo(€), contradiction.

Therefore cf(5*) > \. O

EXAMPLE 4.13.
(1) cf(2%°) > ®g = w and so 2™ can not be R,.
(2) Consistently (using the method of forcing) 2™ is any cardinal of uncountable cofinality,
€.8. o020, Ryt1, Ry, €tC.

THEOREM 4.14. Assume GCH. Let k, A be cardinals such that max{r,\} > w.
(1) Suppose 2 <k < A\*. Then k™ = A*.
(2) Suppose 1 < X\ < k. Then k> = k provided that \ < cf(k) and k* = k% provided that
A > cf(K).

Proor. (1) Since we have GCH, 2* = \*. Then 2 < x < 2*. But then 2* < s* < (2M)* =2** =
2* and so k* = 2*. Thus by GCH we obtain x* = \*.
(2) Since 1 < X <k we have that & < k* < k" = 2% = ¥ (the latter equality by GCH). Therefore
either x* = & or k* = k*. By Kénig’s Lemma cf (k) > A. Thus:

If cf(x) < A, then x* # k. Therefore x* = k*. Done!

If X < cf(x), then every f: A — x is bounded. Thus for all f € *« there is ay < k such that
fe?ay and 50 2k = Uger *a. Now *a € P(Ax @) and for a <k, |A x a| < k. Therefore [*a| < k by
GCH. Then by Lemma 4.10 we have also |’ x| < & and so x* = k. Done! O

DEFINITION 4.15. (The beth function) By recursion on the ordinals define J¢ as follows:
(1) Jp=Rp =w,
(2) g1 = 2%,
(3) 2y =sup{3¢: ¢ <n} for n limit ordinal.
REMARK 4.16. CH is equivalent to the statement that 3; = X1 and GCH is equivalent to the
statement that J¢ = R¢ for all { € ON.

DEFINITION 4.17. A cardinal k is said to be weakly inaccessible if k > w, k is regular and
k> A for all A < k. A cardinal  is strongly inaccessible if x > w is regular and & > 2* for all
A< K.

REMARK 4.18. If k is strong inaccessible, then x is weakly inaccessible. The existence of a
strong inaccessible cardinal is not provable in ZFC.






CHAPTER 2

Foundations and Consturctibility

1. Well-founded relations
1.1. Well-foundedness.
DEFINITION 1.1. Let R be a relation on a class A. If y € A, let

y I=predg(y) = predy g(y) = {z € A: zRy}.
The relation R is said to be set-like on A iff for all y € A, y | is a set.

EXAMPLE 1.2.

(1) If A=V, where V denotes the collection of all sets and R is the membership relation,
then y |=y and so € is set-like.

(2) If A=V, where V denotes the collection of all sets and R is the subset relation, then
y l="P(y). Thus R is set-like if and only if the power set axiom holds.

(3) The membership relation is set-like on the class of all ordinals.

(4) Let A be the class of all pairs of ordinals and R be the lexicographic order. Fix any pair
(e, B). Then for any ordinal v, (&,7) <z (o, f) and so (e, 3) | is a proper class.

DEFINITION 1.3. Let A be a class and R a relation on A.

(1) An R-path of n steps in A, where n € N and n > 1 is a function s with domain n + 1 such
that for all ¢ < n(s(i)Rs(j +1)). Moreover, s is said to be a path from s(0) to s(n).

(2) The transitive closure of R on A, denoted as R* = R is the set of all pairs (a,b) of
elements of A such that there is a path from a to b.

LEMMA 1.4. Let R be a relation on a class A. Then

(1) The transitive closure R* of R is a transitive relation on A.
(2) If R is set-like on A, then R* is set-like on A.

PROOF. The relation R* is transitive on A, since the composition of two paths is a path.
Suppose R is set-like on A. For each n > 1, let

D, (a) ={x e A:3 path in A from x to a of n steps}.

By induction on n we will show that for each a € A, D,(a) is a set. Fix a € A. Then Dy(a) = @,
D1 (a) = predp(a) which is a set, since R is set-like. Suppose n > 1 and D,,(a) is a set. Then by
the axiom of replacement

E = {predg(y) : y € Dn(a)}

25



26 2. FOUNDATIONS AND CONSTURCTIBILITY

is a set and so by the union axiom, U E = D,,41(a) is also a set. Now, by the axiom of replacement
F={D,(a):new}

is also a set and so by the union axiom, predg«(a) = UF is also a set. Therefore R* is indeed
set-like. D

THEOREM 1.5. (Transfinite Induction on Well-Founded Relations) Assume R is well-founded
and set-like on A. Let X be a non-empty subclass of A. Then X has an R-minimal element.

PRrROOF. Fix a € A. Then, since R* is set-like, we have that Y = {a} U (predg«(a) n X) is
a set. By definition, R is well-founded and so there is b = ming Y. If there is y such that yRb
then y € predp«(a). Now, if y € X then y € Y and yRb is a contradiction to the minimality of b.
Therefore either there is no such y, or y ¢ X. O

THEOREM 1.6. (Transfinite Recursion on Well-founded Relations) Let A be a defined class
and let R be a defined relation on A, which is set-like and well-founded on A. Suppose for all x,s
there is a unique y such that (x,s,y) and so ¢ defines a function G with the property that for all
x,8, G(x,s) =y where p(x,s,y). Then, there is a formula v such that the following are provable:

(1) YxIlyyp(z,y) and so ¢ defined a function, which we denote F
(2) for all a € A we have

F(a)=G(a,F | (al))=G(a,F | predy g(a)).

PROOF. Consider the formula App(d,h) which states:

(1) his a function

(2) d=dom(h)c A

(3) for all y ed, predy p(y) € d

(4) for all y e d, h(y) = G(y,h 1 (y 1))-
Note that item (3) implies that pred 4 z«(y) € d for all y € d. By item (4), h is an approximation
to F'. Since R is set-like, R is also set-like and for all x € A, d, = {z}upredy g« () is a set. Now,
let ¥ (z,y) be the following formula

x¢ Any=02) Vv (xe An3Id,h(App(d,h) Az edAh(z) =y)).

Uniqueness of Approximations: Suppose App(d, h) A App(d’,h'). We will show that App(dn
d’,hnh"). Note that for all y € dnd’ we have predy r(y) € dnd'. Furthermore, by induction
using item (4) one can show that h { dnd’ =h' | dnd’. Indeed, if this is not the case, then there
is yo € dnd’ such that h(yg) # h'(yo) and without loss of generality, we can assume that yg is
R-least with this property. But, then by item (4) we have

h(yo) = G(yo, h 1 (o 1)) = G(yo, k' 1 (o 1)) = 1’ (wo),

which is a contradiction.
Existence of Approximations: We want to show that Vx € A3d, g(App(d,h) Az € d). Note
that if App(d,h) Ax € d then App(dy, hy) where hy = h | d,. We proceed, by induction. Suppose

X ={xeA:-3d,h(App(d,h) Az ed)} + @.
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Let @ = ming(X). Since a is R-least, for each = € predp 4(a) there are dg,h, such that
App(dy, hy). Take

d=|J{d,:z epredg 4(a)},h = J{he : x € predp 4(a)}.

Then App(d, h). Now, take d:= du {a} and h:= hu{(a,G(a,h ! (a 1)))}. Then App(d,h) and
since a € A, we reach a contradiction to a € X.

By the uniqueness and existence of the approximating functions we obtain that Vo € A3lyy(z,y).
Therefore, 1 defines a function F' as desired. O

REMARK 1.7. Note that if F' and F’ satisfy item (2) of the above theorem, then F(a) = F(a')
for all a € A. Indeed, if this is not the case, then X = {a € A: F(a) # F'(a)} is non-empty and so
we can take a = ming X. But then, by minimality of a we have that F | (a ) =F' | (a|) and so

F(a)=G(a,F I (al)) =G(a,F" | (al)) = F'(a),
which is a contradiction.

1.2. Rank.

DEFINITION 1.8. Let R be a relation, which is well-founded and set-like on a class A. For
y € A define

rank(y) := rank4 r(y) = (J{S(rank(z)) : # € pred 4 g(y)}.
Let rank(y) = @ for y ¢ A.
Justification Let G(x,s) = U{S(t) : t € range(s)}. Then G(z,s) does not depend on z and is
defined for all s,z. Then F(a) =G(a,F t (al)) =U{S(F(c)):ce A, cRa}.

LEMMA 1.9. Let R be well-founded and set-like on A. Then

(1) For all y € A, rank(y) is an ordinal and so

rank(y) = sup{rank(z) + 1:z € pred 4 r(y)}.
(2) If z € pred 4 g(y), then rank(z) < rank(y).

PROOF. To see item (1) proceed by induction. Suppose y is R-minimal such that rank(y)
is not an ordinal. However rank(y) = U{S(rank(x)) : x € pred4 p(y)} = sup{rank(z) +1: 1z €
pred 4 r(y)} which is an ordinal and so we reached a contradiction. To see item (2) consider any
zepredy p(y). Then by definition rank(y) > rank(z) + 1 > rank(z). O

LEMMA 1.10. Let A be a defined class, R a defined relation on A. If there is a defined function
® : A - ON such that
if xRy then ®(x) < ®(y)

then R is well-founded in A.

PROOF. Let X be a subset of A, X # @. Then {®(x): 2z € X} is a set (by replacement) of
ordinals and so it has an e-minimal elements o = ®(y) for some y. Clearly, y is R-minimal in
X. Indeed, if 2Ry and z € X, then ®(z) < ®(y), which is a contradiction to the minimality of
D (y). O



28 2. FOUNDATIONS AND CONSTURCTIBILITY

LEMMA 1.11. Let A be a defined class and R a defined relation on A. If R is set-like and
well-founded on A, then R is well-founded in A.

ProOF. Define ® : A - ON by ®(x) := rankg p(x). If xR*y, then there is a path from z
to y of n steps, where n > 1 and so by Lemma 1.9 rank(z) < rank(y), i.e. ®(z) < ®(y). By
Lemma 1.10. R* is well-founded on A. O

LEMMA 1.12. Let A be a defined class and R a defined relation which is set-like and well-
founded on A. Fix b € A and « < rankg 4(b). Then, there is a € A such that aR’%b and
rankp 4(a) = a.

ProoF. Consider the class
X ={ce A:rank(c) > @ and —(3u € pred 4 g« (c) Arankg g(u) = a)}.

Suppose X # @. Since R is set-like and well-founded on A, there is ¢ € X which is R-minimal.
Note that rank g(c) = sup{rank(¢) +1:¢ € pred4 p(c)}. Since rank(c) > a >0, predy z(c) # @.
If rank(t) + 1 < a for all ¢ € pred 4 z(c) then rank(c) < o which is a contradiction to the choice of
c. Therefore there is t € pred 4 g(c) such that rank(t) + 1> «, i.e. rank(t) > a. Fix such .

If rank(t) = «, then tR*b is a contradiction to c € X.

If rank(t) > a + 1 > «, then since t € pred4 p(c) and ¢ is R-minimal in X, ¢ ¢ X. Thus, there
is d € pred 4 g+ (t) such that rank(d) = a. But then d € pred 4 g+« (c) which is a contradiction to
ce X.

Therefore, X = @ and so there is a € pred 4 g« (b) such that ranks r(a) = a. O

LEMMA 1.13. Let o be an ordinal.
(1) Then rankgn () = a.
(2) If the Axiom of Foundation holds, then ranky () = a.

ProoF. To prove item (1) observe that € is set-like and well-founded on ON and so we can
define rankgn . We proceed by induction. If the claim is not true, then

X ={a € ON:rankgn (@) # o}
is non-empty and so it has an e-minimal element a. Then
rankgne(a) =sup{+1:&{<a} =q,

which is a contradiction.
To see item (2) consider X = {av € ON : ranky () # a}. If X # @, then it has a least element
and the proof continues as in part (1). O

LEMMA 1.14. Suppose A € B and R is well-founded and set-like on B.

(1) If be A then ranky r(b) < rankp r(b)
(2) If be A and predp g (b) € A, then rank r(b) = rankp r(b).
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PrOOF. (1) Suppose not. Then X = {x € A : ranky g(x) > rankp p(z)} # @. Since R is
well-founded on B (and set-like), it is also well-founded on A. Then X ¢ A has an R-minimal
element a. Then

ranka r(a) =sup{ranks r(t)+1:t€predy p(a)}
<sup{rankp g(t) +1:t e predy g(a)}
<sup{rankp r(t) +1:t € predg p(a)} = rankp g(a),
which is a contradiction.
(2) The second claim is proven similarly. Suppose by way of contradiction that

X={beA: predRRE(b) c A nranky r(b) <rankp r(b)} # @.
Let b be R-minimal in X. Then

rank r(b) =sup{ranks r(t)+1:tepredy r(b)}
=sup{rankp p(t) + 1:t € predg p(b)}
= I'al’lkB’R(b),

which is a contradiction. OJ

DEFINITION 1.15. Let x be a set. Let
1) WLz=x
(2) For n>1let Utz =UU 2.
Finally, let trcl(z) = U{U"z : n € w}.

LEMMA 1.16. Let b be a set. Then the membership relation is well-founded on trcl(b) iff it is
well-founded on {b} U trcl(b).

PRrROOF. Note that if b € trcl(b) then the two sets coincide and so the statement is trivially
true. Suppose b ¢ trcl(b).

(=). Suppose € is well-founded on trel(b). Let X c {b}utrcl(d). If b ¢ X, then X ¢ trcl(b) and
so by hypothesis X has an e-minimal element. If X = {b} then b = minc X. Thus, suppose b€ X
and X\{b} # @. Since X\{b} ¢ trcl(b), we can take ¢ = min (X \{b}). In particular c € trcl(d). If
b € ¢, then since trcl(b) is a transitive set we obtain that b € trcl(b), contrary to our hypothesis.
Therefore b ¢ ¢ and so ¢ = mine X.

(<) Straightforward, since trcl(b) ¢ trel(b) u {b}. O

REMARK 1.17. If b €* b, i.e. b € trcl(b) then € is not well-founded on trcl(b), since € is not
irreflexive.

DEFINITION 1.18. A set b is said to be well-founded if € is well-founded on trcl(b). For a
well-founded set b, let rank(b) = rank1ure1(p),e(b). WF denotes the class of well-founded sets.

COROLLARY 1.19. Let T be a transitive class and let € be well-founded on T". Then T' ¢ WF
and rank(b) = ranky¢(b) for all be T.

PrOOF. If b € T then predy c«(b) = trcl(b) € T'. Thus, the statement follows by Lemma 1.14.
0
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COROLLARY 1.20. The class of all ordinals is a subclass of the class of well-founded sets and
so WF is a proper class. Moreover, rank(«) = « for all o € ON.

COROLLARY 1.21. The Axiom of Foundation is equivalent to the statement that V = WF.
1.3. Basic Properties of Well-founded Sets.

LEMMA 1.22.

(1) Suppose b is a well-founded set and x € b. Then z is well-founded and rank(x) < rank(b).
Thus, in particular, WF is a transitive class.

(2) € is well-founded on WF.

(3) If b is a set of well-founded sets, then b is well-founded.

(4) Let be WF. Then rank(b) = rankyp (b).

(5) Let be WF. Then rank(b) = sup{rank(z) +1:x € b}.

(

6) Let be WF and ¢ € b. Then ¢ e WF and rank(c) < rank(b).

PrROOF. (1) Since trcl(z) < trcl(b), € is well-founded on the transitive closure of x and so
r € WF. Then rank(z) = rank,1,re1(2),e () (by definition) and by Lemma 1.14

rank () uerel(z) € (2) = rankyueeei(v) e () < rankyuerei(s) e (0)-
(2) Exercise!
(3) Suppose z consists of well-founded sets. Then trcl(z) is a set of well-founded sets and
since € is well-founded on WF, it is well-founded on trcl(z). Thus x is well-founded by definition.
(4) The claim is immediate from Lemma 1.14.(2) since trcl(b) € WF.
(5) Immediate from item (4) and Lemma 1.9.
(6) By (3) c€ WF. By (4)

rank(c) = sup{rank(z) +1:z € ¢} <sup{rank(x) +1:x € b} = rank(d),
just because c c b. O

COROLLARY 1.23. Let z,y € WF. Then

(1) {z,y} e WF and rank({z,y}) = max(rank(x),rank(y)) + 1.

(2) (z,y) € WF and rank({z,y)) = max(rank(z),rank(y)) + 2.

(3) If P(x) exists, then P(z) e WF and rank(P(z)) = rank(z) + 1.
(4) Uz e WF and rank(Ux) < rank(x)

(5) zuy e WF, rank(z uy) = max(rank(z),rank(y)).

(6) trcl(z) € WF and rank(¢rel(z)) = rank(z).

ProoF. (1) By assumption, x € WF and y € WF, so {z,y} ¢ WF. However, every set
consisting of well-founded sets is well-founded (by Lemma 1.22(3)) and so {z,y} € WF. To
calculate the rank, proceed as follows:

rank ({z,y}) = sup { rank(z)+1:z¢ {x,y}} by Lemma 1.22(5)
max{rank(m) +1,rank(y) + 1}
= max{rank(:v), rank(y)} + 1.
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(2) By (1), we have that both {z} and {x,y} are in WF. Then again by (1) we have (z,y) =
{{x}, {z, y}} e WF. To calculate the rank, note that

rank ((z,y)) = sup { rank(z)+1:z¢ (m,y)} by Lemma 1.22(5)
= max { rank({z}) + 1,rank({z,y}) + 1}
= max{rank(:n) + 2, max{rank(z), rank(y)} + 2} by (1)

= max { rank(z), rank(y)} +2.

(3) Since x € WF, it follows from Lemma 1.22(1) that z ¢ WF. Note that for every z ¢ z,
we have z € x € WF, and so z € WF. Thus P(x) is a set, consisting of well-founded sets and so
P(z) e WF. By Lemma 1.22.(6) for each z € x we have rank(z) < rank(z). Then

rank(z) + 1 <rank(P(x)) = sup{rank(z) + 1: z € P(z)} < rank(x) + 1,

where for the first inequality we used x € P(x). Thus rank(P(z)) = rank(z) + 1.

(4) Suppose z € Jz. Then there is w € z such that z € w € x. Then w € WF by Lemma
1.22(1), and so also z € WF, since it consists of well-founded sets and so Uz € WF. Furthermore,
for every such z € Uz, we have rank(z) + 1 < rank(z). Thus

rank ((Jz) = sup{rank(z)+1:z¢e|Jz} < rank(z).

(5) We have z,y € WF, so x,y € WF, which implies z uy ¢ WF and thus x uy € WF by
Lemma 1.22.(3). To compute the rank, using Lemma 1.22(5) we have

rank(zUy) = sup{rank(z)+1:zezuy}
= max { sup{rank(z) + 1 : z € z},sup{rank(z) + 1: z e y}}

max { rank(x), rank(y)}.

(6) By assumption, x € WF, and by induction it follows that every U" z € WF for every n > 1,
by (4) above. Thus trcl(z) = U{U"z:n >0} ¢ WF, and so trcl(z) € WF. By induction, one can
show that rank(u"z) < rank(z) for each n and so

rank ( trcl(m))

sup { rank(z)+1:z¢ trcl(:z:)}

= sup {rank(z) +1: z e U, for some n}
= sup { sup{rank(z) +1:zeU"z} :n >0}
= sup { rank (U" ac) n> 0}

= rank(z).

With this, we can define initial segments of the well-founded universe:

DEFINITION 1.24. Let a be an ordinal and let R(«) = {z €¢ WF : rank(x) < a}.
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LeMMA 1.25. Let b be a set, & € ON. Then
be R(a+1) iff bc R(«).
PROOF. (=) Let b € WF and rank(b) < a + 1. Take x € b. Then x is well-founded, rank(x) <
rank(b) < a. Thus, b < R(«).
(<) Let b < R(«). Then in particular, b is a set of well-founded sets and so b is well-founded.
For each z € b, we have rank(z) < a. Thus, rank(b) = sup{rank(z)+1:2xeb} <a<a+1. O

LeEMMA 1.26. Assume the Power Set Axiom. Then for each a € ON, R(«) is a set. Moreover:
(1) R(0) = o,
(2) R(a+1)=P(R()), and
(3) R(v) = Uqacy R() for ~ limit ordinal.

PRrROOF. By induction on «. If a =0, then R(0) = @. Now, suppose R(«) is a set. Then by
the Power Set Axiom P(R(«)) is a set and by the previous Lemma R(a+1) = P(R(«a)). If o is
a limit and for each v <, R(7y) is a set then by the Replacement and Union Axioms Uy, R(7)
is a set, which by definition of R(«a) is exactly R(«). O

REMARK 1.27. The Power set axiom is not necessary to define the notion of a rank. As we
will see, the rank of a set is absolute for transitive models of ZF-P.

2. Mostowski Collpase
2.1. Mostowski Collapsing Function.

DEFINITION 2.1. Let R be a relation, which is well-founded and set-like on A. For y € A,
define the Mostowski collapsing function mos(y) as follows:

mos(y) = mos r(y) = {mos(z) : z € pred 4 (y)}-

Justification: For each pair of sets x, s define G(x, s) := range(s). Note that G does not depend
on . Now, define

F(y) =Gy, F  (y 1)) ={F(x) :z epredy p(y)}-

LeEMMA 2.2. Let R be a defined relation which is well-founded and set-like on A. Then mos” A
1s transitive.

PROOF. Let mos(y) € mos” A. Then mos(y) = {mos(z) : = € predy g(y)} € mos” A. Thus,
mos” A is transitive. 0

DEFINITION 2.3. A relation R is said to be extensional if
Va,y € A(pred y g(z) = predy g(y) - = =y).
Note that if A under the membership relation is a transitive class, then € is extensional on A.

LEMMA 2.4. Let R be a well-founded and set-like relation on A.

(1) mosg g is injective iff R is extensional on A.
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(2) If R is extensional on A, then mos: (A4, R) = (mos” A, ¢€).

PRrROOF. (1) Assume mosy g is injective, but R is not extensional on A. Thus, there are a # b
such that predy p(a) = predy z(b). But, then mosa r(a) = mosa r(b), which is a contradiction.

Suppose, R is extensional on A. By way of contradiction, suppose X = {a e R: 3y e A(y #
a Amos(a) = mos(y)} # &. Let a € X be R-minimal. Then, there is b € X such that b # a and
mos(a) = mos(b). Since R is extensional on A, we must have pred 4 p(b) # pred 4 g(a). There are
two cases to consider:

Case 1 Suppose there is ¢ € pred4 g(a)\pred 4 p(b). However mos(c) € mos(a) = mos(b) and
so there is d € pred 4 p(b) such that mos(c) = mos(d). Since c ¢ predy z(b), c # d. Thus c e X.
However c € pred 4 p(a) is a contradiction to the minimality of a.

Case 2 Otherwise, there is d € pred4 g(b)\pred4 p(a). Just as in Case 1, find c € pred4 z(a)
such that mos(c¢) = mos(d). But, then ¢ € X and cRa is a contradiction to the minimality of a.
Therefore if R is extensional on A, then mosy r is injective.

(2) Straightforward. O

LEMMA 2.5. Assume € is well-founded and extensional on A. Let T' ¢ A be transitive. Then
mosyc(y) =y forall yeT.

PROOF. Suppose not. Then {y € T : mos(y) # y} has an e-minimal element. Now mos(a) =
{mos(y) :y e predy (a)} = {y:y €y} = a, which is a contradiction. O

LEMMA 2.6. (Transitive e-models are unique) Let A, B be transitive sets with A € WF. Let
f:(A,e) 2 (B,€) be an isomorphism. Then f =id4 and hence A = B.

PROOF. Let a € A and b= f(a). Then since A, B are transitive, we have

Vy(yeb < Jzea(f(z)=1y)).

Thus, f(a) = {f(z):x €a}. But, Ais well-founded and so f = mosa .. By the previous Lemma
f=1id and so A = B. O

REMARK 2.7. If two countable transitive models are isomorphic, then they coincide.
COROLLARY 2.8. Let A be a well-founded set and let B be a set such that
(trcl(A) u{A},€) = (trcl(B) u {B},¢).
Then A= B.

DEFINITION 2.9. Let k be a cardinal. Then H (k) = {z € WF : |trcl(z)| < k}. In particular,
HC = H(®;) denotes the set of hereditarily countable sets.

REMARK 2.10. In particular, HC = H(RX1) denotes the set of hereditarily countable sets and
HF = H(Rg) the set of hereditarily finite sets. Note that H(w) = R(w).

LEMMA 2.11. Let & be an infinite cardinal. Then |H (k)| = 2" and H(k) € R(k).
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PROOF. Let x € H(k) and let o = rank(x). Since trcl(x) is a transitive set, for each £ < «
there is z € trcl(x) such that rank(z) = £&. However, this implies that « = {rank(z) : z € trcl(z)}
and since |trel(z)| < k, we obtain « < k. Thus, in particular = € R(k).

We will show that [H (x)| = 2<% = sup{2* : A < &} in two steps. First we show that |H (k)| > 2<".
If A < K, then P(\) ¢ H(x), we get that |H(x)| > 2*. But, this is true for each A < x and so
|H (k)| >2°".

To see that |H(k)| < 2" consider the mapping F : H(k) — U{P(A x \) : XA < k} defined as
follows. Let z € H(k) and let A = |trcl(z) u{z}|. Thus A < k. Assuming the Axiom of Choice, we
can find F(z) € A x A such that (A, F/(x)) 2 (trcl(x) u {z},€). By Corollary 2.8, the function F'
is injective and so

|H (1) < [LU{P(Ax A) : A< k}| = sup2* = 2,
A<K

0

REMARK 2.12. If £ is an uncountable cardinal, then |R(k)| = 23,. By the above Lemma
|H (k)| = 2<" and so H(k) is much smaller than R(x). Note also that [HC| = 2% = 23; and
|R(w1)| = wr-

3. The Consistency of Foundation
We will make use of the following notation and theories.

REMARK 3.1.

(1) ZFC™ denotes the axiomatic system ZFC without the axiom of foundation;

(2) Z denotes the axiomatic system ZFC without the axiom of choice and without the axiom
of replacement;

(3) ZF-P denotes the axiomatic system ZFC without the axiom of choice and the power set
axiom;

(4) BST denotes the set {Axiom 1-5} u {Power set axiom v Replacememt}.

(5) If T is a sub-theory of ZFC then I'” denotes the same theory without the axiom of
foundation;

(6) In the discussion below all theories are extensions of BST™.

Our next goal is to provide a proof of the following statement.
THEOREM 3.2. Let I' be one of the theories ZF-P, ZFC-P, ZF, ZFC. Let I'" be
I'\{Aziom of Foundation}.

Then there is a finitistic proof of Con(I'") — Con(I"). That is if we can find a contradiction from
I', then we can find a contradiction from I'~.

3.1. Relative interpretation.

DEFINITION 3.3. Let A be a set of axioms in L. and let £ be a finite, conservative (only
defined notions are allowed) extension of Lc. A relative interpretation of £ is a class A definable
by a formula a(z) such that A + 3za(x) such that
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(1) for every n-ary function symbol f in £, where n > 0, there is a formula p(z1,-, 2y, y)
such that A+ Vaq--x, € Aly € Ap(Z,y) (thus, ¢ is the intended interpretation of f);

(2) for every m-ary predicate symbolp, where n > 0, there is a formula ¢(z1,---,x,) with
Fr(p) = {x1,-, x5} such that if @ = (ay,-++,ay) then a is in the intended interpretation
of p if and only if A - A7 a(a;) Ap(ar, - an);

(3) for every constant symbol ¢, there is a formula ¢ such that A + Jly(a(y) A p(y));

(4) for every 0-ary predicate symbol p, there is a closed sentence ¢ such that the intended
interpretation of p is true iff A + -~ and the intended interpretation is false iff A + .

REMARK 3.4. The above relative interpretation extends in a natural way to all terms and
formulas in the language, by substituting all non-logic symbols with their relative interpretations;
Vo with Vo € A and 3z with 3z € A. Relative interpretations are usually clear from context.

DiscussioN 3.5. Suppose A has a relative interpretation of £ in A.

(1) Whenever 1, ¢1, -+, ¢p are closed and {@1, -, ¢x} -9, then A - (o A A i) — A,

(2) Let T be a set of sentences and suppose for each ¢ € I', we have A ©*. Then the
consistency of A implies the consistency of I'. Indeed, if we can derive a contradiction
from I', then we can derive a contradiction from A.

3.2. Ap formulas.

DEFINITION 3.6.
(1) An e-model for L. is any structure 2 = (A, E) where E = {(a,b) e Ax A:aeb}(=€¥).
(2) A transitive model is any e-model the universe of which is a transitive set.

DEFINITION 3.7. Let A € B and ¢ a L-formula. Then a formula ¢ is said to be absolute
between 2 and ‘B if for every assignment o in A we have

AE o] iff BEp[o].

DEFINITION 3.8. Let £ be an expansion of L.. The set of Ag-formulas of £ is defined as
follows:

(1) All atomic formulas are Agp-formulas.

(2) if ¢ is a Ag formula, y is a variable, 7 is a term such that y does not occur in 7, then
Vy e T and Jy € T are Ap-formulas.

(3) If ¢ is a Agp-formula, then so is —¢p.

(4) If ¢ and 1 are Agp-formulas, then so are p Vb, p A, p = b and p < .

LEMMA 3.9. Let £ be an expansion of Lc and assume 2 € 98B are models of £, the universe A
of A is a transitive set and egy= {(a,b) € Ax A:aeb}, eg={(a,b) € Bx B:aeb}. Then all Ay
formulas of £ are absolute between A and 5.

PRrROOF. Induction on . The case in which ¢ is atomic is straightforward and so are the
inductive steps, regarding logical connectives. Assume p(Z,2) is

y(y e 7(Z,2)) Ap(Z,y,2)



36 2. FOUNDATIONS AND CONSTURCTIBILITY

where v is Ag and 2 <y, B. Since 2 is a substructure of B, we have that whenever a and c are
from A then 7%[a,c] = 72[a,c]. Then, by definition of the satisfaction relation we have:
Ak pla,c] iff Ibe A(ber[a,c]AAr=1pla,b,c]) by definition of ¢
iff Ibe B(ber®[a,c]ABE1pla,b,c]) since A=y B, m*[a,c]c AcB
iff B = pla,c] by definition.

0

ExAMPLE 3.10. Examples of formulas in £ which are logically equivalent to Ag-formulas:
(1) (zcy); Vz(z ex - z e y) is logically equivalent to Vz € z(z € y);
(2) x=@; Vz(z ¢ ) is logically equivalent to Vz € x(z # 2);
(B) y=S(z);xeyrzcynVzey(z=xvzex)
(4) y=vnuw: Ye(x ey <> x € vAxew) which is equivalent to (y SvAyCwAVrev(Vae

w(z €y)));
(5) Sing(x): JyeaVzex(z=y).

DEFINITION 3.11. A formula ¢ is said to be absolute for A if A<, V.

REMARK 3.12.
(1) If A has a relative interpretation of £, where £ is a finite extension of L¢ in A, then
Ap-formulas are absolute between 21 and 98, whenever 2 ¢ B and 2 is transitive.
(2) Let & = (x1,-+,x,) be an n-tuple of variables. Suppose ¢(z) and ¥ (z) are L-formulas
and Va(o(Z) < ¥(z)). Then M <, V ifft M <4 V. In particular, if M is transitive,
to show that a given ¢ is absolute for M, it suffices to show that ¢ is equivalent to a
Agp-formula.

LEMMA 3.13. Let M be a model of the Axioms of Extensionality, Comprehension, Pairing
and Union. Then g™, M nM are defined and if M is transitive then these are also absolute for
M.

3.3. Axioms 1-6 in WF.

LeEmMMA 3.14. (ZF~-P) If M is a transitive class, then the Axiom of Extensionality holds in
M.

PROOF. We have to show that VaVy(Vz(z € x < z € y) > x = y). We relativize this to M:
Ve e MVye M(Vz2 e M(z € x < z€y) > 2 =y). Now, fix x,y in M. Since M is transitive
x,y € M. Now, if Vz € M(z € x < z € y), then in fact we have Vz(z € z <> z € y) which by the
Axiom of Extensionality implies x = y. O

LEMMA 3.15. (ZF-P) If M is a class consisting of well-founded sets, then the Foundation
Axiom holds in M.

ProOOF. The Foundation Axiom states:

Vedy(yex) - Jy(yex n-Tz(zexnzey)).
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Relativizing the above to M we get:
Vee MIye M(yex)>IyeM(yexn-Fze M(zexnzey)).

Fix x € M and suppose Jyg € M such that yg € x. Since M consists of well-founded sets, x is
well-founded. Let p(x) be a first order formula defining M. Then A = {z € x : u(z)} is a set
(by the Axiom of Comprehension). Since x is well-founded, we can take y = mine A. Then since
y € A, we have u(y) and so y € M. Moreover, if 3z € M(z € x Az € y) then z would contradict the
minimality of y and so we are done. O

LEMMA 3.16. (ZF™-P) If Vz e MVy < z(y € M), then the Comprehension Axiom holds in M.
PRrOOF. Fix a formula ¢. The comprehension axiom for ¢ is:
VziyVae(z ey <z ez np(x))
Now ¢ = ¢(x, 2,20, -+, Tp-1) and we must show that
V2,20, Tpn1 € MIye MVz e M(z ey o x €z np™(z,2,1)).

By Comprehension in V, y = {z € z: oM (z,2,%)} is a set and y € z. By hypothesis y € M and so
the relativized instance of comprehension holds in M. O

LEMMA 3.17. (ZF™-P) If 2,y € M({z,y} € M) then the pairing axiom holds in M.
PROOF. Recall the Pairing axiom Vz,y3z(x € 2 Ay € ). Relativized to M this is
Ve,ye M3ze M(xezAyez).
Since by assumption for all z,y € M the pair {x,y} € M, we can just take z = {x,y} above. O
LEMMA 3.18. If VF e M(UF € M) then the union axiom holds in M.
Proor. Straightforward. g

LeEMMA 3.19. (ZF™-P) Suppose M is a transitive class and for all functions f the following
holds: if dom(f) € M and ran(f) € M, then ran(f) € M. Then, the Replacement Axiom holds in
M.

PRrROOF. Recall the Replacement Axiom: For each formula ¢ without B free:
VAVz e Alyp(x,y) - IBYx € Ay € Bo(x,y).

Let A € M. Now, suppose Yo € M(z ¢ A - 3ly e MM (z,y)). By Comprehension in V,
A={zeA:p(x)}is aset. We are given that Vo € Aly(oM (x,y) A u(y)), where again u(y) is
the defining formula for M. By Replacement in V, there is a function f such that dom(f) = A
and for all z € A, f(y) is the unique y such that ™ (z,y) A u(y). We extend f to a function f’
such that dom(f’) = A by defining f' 1 A= f and f'(y) = ap for each y € A\A, where ag € ran(f)
is fixed. Then dom(f’) = A e M, ran(f’) =ran(f) € M and so by hypothesis, ran(f") € M. Then,
take B =ran(f’). O

COROLLARY 3.20. (ZF™-P) Axioms 1 -6 holds in WF.

Proor. The sufficient conditions given in the previous six lemmas hold in WEF. g
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3.4. The Power Set Axiom, Axiom of Infinity and Axiom of Choice in WF. Recall
the Power Set Axiom: Va3dyVz(z € x — z € y). Since € is defined by a Ag formula in L, the
formula x € y is absolute for transitive classes.

LEMMA 3.21. (ZF™) Let M be a transitive class.

(1) If for all x € M, P(z) n M € M, then PSA holds in M.
(2) If (PSA)M and M satisfies Comprehension, then Ya € M(P(x) n M € M).

Proor. Note that (PSA)M is the formula
Vee MIye MVze M(zSx — z€y),

where we used absoluteness of €. To obtain (1) take y = {z € x : pu(z)} = P(z)n M € M. To
obtain (2) consider any x € M. By (PSA)M | there is y € M such that P(x) n M ¢ y. However
being a subset is absolute and so A={zey:zczApu(z)} =P(x)n M. O

COROLLARY 3.22. (ZF~) The Power Set Axiom holds in WF.

PROOF. Let x € WE. If z C 2, then z € WF (since a set of well-founded sets is well-founded).
Therefore P(z) n WF = P(x) e WF, where we also used the Power Set Axiom in V. Then by the
above Lemma, (PS’A)WF. O

LEMMA 3.23. (ZF™-P) Let M be a transitive class, such that Extensionality, Comprehension,
Pairing and Union hold in M.
(1) If w e M, then the Axiom of Infinity holds in M.
(2) The Axiom of Choice holds in M iff every disjoint family of non-empty sets in M has a
choice set in M.

PrOOF. (1) The Axiom of Infinity holds iff 3z(@ € x A Yy € y(S(y) € x)). Let ¢(x) be the
following formula: @ € 2 A Yy € 2(S(y) € z)). Thus, (Axiom of Infinity)™ iff 3z € M(p(x)M).
However () is Ag in the notions @, S, both of which are absolute for M. Thus ¢(z)M = ¢(z).
Since w € Mand o(w) holds, we get (AXiom of Infinity)™.

(2) Let df(F) be the following formula saying that F' is a non-empty set of pairwise disjoint
non-empty sets @ ¢ FAVr e F(z + @) AVr e FVye F(x #+y > xny = @) and let cs(C, F) be
the following formula saying that C' is a choice function for F, Vz € F(Sing(C nx)). Note that
both df(F') and cs(C, F') are Ay (as so are @, n, Sing) and so they are absolute for M. Therefore
(AC)M is equivalent to VF € M3C e M(df(F) - cs(C, F)). O

COROLLARY 3.24. (ZF™-P)
(1) The Axiom of Infinity holds in WF.
(2) AC = (AC)VE,

PROOF. (1) Since w € WF, the statement holds by the previous Lemma. To see (2) assume
AC and let F € WF such that df(F). Then by the Axiom of Choice there is a set C' such that
cs(F,C). Note that CnUF € WF is also a choice set for F and so again the statement holds by
the previous Lemma. O
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Now, we can prove Theorem 3.2.

THEOREM. Let I' be one of the theories ZF-P, ZFC-P, ZF, ZFC. Let I'" be
I'\{Axiom of Foundation}.

Then there is a finitistic proof of Con(I'") — Con(T"). That is if we can find a contradiction from
I', then we can find a contradiction from I'".

PROOF. We can work in I'” and using the above established results prove each axiom of I’
relativized to WF. g

3.5. Set models of large ZFC framents.

THEOREM 3.25. (ZF~) Let v > w be a limit ordinal. Then

(1) R(v) e ZF\{ Aziom of Replacement}.
(2) AC= R(~) = ZFC\{Aziom of Replacement}.

PROOF. (1) We proceed by discussing each axiom.

Eztensionality By Lemma 3.14, it suffices to show that R(7) is transitive. Suppose z € R(7)
and let y € z. Then rank(y) < rank(x) <~ and so y € R(y). Therefore x ¢ R(7).

Foundation Since R(vy) € WF, by Lemma 3.15 the Axiom of foundation holds in R(7).

Comprehension Let z € R(7y) be arbitrary and let y € z. Then rank(y) < rank(z) <~ and thus
y € R(v). By Lemma 2.3.16 it follows that the comprehension axiom schema holds in R(7).

Pairing Let x,y € R(vy) be arbitrary. Then rank(z),rank(y) < v and thus rank{z,y} =
max(rank(z),rank(y)) +1 <, by Corollary 2.1.23 and since « is a limit ordinal. Thus by Lemma
2.3.17 the pairing axiom holds in R(7).

Union Let F € R(7) be arbitrary. Then rank(F) < =, so rank(UF) < rank(F). Thus
UZF € R(v). By Lemma 2.3.18 it follows that the Union Axiom holds in R(7).

Infinity We have already shown that R(7) is a transitive class which satisfies Extensionality,
Comprehension, Pairing and Union. Furthermore, rank(w) = w <. Thus w € R(vy). By Lemma
3.23, it follows that the Axiom of Infinity holds in R(7).

Power Set Let € R(7) be arbitrary. Then rank(z) < 7, so rank (P(z)) = rank(z) + 1 < v
by Corollary 1.23.(3). Furthermore, rank (P(z) n R(7)) < rank (P(x)) < vy by Lemma 1.22. Thus
P(z)n R(v) € R(7y). It now follows from Lemma 3.22 that the Power Set Axiom holds in R(7).

(2) Let C be a choice set for F € R(7y). Consider C' = CnUF. Then rank(C’) < rank(U F) <
rank(F) < and is also a choice set for F. Thus the Axiom of Choice holds in R(7y). O

REMARK 3.26.

(1) If ¥ >w and R(y) £ Axiom of Replacement then v =2, and [{§ <v:0 =25} =7.
(2) If 7 is a successor ordinal then R(y) does not satisfy Pairing, as R(v) & JzVy(z ¢ y).

We will make use of the following Lemma:
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LEMMA 3.27. Let x,y be sets. Then
(1) if x e y, then trcl(x) ¢ trel(y),
(2) if x cy, then trcl(x) ¢ trel(y),

2)
(3) trcl({z,y}) = trel(x) U trel(y) v {z,y},
(4) trel(Ux) ¢ trel(z).

Proor. Straightforward. 0

THEOREM 3.28. (ZF~) Let k be a regular uncountable cardinal. Then

(1) H(k) & ZF\ {Power Set Aziom}.
(2) AC= H(k) = ZFC~ {Power Set Axiom}.

PROOF. (1) By the above Lemma and the various closure criteria, H (k) satisfies Extension-
ality, Foundation, Comprehension, Pairing and Union. Since w € H(k), Lemma 3.24 implies that
H(k) = Axiom of Infinity.

(2) Let C be a choice set for F € H(x). Then trcl(CnUF) ¢ trcl(F) and so trcl(CnUF)| < k.
Therefore CnUF € H(k). O

THEOREM 3.29.
(1) If k is a regular, uncountable cardinal and k is not strongly inaccessible, then the Power
Set Aziom is false in H(k).
(2) If k is strongly inaccessible, then R(k) = H(k) = Power Set Aziom.

PRrROOF. (1) By Lemma 3.21, it suffices to find « € H (k) such that P(z)nH (k) ¢ H(k). Since
% is not strongly inaccessible, there is A < x such that 2* > k. Let  := \. Then \ = trcl()\) and thus
A € H(k). Furthermore, for every y € P(x), y € A and so y € H(k). Thus P(x)n H(k) = P(z).
Finally, we have & < 2* = [P(\)] < |trcl(P(N\))], and so P(x) ¢ H(x). Therefore H(x) does not
satisfy the Power Set Axiom. O

THEOREM 3.30. (ZF ) HF = R(w) = H(w) & ZFC\{ Aziom of Infinity}. In fact, the Aziom
of Infinity is false in HF.

PROOF. Let p(xg) be the formula @ € z A Vy € 2(S(y) € x). However, there is no xg € HF
such that ¢(x¢). Therefore the Axiom of Infinity does not hold in HF'. To see that the Axiom of

Choice holds in HF', note that HF' can be well-ordered and so every non-empty set of pairwise
disjoint non-empty sets has a choice function. O

4. Elementary Submodels and Definability
4.1. Tarksi-Vaught and Lowenheim-Skolem. Recall the following:

LeMMA 4.1. (Tarski-Vaught) Let 2, 9B be structures. The following are equivalent:
(1) A=<B
(2) For all existential formulas ¢(z) of £, i.e. formulas of the form Jyi(z,y) and all a from
A: if B = p[a], then there is b € A such that B = ¢[a,b].
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LemMA 4.2. (Downward Lowenheim-Skolem Theorem) ZFC™ Let B be a L-structure and let
k be such that max(|£|,Ro) < x < |B]. Let S ¢ B, |S| < k. Then, there is 2 < B such that S c A
and |A| = k.

PROOF. Let ¢ be an existential formula with n free variables (z1,---,zy). Let Z = (z1,-, xy).
Thus ¢(Z) is of the form Jyi(y,z). Define a function f,: B" - B as follows: if B & p(a) for
some a € B", then 3b € B such that B = 1[b,a]. For each a choose such b € B and define f,(a) = b.
If for a given a there is no such b, then pick an arbitrary element of B.

Let F = {f, : ¢ is existential in £}. Then |F| < & since |£| < k. Take any S’ such that
S c S’ ¢ B such that |S’| = k. Now take A to be the closure of S” under F. That is A = Upe, Sy,
where Sy =5, S =5"u{f,(a):ae[Sy]*}, Sy =S, U{fo(a):ae[S),]“}. Then |A]| =k,

It remains to show that A is the universe of an elementary substructure of B, which is
straightforward with the use of the Tarski-Vaught Criterion. g

EXERCISE 2. (ZFC™) Let v > wy be a limit ordinal. Show that there is a countable, transitive
model M and ordinals a, 8 € M such that M = R(v) and (a ~ 8)M is false, while (a ~ 8)7() is
true.

Hint Let A be a countable set such that w, wy are in A and A < R(7y) (take for example the Skolem-hull
of any countable set Ay € R(7) which contains w,w;. Consider the Mostowski Collapse M of A.

4.2. Definable Subsets.

DEFINITION 4.3. Let A be a structure for £ with Pc A. Fix k> 0.

(1) S ¢ AF is definable over 2 with parameters in P iff 3n > 0 and there is a formula
o(x1, Thy Y1, Yn ) of L with k+n free variables such that for some b = (by,---,b,) € P,
S={aeA":AEplay, -, ak, b1, by]}.

(2) S ¢ A¥ is definable over 2 with parameters iff S is definable over 2 with parameters in
A and S is definable over 2 without parameters iff S is definable over 2l with parameters
in @.

(3) For a € A, we say that a is definable with or without parameters in P if {a} is definable
with or without parameters in P.

EXAMPLE 4.4. Note that P(R) = 2 = 22 Since L. is countable, there are only RXo-many
subsets of R which are definable without parameters and |[R<“| = |R| = ¢ = 2% many subsets of R
which are definable with parameters. Recall that R = U, R™.

REMARK 4.5.

(1) Let P be a set of parameters in 2(. If every element of P is definable over 20 without
parameters, then every set definable with parameters in P is also definable without
parameters.

(2) Every heraditarily finite set a is a definable element of HF. Every subset of HF which
is definable with parameters in HF is definable also without parameters. The definable
subsets of HF are called arithmetical.
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DEFINITION 4.6. Let A be a set and P ¢ A. Then
(1) D(A,P)={X:X c A, X is definable over (A,¢) with parameters from P}.
(2) D*(A)=D(A,A), D~(A) = D(A,2).
(3) If D*(A) = D™ (A), then we denote them by D(A).
(4) D(2) = D*(2) = D™(2) = {2}

REMARK 4.7. Note that every finite subset of A is in D*(A). Indeed, if a = {b1,--,b,} then
a is definable via the formula z =y v - vz = y,.

5. Absoluteness and Reflection

From now on, except explicitly stated otherwise, we assume the Axiom of Foundation and
thus, unless explicitly stated otherwise, we work in ZFC. Recall that the following are transitive
models of BST: R(y) for v >w and H (k) for k regular uncountable.

LEMMA 5.1. Each of the following notions is given by a formula, which is equivalent to a Ag
formula in BST. Thus, each of those notions are absolute to transitive models of BST:
(1) = is a transitive set;
2
3

(2) « is an ordinal, z is a successor ordinal; x is a limit ordinal
(3) «
(4) xisa natural number;
() «

5

LEmMA 5.2, If M is a transitive model of BST then the following are absolute for M:
(1) @, S, n (2-ary intersection function), U (2-ary union function),
(2)

(3) The ternary relation {z,y} =z

(4) The 2-ary unordered pairing function {z,y}, the 1l-ary singleton function {x}, the 2-ary

l-ary union and intersection given by n@ = @ and ug = &

ordered pairing function (z,y).
(5) The properties; z is an ordered pair; x is a relation;
(6) dom(x), ran(x)
(7) The properties f is a function, f is an injection, f is a surjection, f is a bijection.
(8)
(9)

9

The binary relation x x y.
All relational properties of a relation R on a set A: R is transitive, reflexive, irreflexive,
trichotomy, symmetry, partial order, total order, equivalence relation.

LeMMA 5.3. HC is a model of ZFC-P together with the statement that all sets are countable
and the statement that P(w) does not exist.

PrOOF. Recall that HC = H(R1) = {x : [trcl(x)| < R;}. Observe that
Vx e HCIf e HC(f : 2 » w)
is injective. However being an injective function is absolute and so

Vo e HC3f e HO(S : o < w)HC.
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Thus (All sets are countable)HC.
If HC = P(w) exists, then by the above observation HC £ 3f : P(w) < w. By absoluteness,
this gives that P(w) is countable, which is a contradiction. O

LEMMA 5.4. The function o+ 8 and « - 3 are absolute for transitive models of ZF-P.

PROOF. If M is a transitive model of ZF-P with a, 8 € M then a+™ 8 and o-™ 3 are defined.
Let v = a-™ 3. We want to show that v = - 8. Let f € M be such that

ME f:(8xa,<pex) 2 (7,€).

Being a lexicographic order, and being an isomorphism are absolute and so

f : (/8 X a7<1eX) = (’y,e).
But then v = a- 3 = type(3 x o, <jex ). The proof for a +M 3 is similar. O

LEMMA 5.5. The notions “R well-orders A” and “R is well-founded on A” are absolute for
transitive models of ZF-P.

PROOF. Let M be a transitive model of ZF-P. Being a total order is absolute, so we will
verify the absoluteness of being a well-founded.

Let A, R be such that R is a well-order on A suppose A, R are elements of M. We have
to verify if M £ (R is a well-order on A). Suppose this is not the case. Let (A, R, X) be the
formula

XcAAX +#3AX has no R minimal element,

which is the same as

XCAANX +@BAVze XTye X(yRx).
Since by hypothesis (R is not well-founded on A)M | then 3X e M such that (¢¥(A, R, X))™. But
P(A, R, X) is absolute and so (A, R, X) is true, contradiction to R being well-founded on A.

Suppose (R is well-founded on A)M. Now, since M & ZF-P, then M & (3 a rank function).
That is there is ® € M such that

M & (@ is a function,dom(®) = A, Vo € A®(z) € ON,zRy - ®(z) < ®(y)).

The above statement is absolute and so there is such a function in V. Therefore R is well-founded
on A. Indeed, if X ¢ A, then any a € X with ®(a) = min{®(z) :z € X} is R-minimal in X. O

COROLLARY 5.6. The properties “ R well-orders A” and “R is well-founded on A” are absolute
for R(~y), for any limit ~.

LEMMA 5.7. Let M be a transitive model of BST. Then:
(1) [M]*cM
(2) HF c M
(3) <“M c M.
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ProOF. (1) Consider the function f : (z,y) —» x U {y}. Then f is absolute and moreover
if 2,y € M then f(x,y) € M. Note that M < M. For each z,y € M, the pair {z,y} € M by
absoluteness of the pairing function. Note that z € [M]"™ iff z = z u {y} = f(z,y) for some
x € [M]" and y € M\z. Now, if we assume that [M]® ¢ M then by absoluteness of f, whenever
x,y € M we have also f(z,y) =2z u{y} € M and so [M]"" c M.

(2) By induction on n, we can show that R(n) ¢ M for each natural number. Thus HF c M.

(3) Recall that ““M = U{f :n - M : f is a function, n € w}. For each such f note that f is a
finite subset of M and so by (1), fe M. O

REMARK 5.8. Let Fin(z) be the formula 3In, f(nat(n) A bij(f,n,x)) and let HrdFin(z) be
the formula In, t, f(x St Atran(t) Anat(n) Abij(f,n,t)), where tran(x) says that x is transitive,
nat(z) says that x is a natural number and bij(f,z,y) says that f is a bijection from x onto
y. Thus, Fin(z) says that z is finite and HrdFin(x) says that = is hereditarily finite. Note that
Fin(z) and HrdFin(z) are absolute for transitive models of BST. Indeed, fix M transitive model
of BST. Then:

e Suppose x € M and M & Fin(z). That is M = In3f € M (nat(n) Abij(f,n,z)). However
nat and bij are absolute and so x is finite.

e Suppose Fin(x). Thus there are n and f such that nat(n) Abij(f,n,z). Suppose x € M.
Now n € M and since M is transitive also x € M. Thus fe”x c™M c M (by item (1)
of the previous Lemma). Thus f € M and so (Fin(z))™.

The proof that HrdFin(x) is absolute is similar.
COROLLARY 5.9. The following are absolute for transitive models of ZF-P:the 0-ary function

HF; the 0-ary function w; the l-ary function [z]** and ““z. So if M is transitive and M £ ZF-P
and x € M then all finite subsets of x are in M and all finite tuples of x are in M.

5.1. Absoluteness of recursively defined notions.

THEOREM 5.10. Let A be a defined class, R a defined 2-ary relation on A which is well-founded
and set-like, and let G be a defined 2-ary function. Let F be a defined 1-ary function such that

Vae A(F(a) =G(a,F 1 (al))

and F(a) =@ for a¢ A. Let M be a transitive model of ZF-P such that R, A,G are absolute for
M, (R is set like on A)YM and for all a € M, a |= predg(a) € M. Then FM(a) is defined for all
a€M and F is absolute for M.

Proor. Note that (R is well-founded on A)M and since predg(a) = (predg(a))™ for each
a e M, also (R is set-like on A)M. The existence and uniqueness of F' were proved in ZF-P and
so FM is defined. Suppose there is a € M such that FM(a) # F(a) and pick a which is R-
minimal in {z € M : FM(2) # F(z)}. Then since (predg(a))™ = predg(a) and Vz € predz(a),
F(z) = FM(z), we obtain that F™ } (predz(a))M = F 1 (predg(a)) and so
FM(a) = G(a, FM } (predg(a))™) = G(a, F | predg(a)) = F(a),

which is a contradiction. O
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COROLLARY 5.11. The functions o + 8, a - 3, &, rank(z), D(A, P), D*(A) and D~(A) are
absolute for transitive models of ZF-P.

5.2. Upwards and downwards absoluteness.

DEFINITION 5.12.

(1) A formula ¢ is 31 iff ¢ is of the form Jyp---Jy, 1 for some n >0 and ¢ which is Ag.
(2) A formula ¢ is IT; iff ¢ is of the form Vy;---y,1 for some n >0 and ¢ which is Ay.

LEMMA 5.13. Let M be a transitive model of BST. Consider an extension L. in which all
new non-logical symbols are absolute for M. Let ¢(z) and 1(Z) be a ¥; and a II; formulas in £
where T = (x1,-+,2,). Then for all a e M™:

(1) if ¢™(a) then ¢(a) (upwards absoluteness);
(2) if ¢ (a) then ™ (a) (downwards absoluteness).

PROOF.
(1) Let ¢(a) be of the form Jy;---Iyp)(Z,7) where ¥ is Ag. If ™ (@) holds, then there are
by, by in M such that 1™ (a,b) where b= (b1, by). However v is Ag and so ¢(a,b) holds as
well. Therefore ¢(a) holds.
(2) Let ¢(a) be of the form Vy;---Vyrt)(Z,y) and suppose ¥ (a) holds for some a in M. Thus,
whenever b = (by, -, b,) € M¥ we have that 1(a,b). However by absoluteness of 1) we have that
YM(@,b) and so M e (a). O

EXAMPLE 5.14.

(1) Note that “R is well-founded on A” can be expressed by a II; formula in absolute notions
and so it is downwards absolute. On the other hand “R is well-founded on A” can be
expressed by a Xj-formula in absolute notions, 3®(® is a rank function) and so it is
upwards absolute.

(2) Being countable is upwards absolute for transitive models of ZF-P. Indeed, given a set
x the formula 3f : x < w says that x is a countable set. Thus, being countable can be
expressed via a ¥p formula in absolute notions (for transitive models of ZF-P). Note
that being countable is not necessarily absolute.

5.3. Reflection Theorems.

THEOREM 5.15. (Tarski-Vaught Criteria for Classes) Let po, 01, ¢n-1 be a sub-formula
closed list of formulas, i.e. for each i € n every subformula of ¢ appears in this list and no formula
uses universal quantifier. Let A C B be classes, A non-empty. The following are equivalent:

(1) forallien, A<, B
(2) if pi = pi(x1,-,zy) is an ezistential formula of the form 3yp;(Z,y), then for all a =
(a1, a,) € A" we have (pP(a) - e Agof(d,b)),

PROOF. (1) = (2) Fix ¢;, a € A". Then since A <, B, we have that ¢P(a) - p(a). By
definition of ¢; we get b € Acpf(c‘z). But ¢; is also absolute and so we have 3b € A(ij(d).
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(2) = (1) We proceed by induction on the length of the formulas appearing in the given list.
Consider ¢; and assume for each ¢; such that ¢; is shorter than ¢; the claim holds, i.e. ¢;
is absolute between A and B. Atomic formulas, as well as formulas obtained via logical con-
nectives from formulas which are absolute, are absolute. Thus suppose ¢; = Jyp;(a,y) and let

a=(ay,,a,)€ A" Then

¢P(a) - 3be BpP(a) > I e ApP(a,b) > b e Ap?(a,b) - ¢f,
where in the second implication we used (2) and in the third implication we used the inductive
hypothesis on ¢;. On the other hand:

o' > Ibe Apf(a,b) > Ibe ApP(a,b) - Ibe BoF (a) » ¢ (a),

where the second implication used the absoluteness of ¢; and the third implication used the fact
that A is a subclass of B. O

THEOREM 5.16. (Reflection Theorem) Let g, @1, on-1 be any list of formulas of Le, B a
non-empty class and V& € ON let A(E) be a set. Further, assume that:
(1) if € < then A(E) < A(n),
(2) A(n) = Ugey A(§) for limit n,
(3) B =Uecon A(E). Then YE3In > & such that n is a limit, A(n) + @ and for each i € n, ;
is absolute between A(n) and B.

Proor. Without loss of generality g, -+, ¢n-1 is subformula closed and none of the formulas
contains universal quantifiers. Indeed, we can always extend the list by adding all subformulas and
substitute each universal quantifier “V” with “=3". What we want to do is: climb up the hierarchy
to gather all the witnesses! For each existential formula ¢;(x) of the form Jyp;(z1, -, n,;,y)
define F; : B™ — ON as follows:

. [min{¢:3be A(Q)pB(a,b)} if pP(a) holds
Fi(a) =
0 otherwise.
Now, for each & € ON define

Gi(&) =sup{Fi(a1, -, an,) 1 a = (ar, -, an,) € (A§))"}
and let
K(§) = max{{ + 1, max G;(£)}

where G;(&) = 0 if p; is not existential. Thus K () is the least ordinal greater than & such that
A(K(&)) contains all witnesses to existential formulas with parameters in A().
Fix £ and recursively define an increasing sequence ((,)new as follows. Let

Co=min{C:(>&AAC) + @}
and for each n, (441 = K({,). Then take n = sup;., ¢;- Then A(n) contains all witnesses to
existential formulas (from the given list) with parameters in A(n), i.e.

Ep: (A(m)™ — A(n).
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But, then by the Tarski-Vaught Criteria we have have that for all 4, A(n) <., B. O

COROLLARY 5.17. Let A = {¢q, -, pn-1} be a finite set of axioms of ZF. Recall that Z is the
set of all Axioms 1-8, except the Axiom of Replacement and ZC is the set of all Axioms 1-8, again
except Replacement. Then:

(1) ZFC+ In(R(n) EZUA)
(2) ZFCr 3In(R(n) e ZCuUA)
(3) ZFCHIM(M  ZCUA AN |M| =Rg A M is transitive).

REMARK 5.18. In particular, A might be finitely many instances of Replacement.

PROOF. (1) - (2). By the Reflection Theorem there is > w limit such that for each i € n,
R(n) <y, V. Since for each i, ¢; is an axiom, (¢;)" and so R(n) & ¢; for each i. Recall that ZF~
proves that R(n) = Z (i.e. ZF~ + R(n) & Z) and respectively ZEC™ proves that R(n) = ZC. But
then ZF - R(n) E Zu A and ZFC + R(n) E ZCUA.

(3) To obtain a countable, transitive model for ZCuU A find a countable elementary submodel
N of R(n) (using a Skolem hull, i.e. gathering existential witnesses) and take M = mosfy .,y . N.
Then M 2 N and so M = ZCUA.

COROLLARY 5.19. Let A = {pq, -, pn-1} be a set of L-formulas. Then
ZFCHIC(C=EZCA|C|=Ro A /\jm)gp]C < ;.

ProOF. Use Reflection to find a limit 7 > w such that Aj<, R(7) <, V and the Downwards-
Lowenheim-Skolem Theorem to get a countable elementary submodel C' of R(7). O

THEOREM 5.20. (ZFC) Lel k > w be a regular cardinal and for each & < k, let A(E) be a set
such that:
(1) if & <n then A(€) € A(n)
(2) A(n) = Ugey A(E) for limit n <k
(8) |A(§)| < k for all £ < k and |A(K)| = k.
Then V¢ < k3n such that € <n <k, 1 is a limit, A(n) # @ and A(n) < A(k).!

PROOF. Let {y;}iew enumerate all existential and all quantifier free Lc-formulas. For each ¢
such that ; is existential, define
Ey: (A(k))™ = K,

where ¢; = 3yp;(Z,y) and = = (zo,-, Tpn, ,) and T = (xg, -, Tn, , ) just as before, i.e.

Fi(a) - {min{c <riIbe AP (@b)) it Alw) = oi(a)

0 otherwise
and let
Gi(€) = sup{Fi(ai, - an,): (a1, an,) € (A())™} if ¢; is existential
’ 0 otherwise.

IHere we consider the sets A(£) as e-models for Le.
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Since |A(&)| < k for all £ < Kk and & is regular, we obtain G;(§) < k for all £ < k. Define

K (&) =max{&+ 1,sup{G;(§) i <w}}.

Then since k is regular, uncountable, K (§) <  for all £. Just as in the Reflection Theorem take
Co=min{(¢:(>& A(C) + @} and for all n > 0, define (,+1 = K((,). Then n =lim, ¢, is as desired
(indeed, since k is regular, n > k). O

COROLLARY 5.21. (ZFC) If k is strongly inaccessible, then
{n<r:R(n) =< R(x)}

is unbounded in k.

6. The Constructible Sets

Consider Le. Let A be a set and let P ¢ A. Recall the definitions of D(A, P), D*(A) =
D(A,A), D~(A) = D(A,2) and D(A).

DEFINITION 6.1. (The Constructible Hierarchy) Define L(J) recursively on ¢ € ON as follows:
(1) L(0) = 2,
(2) L(B+1) = D*(L(B)),
(3) L(7) = Ua<y L(a) for limit ~.
Then L = U{L(«) : « € ON} is called the Constructible Universe.

LEMMA 6.2.
(1) For each ordinal o, L(«) € R(«).
(2) For each oo € ON, L(«) is a transitive set.
(3) For each «, 3 € ON such that a € 8, L(a) € L(3).
(4) For each a € ON, L(5)nON = g.

PrROOF. (1) We proceed by induction on «. Note that L(0) = R(0) = @. Suppose L(«) ¢
R(a). Then L(aw+1) ¢ P(L(a)) € P(R(ew)) = R(av+1). If v is a limit and for all § < 7,
L(B) € R(B), then U<y L(B) € U<y R(B).

(2) Again we proceed by induction on a. If @ =0, or « is a limit and V3 < a, L(3) is transitive,
then clearly L(«) is transitive. Thus, suppose L(f3) is transitive and let b € L(5 + 1). Then
bc L(B), as b is a definable subset of L(/3). However:

Claim: L(8) c L(5+1).

Proof: Indeed. Let c € L(3). Then by hypothesis, ¢ ¢ L(8) and furthermore ¢ = {z € L(8) : z € ¢}.
Thus, ¢ is definable over L(/3) with parameter the set ¢, i.e. ce L(5+1). O
But, then since b L(8) and L(B) € L(B8+ 1), we obtain bc L(5+1), i.e. L(8+ 1) is transitive.

(3) Fix @ € ON. By induction on § > «, we will show that L(«) ¢ L(B). Well, if 5 = «, then we
are done. Suppose >« and L(«) € L(B). Since L() € L(B+1), we obtain L(a) € L(B+1). If
>« is a limit, then since L(3) = U,<g L(7), we obtain directly that L(a) ¢ L(3).
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(4) Note that ONn L(w) = ONNn R(w) = HF N ON = w. If v is a limit and for all a < 7,
ONnN L(a) = a, then ON N Ug<y L(@) = Uacy @ = . Thus, consider the successor case. Note that
L(B+1)nONcR(B+1)nON=+1=pU{f}.
Thus, it is sufficient to show that e L(S +1). However
B={acL(8): L(B) & plal}.

where ¢ is Lc-formula saying that a is an ordinal. Thus § is definable over L(/3) and so ( €
L(B+1). O

REMARK 6.3. Note that for each set x, rank(z) = « iff z € R(aw+ 1)\R(«r). We will define an
analogous notion of an L-rank, denoted by p.

DEFINITION 6.4. For x € L, the L-rank of =, denoted p(x) is the least a such that x € L(a+1).

REMARK 6.5. Note that for each a € ON, we have L(a) ={z € L: p(z) < a} and
L(a+1)\L(a) ={xz e L: p(x) = a}.

LEMMA 6.6. For each a € ON, L(«) € L and p(L(«)) = p(«) = a.

PROOF. Note that L(a) = {z € L(a) : (z = 2)X®}. Thus L(a) € D™(L()) € Lo+ 1)(=
D*(L(«))). On the other hand L(«) ¢ L(«), just because L(«) is a set and so p(L(«)) = .

Since L(a) N ON = a, we have o ¢ L(«) (otherwise we would obtain « € «, which is a
contradiction). Also, a+1=au{a}c L(a+1) and so a € L(a+1). That is a € L(a + 1)\L(«)
and so p(a) = a. O

LEMMA 6.7. Every finite subset of L(«) is in L(a+ 1).
Proor. Let Ae[L(a)]*. Thus A= {ai,---,an} for some n € w and a; € L(a). Then
A={rel(a): L(a) & p(x))
where ¢(x) is the formula z =ay v - v = ay,. O
LEMMA 6.8. L(a) = R(«) for all & <w and L(w + 1) is a proper subset of R(w +1).

PROOF. Since every finite subset of L(n) is in L(n + 1), we obtain that L(n) = R(n) for all
n € w. But, then

L(w) = U L(n) = Rw) = U R(n).

new new
Now consider L(w+1) and R(w+1). While R(w+1) = P(R(w)) is uncountable, the set L(w+1)
is countable (because there are only countably many formulas). O

LEMMA 6.9. Assume AC. Then |D*(A)| = |A| for all infinite A.

PrOOF. For all a € A, {a} € D*(A). Indeed, {a} = {x € A: (A,€) E x = a}. Thus |A| <
|D*(A)|. On the other hand
DT (A)| < [[A]™]- R0 = |A],

since there are |[A]*“|-many sets of parameters and only Rp-many formulas. O
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LeEMMA 6.10. Assume AC. Then |L(«)| = |a| for all a > w.

PROOF. By induction on a. If @ = w, then L(a) = R(«) = HF and so |L(w)| = |w| = w.

Suppose |L(a)| = |a|. Now |L(a+ 1)| =|L(a)| = | = |a + 1| because a > w and there are only
Rg-many formulas.

Suppose 7 is a limit and |L(a)| = |af for all a <. Then, |[L(7y)| = |Ua<y L(a)| < . However
v L(y) and 50 [y] < [L(1)]. Thus |y| = [L(7)]. 0

REMARK 6.11. Thus, |L(w1)| = w1, while |[R(w1)| = 2w, - That is L(w;) is much smaller than
R(w1).
6.1. ZF holds in L.

LEMMA 6.12. Suppose x,y € L. Then:

(1) {z,y} e L, p({x,y}) = max(p(z),p(y)) + 1
(2) (x,y) € L and p({z,y)) = max(p(z), p(y)) +2
(3) Uz e L and p(Up) < p(z),

(4) zuye L and p(zuy) <max(p(z),p(y)).

ProOOF. (1) Let a = max{p(x),p(y)}. Thus z,y € L(a+ 1) and {z,y} ¢ L(«). Therefore
{z,y} ¢ L(a+1), since L(a+1) is transitive. However {x,y} € D" (L(a+1)) and so {z,y} € L(a+2).
Therefore p({z,y}) = a+ 1.

(2) Since (z,y) = {{z},{z,y}}.
(3) Let € L and let a € ON such that x € L(a+ 1) = D" (L(«)). Thus, there are by, b, in
L(«) and a formula ¢ such that

x={aeL(a): L(a) = pla,br, -, by]}.
But, then z e Uz iff z € L(a) and L(«) E Jv(z € v Ap[v, by, by ]), 1.€.
Uz={z¢L(a): L(a) Ev(z cvAp[v,bi,-,by])}.
Thus Uz € D*(L(«)) = L(a + 1).
(4) Straightforward from (3). O

LeMMA 6.13. If M be a transitive class such that the Comprehension Axiom holds in M and
moreover for every subset x € M there is a set y € M such that x € y, then then all axioms of ZF
hold in M.

Proor. Recall that we are working in ZFC.

Extensionality and Pairing Since M is a transitive class, the Axiom of Extensionality holds
in M by Lemma 2.3.14. Since M € WF, the Axiom of Foundation holds in M by Lemma 2.3.15.

Pairing Suppose x,y € M. Then {z,y} € M, so by assumption there is z € M such that
{z,y} € 2. Since M satisfies every instance of Comprehension, the following set is in also in M:

2= {fwez:w=zvw=y} = {z,y}
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Thus the pairing axiom holds in M by Lemma 2.3.17.

Union Suppose F € M. Since M is transitive, we have UJF € M, and so by assumption there
is y € M such that UF cy. Since M satisfies every instance of comprehension, the following set
is also in M:

UF = {zey:3AeF(zeA)}.
Thus the union axiom holds in M by Lemma 2.3.18.

Infinity Note that by assumption, M is necessarily nonempty since @ € M so there is y € M
such that @ ¢ y. By Comprehension, we have @ € M. Furthermore, by Comprehension, Union
and Pairing, we can define the successor function on M. Since & € M and M is closed under the
successor function, we have w ¢ M. By assumption, there is some y € M such that w € y. By
applying comprehension to y, we get that w € M. Finally, by Lemma 2.3.23 it follows that the
axiom of infinity holds in M.

Power Set Let © € M be arbitrary. Then P(x) n M ¢ M, so by assumption there is y € M

such that P(z) n M ¢ y. By comprehension the following set is also in M:
Px)nM = {zey:zcz}
By Lemma 2.3.21 it follows that the Power Set Axiom holds in M.

Replacement We will use the criterion in Lemma 2.3.19. Suppose f is a function, dom( f) € M
and ran(f) € M (note: we are not assuming that f € M or f ¢ M, although these things will
follow from the other assumptions). By assumption we can take y € M such that ran(f) c y.
By the other axioms we have already checked for M (including Power Set), it follows that M is
closed under taking Cartesian products of sets. Thus dom(f) xy € M and P(dom(f) xy) € M.
However, f € P(dom(f) xy), and so f € M since M is transitive. Now since f is in M, we can
recover ran( f) by applying comprehension in M to y:

ran(f) = {xey:3z such that (z,z) € f}
Thus ran(f) € M. O

THEOREM 6.14. All axioms of ZF hold in L.

PROOF. By the above Lemma, since L is transitive, it is sufficient to show that

(1) the Comprehension Axiom holds in L.
(2) for every x c L, there is y € L such that = c y.

To see (1) consider an arbitrary formula ¢ such that y ¢ Fr(¢). We have to show that:

Vz,v0,Up-1 € LAy e LNz e L(x ey <> x € 2 A goL(x,z,TJ))

Now, fix 2,00, -, Vp-1 in L and let 3 := {x € z: o¥(x,2,7)}. We have to show that y € L. Find «
such that z,vg,-,vp-1 are in L(a) and B> a such that L(3) <, L (use Reflection). Then

y={zeL(B): v "D (z,2,0)} e D*(L(B)) = L(B+1) € L,

where ¥(z, z,0) is the formula p(z,2,0) Az € 2. O
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6.2. The Axiom of Constructibility in L. The Axiom of Constructibility is the assertion
V =L, i.e. the assertion that Vz3d(x € L(J)).

LEMMA 6.15. If M is a transitive model of ZF-P~, then the function L(d) is absolute for M.
That is V6 € ONn M (L(6)M = L(5)).

PRrROOF. By absoluteness of recursively defined functions. O
COROLLARY 6.16. The Axiom of Constructibility holds in L.

PROOF. We have to show that (Vz35(z € L(5))*)¥. That is, we have to show that Vo e L35 €
ONL(z € L(8)*), which is true by the definition of L. O

DEFINITION 6.17. Let M be a transitive set model. Define o(M) = M nON to be the set of
ordinals in M. Thus, since M is transitive, o(M) is the first ordinal not in M.

LeMMA 6.18. If M is a transitive, set model of Pairing, Union and Comprehension, then
o(M) is a limit ordinal.

PROOF. Let a € o(M). Then a+ 1 = au {a} can be defined using only Pairing, Union and
Comprehension. Thus, a + 1 € o(M). O

LEMMA 6.19. Let M be a transitive set model of ZF-P. Then M is a model of the Axiom of
Constructibility if and only if M = L(o(M)).

PROOF. (<) If M = L(o(M)), then Vo e M36 € ONn M(=o(M)), such that x € L(§). But
ze L(6) iff (x e L(6))M and so M & VYz35(x € L(0)), i.e. M e (V =1L).
(=) Thus, suppose M £V = L and M is transitive. Let v = o(M). Then by absoluteness of L(J)
for 6 <, we obtain L(9) € M for each § <. Therefore L(y) € M. On the other hand M =V = L,
ie. M EVxIé(x e L(6)), ie.
Vo e M3se M(ze L(5))M

and since L(0) is absolute, we obtain
Va e M3deo(M)(x e L())
and so M ¢ L(y) = Us<y L(6). Thus M = L(v). O

6.3. Axiom of Choice and GCH in L. We know, that L = ZF + V = L. Thus, to show
L = AC + GCH, it is enough to show that ZF +V = L £ AC A GCH.

DiscussioN 6.20. We can assume that for all symbols of L¢, and so all formulas, are here-
diatrily finite sets. Let F € w x w be defined via (m,n) € E iff 2 does not divide 'm2™ ,, where
/m27", denotes the greatest integer less than or equal to 5. Let I': R(w) — w be defined by
[(y):= 2{2"®) : 2 € y}. Here are some examples:

I(2)=>2=0T(1)=T({z})=2"=1,I'({1}) =2" =2, etc.

Then I': (R(w),€) = (w, E) (is an isomorphism) and I'" = mos,, gy is the Mostowski collapsing
function on (w, E).
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DEFINITION 6.21. Consider the language L of set theory.
(1) List all variables {v; :i e w} so that Vi, (i <j - IT'(v;) <I'(vj)).
(2) A formula ¢ is said to be good, if there is n € w such that Fr(y) = {vg, -, v, }.
(3) List all good formulas {¢; : i € w} so that Vi,j(i <j = T'(¢;) <I'(gj)).
(4) For ¢; a good formula, let n; + 1 denote the number of its free variables.

DEFINITION 6.22.

(1) Let A+ @, i ew and be A™. Define D(A,4,b) to be the set definable over (A, ¢€) from
the formula ; with parameter b. That is

D(A,i,b)={aecA: Ak ©ilbo, -+, bpn,,al}.

(2) Note that D*(A) = {D(A,i,b) :i €w,be A"}. Then for S € D*(A), define i(S) to be
the least index 7 such that S is definable from ¢; with some parameter b e A™. That is
i(S) is the least ¢ such that S = D(A,i,b) for some b e A™.

(3) For A+ @ and R a well-order on A, let R(™) be the induced lexicorgraphic order on A™.
That is for by # by, where by = (b}, bL) and by = (bl, - b2), we have that b'R(™p? if
b;Rb?, where j = min{i : b} # b?}. Now, for S € D*(A) let p(S, R) be the R™(5)-least
parameter b € A"i(5) such that S = D(A,i(S),b).

(4) Define a well-order W = W (A, R) on D" (A) as follows: S;W Sy iff either i(S1) < i(.S2),
or i(Sy) =i(S2) and p(S1, R)R")p(Se, R).

(5) Since D*(@) = {@} = {@}, the empty order is the only well-order of @ and of {@}. Thus,
define W(@,2) = @ and if R is not a well-order of A, then W(A,R) = @.

LEMMA 6.23. W (A, R) is a well-order of D*(A).

DEFINITION 6.24. By recursion on the ordinals, define a well-order <5 on L(J) x L(4) as

follows: @ <5 y iff p(z) < p(y), or p(z) = p(y) and (z,y) € W(L(p),<,) where p = p(x) = p(y)*.
Extend these relations <5 to a relation <y, on all of L as follows:

z<pyiff  p(z)<p(y), or
p(z) = p(y) and x <,.1 y where p = p(z) = p(y).
THEOREM 6.23.
(1) <r is a well-order of L.

(2) <s=<p n(L(5) x L(6)).
(8) If V =L, then <1, well-orders V and so AC holds.

ProoOF. Straightforward. 0

LEMMA 6.26. (AC) If  is a regular uncountable cardinal, then L(k) = ZF-P+V = L.

PROOF. Replacement Let M = L(x) and let A be a set in M such that
VeeM(zeA—3yeMpM(z,y)).

2Recall that p(z) is the least « such that z € L(a+1) and so L(a+ 1)\L(a) ={z € L: p(z) = a}.
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We need to find a set B € M such that (Vo € A3y € Bo(z,y))M. Since & is a limit ordinal, we can
find « < k such that A € L(a). Then |A| < |L(«)| < k. Define a function f such that dom(f)=A4
and for all z € A, f(x) is the unique y € M such that ¢(z,y). Then Vx € A, p(f(x)) < k and
thus 8 = sup{p(f(x)) +1:x € A} < Kk, because k is regular and |A| < k. Take B = L(f). Then
BeL(f+1)and so Be L(k).

Comprehension Let ¢(z,z,v9, -+, vy-1) be a formula, y € Fr(y). We must verify that:

V2,00, vn_1 € L(k)3y € L(r)Yz € L(k)(z ey < x € 2 A 0" (2, 2, 7).

Now, fix z,v9, ", vn-1 € L(k). Thus, there is o < x such that z,vg,--,v,-1 € L(a). Then, we
can find 8 > a such that L(B) <, L(x). Take y = {x € L(3) : v (2,2,0)} where ¢(x,2,7) =
o(x,z,0) Az ez Then ye L(B+1) € L(k).

All other axioms: Use the sufficient conditions, which we obtained earlier.

V=L To verify that L(k) £ V = L, observe that L(x) = L(o(L(x))) and so by an earlier results,
we obtain L(k) E (V =L). O

THEOREM 6.27. If V = L then for every cardinal k > w the following holds:
() L(k) = H(x).
Therefore, V = L implies GCH.

ProoF. We work under the assumption that V' = L. Let A be an arbitrary infinite cardinal.
Then P(X\) € H(A") and so if H(k) = L(k) for each cardinal x > w, we obtain that

2 = [POV)] < [H()| = [L(A)] = A*.

However A\* < 2* (by definition) and so 2* = A*.

Thus, it is sufficient to show that for all cardinals k > w, L(k) = H(k). If kK = w, then
H(r) = L(k) = R(k) = HF, so in this case we are done. If £ is an uncountable limit ordinal, then
L(k) = Ux<x LX) and H(k) = Un<x H(A"). Thus, it is sufficient to show that H (k) = L(k) for
Kk a successor cardinal of the form A*.

Let x be an uncountable cardinal and let x € L(k), x > w. Then, by definition of L(x), we can
find a such that w < a < £ and such that x € L(«). But, then trcl(z) = U{U"z :n e w} € L(a)
and so |trcl(z)| < |[L(«)| = |a| < k. Therefore x € H(x). Thus, for all uncountable cardinals &,
L(k) c H(k).

Now, let A be an infinite cardinal. We will show that H(A*) ¢ L(A*). Let b e H(A") and
let T = trcl({b}). Thus, be T and |T| < \. Since we work under the assumption that V' = L, we
can pick a regular uncountable 6 > p(T). Then T < L(6) and by one of the previous theorems
L(0) = ZF-P +V = L. By the Downward Lowenheim-Skolem theorem we can find an elementary
submodel A < L(6) such that T' < A, |A| = |T| < A. Thus, by elementarity A = ZF-P+V = L.
Let (B,€) be the Mostowski Collapse of (A,€). Since T' ¢ A is transitive, mosy I 7" = id and
S0 b = mos(4¢)(b) € B. Since (B,€) = (A,€) we have that (B,€) & ZF-P +V = L. But then
B = L(o(B)) using the fact that B is transitive. However |B| = |o(B)| = |A4| < A and so o(B) < A*.
Therefore L(o(B)) € L(A*) and so be L(A"). Thus H(\*) c L(\"). O
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Consequently, we have the following theorem.

THEOREM 6.28.
(1) If Con(ZF) then Con(ZFC +V =1L).
(2) If Con(ZF) then Con(ZFC + GCH).

LEMMA 6.29. (AC) If k is weakly inaccessible, then in L, k is strongly inaccessible and
L(k) = ZFC+V = L.

PROOF. Being a cardinal (Ya < kY f : @ - k(f is not onto)) and being weakly inaccessible
(VA < k(A" < K)) are II; properties and so they are downwards absolute. Under GCH, being
weakly inaccessible and strongly inaccassible are notions which coincide. Thus, say x is weakly
inaccessible in V. However, L € V and by H%—absoluteness, L &= (k is weakly inaccessible) and
since L £ GCH, we have that (k is strongly inaccessible)”. However, since AC holds by assump-
tion by one of our earlier theorems today for every uncountable A, L(\) £ ZF-P +V = L. Thus,
L(k) = ZF-P+V = L. On the other hand working in ZFC~, we proved that if x is strongly
inaccessible then R(k) = H(k) = ZFC. Now, assuming V = L (or working in L) we obtain
L(k) = H(k) = R(k) E ZFC+V = L. However E is recursively defined and so absolute, which
implies that in V', L(k) £ ZFC+V = L as desired. O

COROLLARY 6.30. (AC) If there is a weakly inaccessible cardinal, then there is a countable
transitive M such that M £ ZFC+V = L.

PROOF. Let k be weakly inaccessible. Then, by the above theorem L(k) £ ZFC+V = L. Take
a countable elementary submodel M’ of L(x) and let M = mosz’M, oM ‘. O

LEMMA 6.31. If M is a transitive model for ZF, then L(o(M)) e ZFC+V = L.

PrOOF. Working in ZF, we can prove L = ZFC+V = L. Since M = ZF, we obtain M = (LM £
ZFC+V =L). However

LM —{zeM:35¢ONnM(zeL(5))M}
={reM:36 ¢ ONn M(z € L(5))}
= L(o(M)).

By absoluteness of £ we obtain L(o(M)) e ZFC+V = L. O
LEMMA 6.32. Let A be a finite set of axioms of ZFC. Then
ZFC £ IM(M = A+V = L A|M| =R A M is transitive).

PRrROOF. Apply Reflection to L = Ugcon L(&) to get a limit ordinal 1 such that L(n) £ A+V = L.
Take a countable elementary submodel of L(n) and then its transitive closure. O
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7. Appendix
7.1. More on Relative Consistency Proofs.

DEFINITION 7.1. A theory A is said to be strictly stronger proof-theoretically than I', denoted
I'aAiff A Con(T).

ExaMpPLE 7.2. To show that I' <« A we will work in A to produce a model for I". For example,
working in ZFC we can show that HC is a model for ZFC-P. Note that by Goédel’s Second
Incompleteness Theorem, < is not reflexive.

DEFINITION 7.3.

(1) A theory A is said to be stronger proof-theoretically than T, denoted T' < A iff there is a
finitistic proof of Con(A) - Con(I") (such proofs are referred to as relative consistency
proofs).

(2) Theories I' and A are said to be proof- theoretically equivalent, denoted T' ~ A iff ' < A
and A <T.

REMARK 7.4. Note that < is reflexive and transitive, and ~ is an equivalence relation.

LEMMA 7.5.

(1) HT <A then T < A

(2) T<Aand A<© imply '« O

(3) The relation < is transitive.

(4) KT <A and A<T then -Con(I") and - Con(A).

PRrROOF.
(1) Suppose A + Con(T") and suppose that Con(A) - Con(I") is not true. Thus we have Con(A)
and -Con(T), i.e. we have a finitistic proof of =Con(I"). But then, A - =Con(T"), which will
produce a contradiction in A.
(2) By hypothesis © + Con(A). Since there is a finitistic proof of Con(A) - Con(T"), we get that
6+~ Con(I").
(3) Suppose I' « 6 and 6 < A. Then by (1), I' < 6. Now by (2) we get I" < A.
(4) By part (2), we have I' < T" and hence - Con(T"). However I" < A, i.e. Con(A) - Con(T).
Therefore - Con(A). O

REMARK 7.6.

(1) ZFC™ < ZFC. By the theorem of von Neumann, ZFC < ZFC™. Therefore ZFC™ ~ ZFC.
By the same theorem ZF~ ~ ZF. Obtaining the Constructible Universe later, we will also
have ZFC + GCH < ZF and so we have ZF~ ~ ZF ~ ZFC™ ~ ZFC ~ ZFC + GCH.

(2) Using the method of forcing, we will see that ZFC is proof-theoretically equivalent to
ZFC plus various additional axioms about Lebesuge measure, category, and others.



CHAPTER 3

Infinitary Combinatorics

1. Martin’s axiom
1.1. Maximal Almost Disjoint Families.

DEFINITION 1.1. Let k be an infinite cardinal.
(1) Two subsets z,y of k are said to be almost disjoint if |z Ny| < k.
(2) Ac[k]" is k-almost disjoint if any two distinct elements of A are k-almost disjoint.
(3) A family A is maximal k-almost disjoint if A is k-almost disjoint and maximal under
inclusion. We say that A is k-m.a.d.

(4) a(k) = min{|A|: A is k-m.a.d.,|A| > k}.

REMARK 1.2. In the special case k = w, we simply say that A is almost disjoint and speak
about maximal almost disjoint families. The cardinal a = a(w) is known as the almost disjointness
number.

REMARK 1.3.

(1) Let A< [w]® be almost disjoint. Suppose A is maximal. Then, there is no almost disjoint
family B such that A is properly contained in B. With other words, if X € [w]“\A, then
Au{X} is not almost disjoint. That is, there is A € A such that |[X n A| = w.

(2) Suppose A ¢ [w]¥ is a finite partition of w. That is, the elements of A have pairwise
empty intersection and U.A = w. Then, A is an almost disjoint family. Is A4 maximal?

THEOREM 1.4. Let k > w be a reqular cardinal.
(1) If AcP(k) is almost disjoint and |A| = k, then A is not mazimal.
(2) There is a k-m.a.d. family B < [k]"® of cardinality > k™.

PROOF. (1) Let A = {A¢ : £ < k} be an almost disjoint family. For each { < &, define
Be = Ac\Up<e(Ae 0 Ay). Since |A¢| = s and for each n < k, |[A¢ N A;| < k we have that B¢ # @.
Now, for each &, pick be € Be and let A, = {b¢: £ <r}. Note that A, n A, € {be:& <n}. Thus A,
is a set, which is k-almost disjoint from every element of A and so A is not xk-maximal.

(2) Take any partition A of x into x-many unbounded (in x) subsets. Then A is k-almost disjoint.
By item (1) A is not maximal. However, by Zorn’s Lemma (and so the Axiom of Choice), there
is a maximal x-almost disjoint family B extending x. Then B is k-m.a.d. of cardinality > k. [

EXERCISE 3. Write an explicit proof of the existence of B in item (2) of the above theorem,
using Zorn’s Lemma.
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THEOREM 1.5. If kK > w and 2" = k, then there is an almost disjoint family A € P(k) of
cardinality 2°.
PrROOF. Let I ={x c k:sup(z) < k}. Since 2<% =k, |I| = k. Now, for x € k define
Az ={zna:a<k}
and so if | X| = k, then |A,| = k.
CrLAIM. If z,y € k are distinct, then |A, N A,| < k.

PRrROOF. Let z,y C K, x #y. Fix B € z\y (without loss of generality). Then A, n A, c{zna:
a < B}. Indeed, if v € k\(B8+ 1), then § €z N~y and for each 7' € kK we have that 8 ¢ y ny'. Thus
|A; N Ayl <|B| < k. O

Then A = {4, : x € [k]"} is a k-a.d. family of cardinality 2%. Since |I| = k there is a
bijection f : I — k. Then for each = € []", let AL = {f(zna):a < k}. Thus A, € [k]" and
A" ={Al :x€[k]"} is an a.d. family of subsets of x of cardinality 2". O

REMARK 1.6. By the above theorem, there is a maximal almost disjoint family of cardinality
2°(=R|).
1.2. A-system lemma.

DEFINITION 1.7. A family A of sets is a A-system, if there is a set r such that the intersection
of any two pairwise distinct elements a,b of A is the set r. The set r is called the root of the
A-system.

THEOREM 1.8. If A is an uncountable family of finite sets, then there is an uncountable B c A
such that B forms a A-system.

EXERCISE 4. Prove the above theorem.
We will prove the following more general statement.

THEOREM 1.9. Let k > w be a cardinal, 0 > k regular such that for all o < 0(|a~F| < 0). If A is
a set such that |A| > 6 and for all x € A we have that |x| < k, then there is B < A such that |B| =0
and B forms a A-system.

ProoOF. Without loss of generality |A| = . By hypothesis, Vo € A(Jz| < k < ) and so
|UA| =6. Now, for all z € A, let a, = type(z). Note that o, < k. Thus, A = Uge, A* where

A ={zxeA:a, =a}.
Since k < 6 and 6 is regular, there is ag < k such that |4%°| = 6. So, let Ay = . A*. Tt is sufficient
to find the desired family B as a subset of Ajp.
CrAiM 1.10. U Ag is unbounded in #. That is Va € 833 € J A such that « < 5.

PrROOF. Fix a < 6. Since by hypothesis of the theorem |a**| < #, there are less than f-many
elements of Ay contained in a. Thus there is x € Ay such that x ¢ «, i.e. there is § € x such that
B> a. Then, 8¢UAp. O
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For each z € Ay, type(x) = ap. Now, for each £ < ag, denote by z(§), the &-th element of .
Craimm 1.11. There is £ < o such that C¢ = {x(§) : x € Ag} is unbounded in 6.

ProOF. Otherwise, for all £ < ag, there is f¢ < 6 such that C¢ ¢ B¢. But, then UAg ¢
SUD¢cq, B¢ and so [U Aol < supg.,, Be < 0 (by regularity of 6 and ag < x < 0). O

Let & = min{¢ : C¢ is unbounded in #}. By minimality of &y, we get
ap =sup{z(n) +1:n< &,z e Ap} <b.
Thus, in particular xz(n) < a; for all z € Ay.

CrAmM 1.12. There is a family A; € Ap such that |A;| = 6 and for all 2,y € A; the intersection
TNy ca.
PROOF. By transfinite induction, we can construct a sequence
T=(x,:p<b)
of elements in Ag such that for all p, x,(£o) > max{y,U,<, 2, }. Take Ay = {z,: p<0}. O

For each y € [o1]*%, let A1y ={z e A1:xna; =y}. Then A; = U{A1y:ye[an]™"}. However,
by hypothesis |a;"| < 0 and so 3y € [a;]<" such that |4 | = 0.

CrAiv 1.13. For all distinct a,b € A, we have |[anb| =y.

Proor. Fix a,b distinct in A; . Then anb ¢ o since a,b € A;. Moreover

anb=anbnaj=anainbna;=yny=uy.

Clearly B = A, is a A-system with root the set y. O
1.3. Martin’s axiom.

DiscussioN 1.14. Suppose CH fails. Then we can ask:

(1) If w<k<2¥ does 27 =297

(2) If w <k <2 does every a.d. family A € P(w) of cardinality & fail to be maximal?

(3) Is it true that every set A € R such that |A| < 2¥ = |R| is of Lebesgue measure zero?

(4) Is it true that every set A € R such that |A| < 2“ is meager?

(5) Let So denote the group of all permutations of N. A subgroup G of S., is said to be
cofinitary if for every f € G\{id}, the set fix(¢) = {n ew:g(n) =n} is finite. A cofinitary
group if said to be maximal, abbreviated mcg, if it is not properly contained in another
cofinitary group. Is it true that every cofinitary group G < S of cardinality strictly
smaller than ¢ is not maximal?

Under the assumption of CH the answer to each of the above questions is “yes”. However, if
CH does not hold, each of those answers is independent of ZFC.

DEFINITION 1.15.
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(1) A partial order (P,<) is a pair such that P # @ and < is a relation on P which is
transitive and reflexive.

(2) (P,<) is a partial order in the strict sense iff in addition for all p,q if p<q and ¢<p
then p =q.

(3) If p < g we say that p extends ¢, or p is stronger than ¢, or ¢ is weaker than p. We
denote p < g the fact that p<q and p # q.

DEFINITION 1.16. Let (IP,<) be a p.o.
(1) A chain in P is a set C' € P such that for all p,ge C(p<qVq<p).
(2) p L q iff there is r € P such that r < p and r < q. We say that p and ¢ are compatible,
also that they have a common extension.
(3) p L qiff p and ¢ do not have a common extensions, i.e. there is no r such that r < p and
r < q. We say that p,q are incompatible.
(4) An antichain in P is a subset A of P such that for all p,qe A if p # ¢ then p 1 q.

DEFINITION 1.17. A partial order (P, <) has the countable chain condition iff every non-
empty antichain in P is countable.

ExampPLE 1.18.
(1) Let P =w; with a < 8 iff a € 5. Every antichain in P has cardinality 1.
(2) Let X # @. Consider the power set P(X) of X with extension relation p < ¢ iff p ¢ ¢.
Thus p L ¢ iff png=@. Thus AcP(X) is an antichain iff for any two distinct a,b in A
the intersection a nb is empty. Then (P(X),<) has the c.c.c. iff | X|<w.

DEFINITION 1.19. Let (P, <) be a partial order.

(1) A set DcPis dense iff for all p € P there is ¢ < p such that g€ D.
(2) A non-empty subset G of P is a filter iff

e for all p,q in G there is r € G such that r <p and r < g;

e forallpeGand all geP, if p<q then geG.

DEFINITION 1.20.

(1) MA(k) is the statement: Whenever (P, <) is a non-empty ccc partial order and D is a
family of < k¥ many dense subsets of P, then there is a filter G in P such that for all
DeD(GnD=+w).

(2) MA is the statement: Yk < 2“(MA(k)).

REMARK 1.21. Martin’s axiom is consistent with R being arbitrarily large. Moreover MA
implies that the answer to each of Questions 1-5 from Discussion 1.14 is yes.

1.4. Cohen Forcing.

DEFINITION 1.22. Let P be the partial order consisting of all subsets p of w x 2, where |p| < w
and p is a function. Define p < q iff g € p.

DiscussioN 1.23.
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(1) Observe that p [ q iff p I dom(p) ndom(q) = ¢ I dom(p) ndom(q).

(2) If p [ q then puq < p,q.

(3) Since |P| = ®g, the partial order has the countable chain condition.

(4) If G is a filter in P, then since for any two elements p,q of G the functions p, ¢ coincide
on their common domain and so

UG=U{p:peG}
is a function, which we denote fg.

(5) Note that it is possible that dom( f¢) is finite, or empty. However if G meets significantly
many dense sets, then f is indeed a function.

(6) For each n, define D,, = {p € P:n e dom(p)}. Note that D,, is dense. Take an arbitrary
q€P. If n ¢ dom(q) then ¢’ = qu {(n,k)} < ¢ for any k. Therefore if Gn D,, # @, then
dom(fg) = w.

(7) For each h € “2 let Ej, = {p e P:p + h | dom(p)}. Note that Ej is dense. Indeed,
take any p € P and suppose p = h | dom(p). Let n € w\dom(p) and k # h(n). Then
p =pu{(n,k)} <pandp € E.

(8) If G is a filter and G n Ej, + @ for each h € “2, then fg # h for each h € “2. Indeed,
pick such an h. Then there is p € G n E}, so there is n € dom(p) such that p(n) # h(n).
However, since p € G, fa(n) =p(n). Thus, fa(n) # h(n). However fg is a function and

we just claimed that h ¢ “2, which is a contradiction. The problem is that there is no
filter G such that G n Ep, # @ for all f e%2.

LEMMA 1.24.
(1) If ¥’ < k then MA(k') implies MA (k).
(2) MA(2¥) is false.
(3) MA(w) is true.

PRrROOF. Part (1) is clear by definition. Part (2) was just shown. To see item (3) consider
any ccc partial order P and let {D), }new be a dense subset of P. Recursively, define a sequence
{Pn}new € P such that py € Do, pni1 € Dny1 such that ppy1 < pp. Then G={qeP:IneN(p, <q)}
is a filter meeting all D,,’s. g

REMARK 1.25. The Continuum Hypothesis implies Martin’s axiom. Note also, that Martin’s
Axiom is consistent with arbitrarily large continuum.

ExaMpPLE 1.26. Consider the partial order P consisting of all finite functions p such that
PEwXxXw

(again, we identify p with its graph). Let G € P be a filter meeting every dense set D, = {p €
P:n e dom(p)} for each n € w. Then fg=UG :w — w;. Now, for each o € wy consider the set
D ={peP:aeran(p)} and note that D® is dense. If G is a filter and G n D* # & for all a and
GnD, # @ for all n €ew, then fg is a function from w onto wy, which is clearly not possible. Note
that {(0,«) : a <wi} is an antichain of size wy and so the partial order is not c.c.c.
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1.5. MA and the continuum. The following forcing notion is well-known and has broad
applications in the study of the set theoretic properties of the real line.

DEFINITION 1.27. Mathias forcing with respect to a filter F ¢ [w]¥ is denoted M(F) and
consists of all pairs (s, A) where s € [w]*, A € F, maxs < min A and has extension relation
defined as follows: (s1, A1) < (80, Ag) if s € s1, $1\s0 € Ag and A; € Ay.

The partial order M(JF) has the countable chain condition. In fact is satisfies the following
property:
DEFINITION 1.28. A partial order P is o-centered if for each n € w, there is P,, € P such that
P=JP,
new

and for all p,q e P,3r e P, (r < p,q).
Indeed, M(F) = Uge[w]<w Ps, where Ps = {(s0, Ag) € M(F) : so = s}. Note that:
CrAiMm 1.29. If P is o-centered, then P is ccc.

PROOF. Let P be o-centered and P = U,e, Pr, where for each n € w, the partial order P, is
centered. Let A C P, |A| =w;. Then, there is n € w such that |[AnP,| > R, as otherwise
PrnAl=|JP.nA<JIP,nA| <R,
new new

which is a contradiction. But then |AnP,| > 2 and so there are p,q € AnP,. By hypothesis p [ g
and so A is not an antichain. O

Thus, M(F) is ccc. In fact, M(F) is Knaster, which by definition, means that from every
family of R; conditions of the partial order, one can find a subfamily of cardinality X; in which
any two distinct elements are pairwise compatible.

LeEMMA 1.30. The following sets are dense in M(F):

(1) For each new, D, ={(s,A): Im>n(mes)}.
(2) For each X € F, the set Dx = {(s,A): Ac X}.

PROOF. To see item (1), fix n € w and let (s, A) € M(F) be an arbitrary condition. Since A
is infinite, we can find m € A such that m >n and m > maxs. Then (su{m}, A\(m+1)) is an
extension of (s, A) from D,,. To see item (2) fix X € F and consider an arbitrary (s, A) € M[(A).
Since F is a filter, Y = X n A€ F. Then (s,Y) € Dx and (s,Y) < (s, A) as desired. O

LEMMA 1.31. Let F ¢ [w]“ be a filer on w, let G be a filter of the partial order M(F) and let
og=U{s:3A(s,A) e G}.
(1) If Gn D, # @ for each n € w, where D,, is as in Lemma 1.30, then |og| = w.
(2) If Gn Dy + @ form some X € F, where Dy is defined as in Lemma 1.30, then og ¢* X,
ie. o¢\X is finite.
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PROOF. To see item (1) note that if (s,A) € G then s € og. Therefore, if (s,A) € Gn D,
then since there is m > n such that m € s, we obtain that there is m > n with m € 0. To see item
(2) note that if (s, A) € G, then og ¢ A. Then, if (s,A) e GnDx, og <* X. O

Now, we are ready to obtain the following theorem:
THEOREM 1.32. Martin’s Axziom implies that the almost disjointness number a is equal to 2%.

Let A be an infinite almost disjoint family and let |A| < ¢. Note that the set Z(.A) which is
defined as the downwards closure (i.e. closures with respect to subsets) of {U.Ag : Ag € [A]*“}
is an ideal. Moreover, the set of complements of elements of Z(\A) is a filter, referred to as the
dual filter and will be denoted here as F(A). Note that for every A € A, w\A € F(A). Now,
suppose G is filer for the partial order M(F(.A)) such that G has a non-empty intersection with
every element of the families { Dy, }ne, and {Dx : w\X € A}, where D,, and Dy are defined as
in Lemma 1.30. Then, by the above considerations, o¢ is an infinite subset of w and og ¢* w\A
for every A € A. Then o¢ € [w]¥ and |og N A| < w for all A e A. That is Au{og} is an almost
disjoint family and so A is not maximal.

DEFINITION 1.33. (Almost Disjoint Forcing) Let A € P(w). The almost disjoint set partial
order P4 consisits of all pairs (s, F') € [w]* x [A]*“ with extension relation defined as follows:

(s, F'Y<(s,F)iff scs',FcF',Vxe F(xns' cs).

REMARK 1.34. The conditions of the above partial order are intended to describe a set, which
is almost disjoint from the elements of A.

LEMMA 1.35. Let (s1, F1) and (s9, Fy) be conditions in P4. Then the following are equivalent:
(1) (s1,F1) and (se, Fy) are compatible;
(2) for all x € F1(xnsy Cs1) and for all € Fy(xn sy C s2);
(3) for all x € F} and all n € 2\s1, we have that n ¢ sy and for all x € F, and all n € z\sy we
have that n ¢ s1.

DEFINITION 1.36. Let G be a Py4-filter and let dg = U{s: 3F (s, F') € G}.
LEMMA 1.37. If G € P4 is a filter and (s, F') € G then for all z € F(dgnx < s).

PROOF. Let z € F. To show that dg nx C s, it suffices to show that dg\snx = @. So,
let n € dg\s. Then (by definition of dg) there is (s', F') € G such that n € s'. Without loss of
generality we can assume that (s, F’) < (s, F). Then n € s’\s. By definition of the extension
relation <, s'\snz =@ and so n ¢ z. That is dg\snx = @. O

COROLLARY 1.38. Let z € A. Then D, = {(s,F) € P4:x € F} is dense. If Gn D, # &, then
by the previous Lemma |dg N x| < w.

PROOF. We only need to show that D, is dense. So, let p € P4. Then p = (s, F) € [w]™ x
[A]*“. If z € F then (s,F) € D,. If x ¢ F, then observe that (s, Fu{z}) < (s,F) and clearly
(s, Fu{z}) e D,. O
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LEMMA 1.39. P4 is ccc.

PROOF. In fact P4 is o-centered. Indeed, for a € [w]< let
P, ={(s,F)ePy:s=a}.
Then P, is centered and Py = U{P; : a € [w]“}. O

LeEMMA 1.40 (Solovay’s Lemma). Assume MA(k). Let A,C ¢ P(w) where |A| < &, |C| < k.
Suppose for all y € C and for all F € [A]** we have that |y \ UF| = w. Then there is d € [w]“ such
that

Ve A(Jx nd| <w) and Vz € C(Jx nd| = w).

Proor. ForyeC,new,let B} ={(s,F)ePy:sny¢n}.
CLAIM. E} is dense in P4.

PROOF. Let (s,F) € P4. By hypothesis [y\UF| = w and so there is m € y\UF such that
m >n. Then (su{m}, F) is an extension of (s, F) from E}. O

Consider the collection of dense sets {Dy}zeq U {E%}yec,new- Since this is a collection of at
most k-many dense sets, by MA (k) there is a filter G meeting all of them. But then

d=dg=|J{s:3IF(s,F) e G}
is such that Vz € A(dg nx is finite) and Yy € C(y Nndg is infinite). O

COROLLARY 1.41. Let A € [w]¥ be an a.d. family such that |A4| = k, where w < K < 2%.
Assume MA(k). Then A is not maximal.

PROOF. Since A is infinite, for each finite F ¢ A, the set w\UF is infinite. Indeed, suppose
there is a finite subset F of A such that w\UJF is finite. Take any A € A\F. Then, there is
Ap € F such that An Ay is infinite, since otherwise |A| < w. However, this is a contradiction to A
being an a.d. family. Therefore, we can apply Solovay’s Lemma to .4 and C = {w}. Thus, there
is a set d such that |d| = w and |d nz| < w for each x € A. Thus, A is not maximal. O

THEOREM 1.42. Let w < k< 2* and assume MA(k). Then 2% = 2%,

PROOF. Fix k < 2¥. Since there is an a.d. family of cardinality 2%, there is also an a.d. family
of cardinality . Fix such a family B. Define ® : P(w) - P(B) as follows:

O(d)={zxeB:|dnz|<w}.

We will show that & is an onto mapping.

Note that by Corollary 1.41, the family B is not maximal. Then, there is d € P(w) such that
for all b e B(|Jdnb| <w) and so ®(d) = B. Now, consider any By which is a proper subset of B and
let C = B\By. We can apply Solovay’s Lemma to By and C. Then, there is d € P(w) such that for
all z € By(|z nd| <w), while for all d € B\By(|z nd| =w). That is ®(d) = By.

Therefore ® is indeed onto and so [P(B)| = 2% < [P(w)| = 2. However, by monotonicity of
exponentiation, we have 2% < 2% and so 2" = 2%. d
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COROLLARY 1.43. MA implies that 2% is regular.

PROOF. Let w < k < 2¥. By Konig’s Lemma cf(2%) > k. Since 2" = 2% we obtain that for
each k such that w < k <27,

k< cf(27) = cf(2¢) < 2%,
Therefore 2¥ = cf(2¥), i.e. 2“ is regular. O

2. Applications

2.1. Application to measure. The collection all Lebesgue measure zero sets, forms a o-
ideal, which we denote N. A countable set is of measure zero, while the real line itself is not of
measure zero. Thus, of interest becomes the following cardinal value:

add(N) = min{|F|: Fc N, JF ¢ N'}.
We will show that MA implies that add(/N') = 2%°. More precisely:
THEOREM 2.1. Assume MA(k). Then add(N) > k.

PRrROOF. In the following p denotes the Lebesuge measure on the real line R. We have to show
that if {My}a<k €N, then Uger Mo € N. Fix { My} o<

FAacT 2. A set M < R has Lebesgue measure zero, i.e. pu(M) =0 iff for every € > 0 there is an
open U € R such that M c U and u(U) <e.

Fix € > 0. Let P be the partial order of all open U ¢ R such that u(U) < € with extension
relation superset, i.e. p<qiff p2gq.

Cramm 2.2. Let p,qeP.. Then p [ q iff u(puq) <e. In particula, if p [ ¢ then pug<p,q.
Cramv 2.3. Let G € P, be a filter. Then u(Ug) <€, where U =UG =U{p:peG}.

PROOF. If p,q € G then since Ir € G(r < p,q), we must have r < pu q. However, G is closed
with respect to weaker conditions and so pu g € G. Therefore for every natural number n and
every {p;}jen € G, we have Uje, pj € G. Let B be the base for the topology of R consisting of
open intervals with rational endpoints. If x € UG, then there is p € G such that x € p. Since B is
a base, there is B € B such that x € B € p. Then in particular

1(B) < p(p) <e.

Furthermore, if {p1,--,pn} € G n B, then Ui pj € G and so u(U?:lpj) < €. The base B is a
countable set and so G n B is also countable. Therefore

plU(GnB) <y {up):peGnB}<e,

where we used the fact that all partial sums are strictly smaller than e. O

CrAiM 2.4. The partial order P, has the countable chain condition.
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PROOF. Suppose by contradiction, that P, is not ccc. Let A = {pa }a<w, € Pe be an antichain,
i.e, for all a # 3, po L pg. We claim that there is n € w such that for § = % we have 0 < § < € and
X ={aews: u(pa) < €—3d} is uncountable. Well, again, suppose this is not the case. Then, for
every natural number n, the set X, = {a e wy : p(py) < €- %} is countable. However w1 = Upew Xn
and a countable union of countable sets if countable, which is a contradiction. We will make use
of the following fact.

FacT. If V is an open set (or a measurable subset of R) and ¢ > 0, then there is a finite family
C of basic open subsets from B such that C AV = C\V uV\C is of Lebesgue measure < 4.

Then, for each « € X there is C, € C = {UB': B’ € [B]*“} such that u(ps & Cy) < 0. Since for
each distinct o, 5 from X, the conditions p, and pg are incompatible, we must have pu(poUpg) > €.
On the other hand, for all o, 8 € X we have that

(pa N pg) < p(pa) < €-30.

Note that po Upg = pa & pg U pa N pg. Therefore

€ < p(pa Upg) = p(pa 2 pg) + i(Pa N D)

and so we obtain that p(pa 2 pg) > 35. This implies that ;1(Cy & Cg) > 6 and so in particular
Cq # Cg. Therefore {Cy}aex is an uncountable subset of C which is a contradiction, since C is
countable. Therefore P, is indeed ccc. O

Since P, is ccc, we can apply MA(k). Now for each « € K, consider the set
Dy ={peP.: M, cp}.
CraiM 2.5. For all a € k, D,, is dense.

PrOOF. Fix ace k. Let g € P and let ¢ = u(gq). Then €, < e. By Fact 2 there is an open set V
such that M, ¢V and p(V) <€ —¢;. Take p=qu V. Then p is open and
p(p) <p(q) + (V) <eg+e—€g=e.
Thus p € P. and p € D,. O

By MA(k), there is a filter G° € P, such that G°n D, # @ for all a < k. This implies that for
all a <k,

Ma c UGE = Z/{Ge.
Let U = UG®. Thus, Up<x Mo € US. However u(U€) < € and the above can be done for each e,

we obtain

,U(U Ma) =0.

a<kK
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2.2. Applications to Category. Recall that a set X ¢ R is said to be meager if X € U,c., Fin
where for each n, F), is closed nowhere dense. The collection of all meager subsets M of all meager
subsets of the real line forms a o-ideal. Note that every countable set of real numbers is naturally
a meager set, while the real line itself is not. Thus, the following cardinal value becomes of
interest:

add(M) = min{|F|: F c M,|JF ¢ M}.
By the above observation, we have that ®¢ < add(M) < 2% =¢. We will show that MA implies
that add(M) = 2%, More precisely, we will show the following:

THEOREM 2.6. MA(k) implies that add(M) > k.

PROOF. We have to show, that whenever {M,},<. is a family of meager subsets of R, then
Ua<x My is meager. That is, given { M, }a<xk, we have to show that there is a countable family
{Hp, }new of closed nowhere dense sets, such that

U My c U H.

o<k new
The above is equivalent to Npew R\H; € Na<x R\M,. Note that the complement of a closed,
nowhere dense set is an open dense subset of R. Thus, it is sufficient to show that whenever we
have a family {U,}a<x of dense open subsets of R, then there is a countable family {V},},e0 of
dense open subsets of R such that

Vo< () U

new a<kK
Fix {Uq}a<x a family of dense open subsets of R. Let B = {B;}c,, be an enumeration of all

non-empty open intervals with rational end-points, i.e. intervals of the form (p,q) where p, q are
rational numbers. Then B is a base, i.e. for every open W € R we have W = U{B; : B; € W}.
Now, for each j € w let

Cj:{iEwiBigBj}
and let C = {¢; : j ew}. Thus, ¢; is a subset of w, while C € P(w). For each o < &, let

ag ={icew:B; ¢U,}

and let A = {aq}a<k. Thus, aq € w and A € P(w). Next, we will show that the families A, C
satisfy the conditions of Solovay’s Lemma. Indeed, let ¢; € C and let F € [A]*“. We need to verify
that |¢;\UF| =w. Say, F = {aq : @ € F'} for some finite F' € [k]". Then,

Cj\Uaaz{iEW!BigBj,Big ﬂUa}Z{iEWZBi(_:Bjﬂ ﬂ Ua}.
aeF aelF ael

Using the fact that Nyep Uy is dense open, we can show that |¢j\ Uner @l = w.
Therefore, Solovay’s Lemma applies and so there is d € w such that

Vaek(ldnas| <w) and Vj e w(|dncj| = w).
Now, for each n € w, define V,, = U{B;:i€d,i >n}.

CLAIM 2.7. For each n € w, the set V,, is dense open.
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Proor. Fix n. Clearly, V, is an open set. To show that V,, is dense, it is sufficient to show
that V,, n B; # @ for every basic open Bj. So, fix j. Since |d n¢;| = w, there is i > n such that
iedandiec;. Thatis, B; ¢ Bj. But B; ¢V, (since i € d, i >n) and so B; ¢ B; nV,,. Thus,
Bj NV, +@. O

It remains to show that Npe, Vi € Na<w Ua- Fix a < k. Since |d N a,| < w, there is a natural
number n such that dna, € n. Therefore for every i e w\(n+1) if ¢ € d then i ¢ a, and so B; € U,.
Thus, in particular, V,, = U{B;:i€dAi>n} < U,. Therefore

() Vin €V, € U,.
mew

Since « < k was arbitrary, we obtain Mo Vin € Na<k Ua- U



CHAPTER 4

Forcing

1. Generic Extensions

DiscussioN 1.1. The method of forcing allows to establish the relative consistency of -CH.
More precisely, we will show that if € is a finite subset of ZF, then there is a larger set subset
A of ZFC such that every countable transitive model M of A has an extension A such that
N E Q+-CH.

To prove Con(ZFC) - Con(ZFC +-CH), proceed as follows: If ZFC+-CH E ¢ + = for some
sentence ¢, then there is a finite Q € ZFC such that Q + -CH & ¢ A =p. Therefore, in ZFC we can
produce a model N of the inconsistent theory Q + -CH, thus ZFC is inconsistent.

REMARK 1.2. Throughout, by “M is a c.t.m. for ZFC” we understand, that M is a countable
transitive model for a sufficiently large fragment of ZFC.

NOTATION. Let (P, <p, 1p) be a partial order with designated maximal element 1p such that
VgeP(q<1p)

(with other words 1p is largest). We consider P € M for a model M, as an abbreviation to
(P, <p, 1p) € M. We refer to such partial orders, also as forcing notions and to the elements of a
given partial order as conditions. Note that if ¢ < p we say that g is stronger than p, also that p
is weaker than q, and that ¢ is an ezxtension of p. If p,q do not have common extension, we say
that they are incompatible.

DEFINITION 1.3. Let M be a c.t.m. and P e M be a forcing notion. A filter G € P is said to
be (M,P)-generic (also P-generic over M) if Gn D # @ for all dense D ¢ IP such that D € M.

REMARK 1.4. The model which we want to obtain is of the form M[G]. i.e. we adjoin to the
model M a filter G, which is (M, P)-generic.

LEMMA 1.5 (Generic Filter Existence Lemma). Let M be a c.t.m. for ZF-P. Let P e M be a
forcing notion and let p € P. Then, there is an (M, P)-generic filter G such that p € G.

PROOF. Let {D;,}new be an enumeration of all dense subsets of P, which are elements of M.
Recursively, define a sequence {p,}new € P such that pg € Dy with the property that pg < p and
for each n, ppi1 € Dyt is such that ppy1 < pp. Then the upwards closure G of {py, }new in P is the
desired (M, P)-generic filter. That is G = {q € P: In(p, < ¢)}. Note that the given condition p
does not necessarily belong to {py }new, but p € G. O

69
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DEFINITION 1.6. Let P be a partial order. We say that an element r € P is an atom if there
are no incompatible p, q extending r. Moreover P is said to be atomless, if there are no atoms in
P.

LEMMA 1.7. Suppose P is an atomless poset and G is an (M, P)-generic filter. Then G ¢ M.

PROOF. Let D =P\G. Let r € P. Then, since P is atomless, there are p,q <r such that p 1 q.
But, then at most one of ¢,p is an element of G, which means that at least one of {¢,p} belongs
to D. Therefore D is dense. If G € M, then D € M. However Gn D = &, which is a contradiction
to the hypothesis that G is generic over M. Thus G ¢ M. O

DEFINITION 1.8 (P-names). Let P be a partial order.

(1) A relation 7 is a P-name iff for every (o, p) € 7 we have that o is a P-name and p € IP.
(2) With V¥ we denote the collection of all P-names. Note that V¥ is a proper class.
DEFINITION 1.9 (Generic extension). Let M be a c.t.m. of ZF-P and let P € M. Then
ME=VEAM={reM:(7is a P-name)™}.

DEFINITION 1.10 (Evaluation of P-names). Let 7 be a P-name and let G ¢ P be a filter. Then,

G

the evaluation of T with respect to G, denoted val(7,G), also 77, is the recursively defined set

val(7,G) = 76 = {val(0,G) : Ip e G({o,p) € 7) }.
DEFINITION 1.11 (Generic extension). Let M be a c.t.m. of ZF-P, P € M be a partial order.
Let G be a (M, P)-generic filter. Then the generic extension of M via G is the set
M[G] = {rg:T7e M*}.
REMARK 1.12. We will prove that M[G] is a model of a sufficiently large fragment of ZF-P.

ExaMPLE 1.13.

(1) @ is vacuously a P-name and @ = @.

(2) If o1, 02, 02 are P-names and 7 = {{c!,1p), (0%, 1p), (03, 1p)}, then 7 is a P-name and
¢ = {0, 0%,0%}. Note that for each {p;}2; € P, the set 7" = {{o%,p;)}2, is also a
P-name. However, the evaluation 7/, depends on G'n {pi}s,.

DEFINITION 1.14 (Check names). For a forcing notion (P, <, 1p) and a set x, let

z={(y,1p) :y e x}.
We refer to the set & as a check name.
LEMMA 1.15. If M is a transitive model of ZF-P, P ¢ M and G is a (M, P)-generic filter,

then:

(1) for all 2 € M, we have that & e M* and val(Z,G) = z;
(2) McM[G].
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PRrOOF. To see item (1) note that recursive definitions are absolute and so & € M for each
x € M. Then inductively one can show that val(#,G) = z. Item (2) follows directly from the
Definition of M[G]. O

DEFINITION 1.16 (Canonical name for a filter). Let P be a forcing notion. Then I' = {(p, p) :
p € P} is a canonical name for a generic filter.

REMARK 1.17. Indeed. If P e M then I' ¢ M and if G is (M, P)-generic, then I'q = G.

LeMMA 1.18 (Minimality of Generic Extensions). Let M € N be transitive models of ZF-P,
P e M a forcing notion and let G be an (M, P)-generic filter such that G € N'. Then M[G] c N.

PROOF. Recall that M[G] = {7 : 7 € MF}. For every 7 € MY, clearly 7 € N'. The set
Ta is recursively defined from 7 and G and so by absoluteness of evaluation of names, we have

val(1,G) =7 € N. Thus M[G] < N. O
2. The Forcing Language

DEFINITION 2.1 (The forcing language). Let P be a partial order. Then the forcing language
F Lp consists of all first order formulas which are obtained from the binary relation symbol € and
all the names in V¥, treated as constant symbols.

REMARK 2.2. VP is a proper class. For a transitive model M, M n FLp is the set of all first
order formulas obtained in the usual way from the binary relation € and all the names in M¥
used as constant symbols.

DEFINITION 2.3. For a closed formula ) in FLpnM define the satisfaction relation M[G] & ¥
as usual, by interpreting € as membership and each name 7 as 74.

DEFINITION 2.4 (The forcing relation). Let M be a c.t.m. for ZF-P, let P € M be a forcing
notion and let ¥ be a closed formula in FLp N M. Then, we say that p forces ¥ over M or just
p forces 1, denoted

plFpm ),
also denoted simply p I+ ¢ whenever P, M are clear from the context, if for every (M, P)-generic
filter G such that p € G, we have M[G] = 1.

LEMMA 2.5 (Truth Lemma). Let M be a c.t.m. for ZF-P, P € M a forcing notion, ¢ a
sentence of FLp N M and let G be an (M, P)-generic filter. Then

M[G] ey iff Ipe G(p I+ 1).

REMARK 2.6. Note that the implication from right to left in the above theorem follows from
the definition of the forcing relation. On the other hand the implication from left to right is
non-trivial. Let P be a forcing notion and let ¥ be the formula p; € I' Apg € I'. Suppose r € P
and r is a common extension of p; and ps. Then 7 I+ 1), since for every (M, P)-generic filter G
such that r € G we have M[G] = 1. On the other hand if G is an (M, P)-generic filter such that
p1 € G', but ps ¢ G’ then clearly M[G'] # 1.
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LEMMA 2.7 (The Definability Lemma). Let M be a ctm for ZF-P, let ¢(x1, -+, ;) be a formula
in L¢, with all free variables shown. Then, the set of all finite tuples (p,P,<p,lp,v1, 1)
where (P,<,1p) is a forcing notion, p € P, (P,<p,1p) € M, vy, v, are elements of M" and
pIFp (v, o+, V) is definable over M without parameters.

EXAMPLE 2.8. Let 7 = {(7,p) : n € w,p € P,p I+ ¢(n,0)} where p(x,y) is a formula and
7 e M. Then
Ta={necw:IpeG(p I+ (n,0))}.
By definition of the forcing relation I+, we have
T¢ €{new: M[G] = p(n,oq)}.

Denote the latter set S. We will show that S € 7. Let n € S. Then M[G] E ¢(n,05). By the
Truth Lemma, applied to the sentence p(n,0) € FLp N M, there is p € G such that p I+ p(n,0).
Then (n,p) € 7 and so n € 7.

3. ZFC and generic extensions

LEMMA 3.1. Let M be a transitive model for ZF-P, P e M, G a filter on P. Then:
(1) rank(7¢g) < rank(r) for all 7€ M.
(2) o(M[G]) = o(M).
3) IM[G] = |M].

PROOF. Exercise. U
We will make use of the following:

DEFINITION 3.2 (Names for unordered and ordered pairs). Let o and 7 are P-names. Then
let

(1) up(U7T) = {(07 1IP>7 <T7 1P>} and
(2) op(o,7) =up(up(c,0),up(c,7)).
LEMMA 3.3. Let M be a ctm for ZF-P, IP a forcing notion in M and let G be (M, P)-generic
filter. Then M[G] is a transitive model for ZF-P\{Replacement}.

PRrROOF. The fact that M[G] is transitive is straightforward from the definition of M[G].
Indeed, suppose x € 7. We have to show that z € M[G]. But by definition if x € 74, then
x = og for some o ¢ M and so x = oG € M[G]. Thus M[G] is transitive. Extensionality and
Foundation are also straightforward. Pairing holds, as given o,7 € M, we have that

(up(0, 7)) = {06, 76} € M[G].

To prove the union axiom, we need to show that if a € M[G] then there is b € M[G] such
that Ua € b. Let 7 € M¥ be such that a = 7. Note that Udom(7) is a name (since every element
of 7 is of the form (o,p) for ¢ € MF, p € P) and moreover Jdom(7) € M be absoluteness of the
union operation (in M). Thus, take 7 = Udom(7). Then 7 ¢ M¥ and b = 7g € M[G]. We still
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need to show that Ua € b. Let ¢ € a. Then ¢ = o¢ for some ¢ € dom(7), i.e. o € . But, then
oca CS7mg and so Ua € b.
To prove the Axiom of Comprehension, consider a formula ¢ in the language of set theory,

o(x, z,v0,+, vp—1) with all free variable shown. We will show that

V2,00, Un_1 € M[G]y e M[G]Vz e M[Gl(z ey < z € 2 A M (2, 2, 09, 1))
Fix elements Wg,a%,m,crg_l in M[G] corresponding to the variables z,vg, -, v,-1 and names
{m, o}, c ME. Let
S = {l’ €ETG: SOM[G]($77G70—%7"'708_1)}'
It is sufficient to show that S € M[G]. Consider the FLp-formula o(xz,m,0°,--,0™" 1) = ¢(x) and
note that @(z) e MF. Note that

S ={vg:vedom(n) \M[G]Evgengnp(vg)}.
Let 7= {{v,p) :vedom(n) Ape PApi- (venwAa@(v))}. By the Definability Lemma 7 € MY and
so 7 € M[G]. Moreover
7¢ ={vg:vedom(n)AIpeGs.t. pi-(pemnp(v))}.

Now, by the definition of the forcing relation 7g € .5. To see that S ¢ 7, take any vg € S. Thus,
v edom(w) and M[G] Evg e g A p(vg). Then (v,p) € T and so vg € 7.
The Axiom of Infinity holds in M[G], since w e M[G]. O

THEOREM 3.4. Let M be a ctm for ZFC, let P € M and let G be (M, P)-generic. Then M[G]
s a model for ZFC.

ProOOF. We continue with the Power Set Axioms, Replacement and Choice.

Power set axiom: We have to show that if a € M[G], then there is b € M[G] such that
P(a) n M[G] ¢ b. Consider a set a € M[G] and fix a name 7 € MF such that 7¢ = a. Let
Q = {v e M¥ : dom(v) € dom(7)}. By Comprehension Q € M and so m = Q x {1p} € MF. We
claim that b = mg is as desired.

Let c e P(a) n M[G] and let x € M® be such that yg = c. Consider the name

v={{(o,p):0edom(T) ApI-o € x}.
By the Definability Lemma v € M®. Clearly dom(v) € dom(7) and so v € Q. Thus vg € ng. It
remains to show that vg = ¢. Note that
vg ={og:(o,p)evapeG}.

If oG € vg, then there is p € G such that p I- oG € xg and so M[G] E o¢ € c¢. Therefore v C c.
On the other hand, if d € ¢, then d = o¢ for some o € dom(7). Now o¢ € ¢ = xg and by the Truth
Lemma there is p € G such that p I- o € x. Then, by definition of v, we get (o,p) € v. Therefore
oG € Vg, as desired.

Replacement Let ¢(z,y) be FLp-formula in M and let a € M[G] so that

M[G] E Vz € adyp(z,y).
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To show Replacement, we will find b € M[G] so that M[G] E Vz € a3y € bp(z,y). Fix a P-name
7 e MF for a, i.e. such that 7g = a. Consider the function f, : dom(7) x P - MF defined by

v if v e M¥ such that p - $(o,v)

fr(e.p) {@ otherwise
Note that there is a < o(M) such that range(f,) € MF n (R(a))M. Take Q = M* n (R(a))M.
Then Q € M and so 7 = Q x {1p} € MF. It remains to show that b = g as desired. For this,
consider x € a. Thus = = o for some o € dom(7) and by hypothesis M[G] E Jyp(x,y). By the
Truth Lemma, we can find p € G and v € M? such that p I- ¢(o,v). But then f(o,p) is defined
and f(o,p) = v’ for some ' € M¥ such that p I+ p(o,v'). By definition of Q, v’ € Q and we can
take y' := vj;. Then M[G] ey eba@(z,y).

Axiom of Choice It is sufficient to show that every set in M[G] can be well-ordered in M[G].
Fix a = 7¢ € M[G] and using the Axiom of Choice in M to well-order dom(7) in order type «,
i.e. dom(7) = {o¢: & <a}. Let

f={(op(§,0¢), 1p) : £ < a}.
In M[G], take f = fa. Then fg = {{£,(0¢)g) : € < a} and so in M[G], dom(f) = a and
a cran(f). For x,y(x #y) elements of a define
£y iff min{e: £(€) = 2} <min{€: £(€) = y).
Then < is a well-order on a (in M[G]). O

4. Some Properties of the Forcing Relation

ExaMPLE 4.1.

(1) If p < ¢ then p I- ¢ € G, by upwards closure of G. Here G =T is the canonical name for
the generic filter.

(2) 1p I ¢ ifft M[G] E ¢ for all (M, P)-generic filters G.

(3) If piI- ¢ and g < p then q I+ ¢. Indeed, let G be an (M, P)-generic filter such that ¢ € G.
Then, by the upwards closure of G, p € G. But, then by definition M[G] E . Therefore
applying the definition once again, we obtain q I ¢.

LEmMMA 4.2, Let G be a P-generic filter over M. Assume D € P, D € M and D is dense below
peP. If peG, then GND +@.

PROOF. Let D* = Du{qeP:p 1 q}. Then D" is dense. Not that {geP:p L q} ={qeP:
=(3r < g s.t. r € D)} is definable from P and D, and so is in M, which implies that D* € M.
Therefore, GNn D # @&, because p € G and G is a filter. O

LEMMA 4.3. For any forcing notion P € M and sentences ¢, in FLpn M the following hold:
(1) No p can force both ¢ and —¢.
(2) If , ¢ are logically equivalent, then p I+ ¢ iff p I- ).
(3) If pi- ¢ and g < p, then qIF ¢.
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(4) pi-o At iff pi-p and pIF .

(5) pIF —p iff =3¢ < p(q - ¢); and p I- @ iff =3¢ < p(q Ik —p).

(6) pirp > iff =3¢ <p(gi-pAgi- ).

(7)) provy iff {g<p:qiF pVvqi-1} is dense below p.

8) pirp <Y iff =3¢<p(qi- o Aqi- ) and -3¢ <p(qI- P A qIF —p).

PROOF. Ttems (1) — (4) are direct corollaries to the definition of forcing.

(5) From left to right follows from (3)&(1). To prove the implication from right to left,
suppose p I —¢. Then, there is a generic filter G such that p € G and M[G] # —¢. That is
M|[G] E p. But, then by the Truth Lemma there is ¢’ € G such that ¢’ I+ ¢. Since p,q’ € G there
is g € G(qg < p,q¢"). So, ¢ I . That is a contradiction to the assumption that =3¢ < p(q I+ ).
Therefore p I+ —p.

To see item (6), note that
plrp =9 iff -3¢<p(qiF-(¢—>1v)) by item (5)
iff =3¢ <plgi-p A1) by item (2)
iff -3g<p(qi-pArqiF—y) by item (4).

To see item (7), observe

plkpvy iff pik-p—> by item (2)
it -3r <p((rik-p) A (ri--1)) by item (6)
iff -3Ir<pVg<r((gifF ¢) A(qiFv)) by item (5).

So, piFVv it Vr<pIg<r(qi- pvql-).

(8) Follows from (6)&(2) since ¢ < 1 is logically equivalent to (¢ = ) A (¢ = ¢). O

REMARK 4.4. Note that if G is (M,P)-generic, M[G] = ¢ and p € G, then by the Truth
Lemma there is ¢ € G such that ¢ I+ ¢. But any two conditions in GG are compatible and so there
is r € G such that r < p,q. Thus, 7 I+ ¢. In particular, we proved that 3r < p(r I- ).

LEMMA 4.5. For any forcing poset P e M and formula ¢(z) € FLp n M with all free variable
shown:

(1) pIF Vap(z) iff pi- () for all 7€ MF.
(2) pi- Izp(z) iff {g<p:IT e MF(q1- (7))} is dense below p.

PROOF. To see item (1) note that p I+ Vzp(z) iff for every (M, P)-generic filter G such that
p € G, we have that M[G] = Vzp(x). However, the latter is equivalent to the statement that for
all (M, P)-generic filters G such that p € G and every 7 € M* we have that M[G] E ¢(7¢), which
itself is equivalent to the statement that for every 7€ MF, pi- ¢(7).

To see item (2), note that Jzp(x) is equivlaent to -Va-p(z). Now, p - -Vr-p(zx) iff
Vr < prif Vo-@(z). However by (1), r It Va—-p(z) iff 37 € MF such that r I} —p(7). But
rif —o(r) iff 3 < r(r" - @(7)). So r I} Va-p(x) iff 3r € MFPI < r(r" - o(7)). Thus,
p Ik ~Va-p(x) iff Vr <p3r e MEI <r(r' Ik o(7)). O
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5. Cardinal evaluation in generic extensions

EXAMPLE 5.1. Let M be a ctm and let I,J € M be infinite sets. Let P = Fn(Z,.J) be the
partial order of all finite partial functions from I to J with extension relation superset. Suppose
G is (M, P)-generic and let f=UG.

Consider, the special case that I = w and J = wgvl. By absoluteness w = w™, however ws
is just a countable ordinal (in V'), while according to M it is the fifth uncountable cardinal. In

MJG] however f is an onto mapping from w onto w! and so

M[G] & (w5 is countable).

M

DEFINITION 5.2. Let M be a ctm and let P € M. Then we say that the forcing notion P
preserves:

(1) cardinals, if for all generic filters G and all 8 < o(M):
(8 is a cardinal)™ iff (Bis a cardinal )™
(2) cofinalities if for all generic filters G and all limit v < 0o(M) we have that
M) = MG () for all 4 < o(M).

REMARK 5.3.
(1) Suppose f3 is a cardinal in M[G]. Then

Va < BY f=(f is an onto function from « onto f3),

which is II; in absolute notions. However II; properties are downwards absolute and so
[ is a cardinal in M.

(2) Regarding the notion of cofinality, note that M () 2 MG (), 1 4 = wM and HyMIC]
is countable, then y = cf™ () > w = fME(5).

LEMMA 5.4. Let P be a forcing notion in M. Then
1) P preserves cofinalities iff for every (M,P)-generic filter G and all limit 8 such that
g
w< B <o(M):
(%) if (B is regular)™ then (3 is regular M€
(2) If P preserves cofinalities then P preserves cardinals.

PROOF. To see item (1) note that if P preserves cofinalities, then the statement (%) holds by
definition. Now, suppose (*) holds for all 4 such that w <~ < o(M). Let 8 = cfM(). We need
to show that ch (’y) 5. In M let X be a subset of « such that X is unbounded in « and the
order type of X 1s . Then in particular (3 is regular)™ and so by property (%) we have that
(8 is regular)™IC]. Therefore

(cf ()M = (et (8))M1 =
To see item (2) note that by item (1) the forcing notion P preserves regular cardinals and so
M and M[G] have the same regular cardinals. However,every limit cardinal is a supremum of
regular, successor cardinals and so P does preserve all cardinals. O
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ExampLE 5.5. There are partial orders which preserve cardinals, but not cofinalities, however
we will not be working with such.

LEMMA 5.6 (Approximation Lemma). Let P e M, (Pis ccc)™ and A,B € M. Let G be
(M, P)-generic and in M[G] let f: A — B. Then, there is F': A - P(B) in M such that for all
acA, f(a)e F(a) and (|F(a)| < ®o)M.

PROOF. Thus M[G] E f: A - B. By the Truth Lemma there are a P-name f in M and
peG such that fg=f and pI- f: A - B. Now, define the function F: A - P(B) by

F(a)={beB:3g<p(qi- f(a)=0)}.

Note that by the Definability Lemma F' € M. Suppose M[G] E f(a) = b. Then by the Truth
Lemma, there is ¢ < p such that ¢ I+ f(a) = b. Then clearly, b € F(a) and so M[G] & f(a) € F(a).

It remains to verify that (|F(a)| < ®o)™ for all a € A. For this we will use the countable
chain condition of P. Indeed, for each b € F(a) we can chose q, < p such that ¢, I+ f(a) = b.
Since forcing is inherited by stronger conditions, if ¢ # b then g. and ¢, must be incompatible.
However (P is cce)™ and so there are only countable many incompatible conditions below p, i.e.
|F'(a)] < Ro. O

THEOREM 5.7. If P e M and (P is ccc)™, then P preserves cofinalities and hence preserves
cardinals.

PROOF. Let € o(M), (8 regular)™. Suppose (8 is not regular )M Thus, there is X ¢ 3
such that X € M[G] such that sup(X) = 8 and type(X) = a < 3. Then, in M[G] let f:a - X
be the unique order preserving bijection. In particular f : @ — § and by the Approximation
Lemma, there is F' € M such that F': @ - P(f8), such that V¢ € a(|F(£)] < Ro) and M[G] E
V& ea(f(§) € F(£)). Now, in M consider the set Y = Uecq /(). Then, Y ¢ 3 and supY = 3.
However |Y| < R¢p-a =« and so

MEe|Y|<BAsup(Y) =4,
i.e. (8 is not regular)™, which is a contradiction. Therefore (3 is regular) ™[], O

THEOREM 5.8 (A model of ~CH). Fiz o < o(M) and let k = (Ro)M. Let P = Fn(kxw,2) and
let G be a P-generic filter over M. Then (2% > x,)MIC],

PROOF. By the A-system Lemma (P is ccc)™. Thus, P preserves cofinalities and hence
cardinals. Therefore k = (R )™M = (Ro)MIE]. For each f < k define

hg =U{p(B,n):peG,news.t. (8,n)ecdom(p)}.
Then hg:w — 2 for each § <k and furthermore if 81 # 82 then hg, # hg,. Therefore
M[G]E (2% 2 K = R,).

REMARK 5.9. Our next goal is to show that in (2% = &, )MIC],
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DEFINITION 5.10. For 7 € VP, a nice name for a subset of 7 is a name of the form

U{{o} x A, : 0 e dom(7)}

where for all o € dom(7), the set A, is an antichain.

LeMMA 5.11 (Counting nice names). Let 7€ VF, k= |P|, A = |dom(7)|. Assume P is ccc, &, A

A

are infinite. Then, there are no more than k" nice names for subsets of k.

PRrROOF. Note that |[[P]*°] < £ and so the number of antichains does not exceed x™°. Each
nice name for a subset of 7 is determined by A-many antichains and so there are no more than

(KN()))\ _ K,/NO'A — K:/\
nice names. O

LeEMMA 5.12 (Every subset of a given set has a nice name). Let P e M, 7, u be elements of
MP . Then, there is a nice name v € M for a subset of 7 such that

Ip i+ (if p €7 then p=v).

ProOOF. Consider 7 and dom(7). For each o € dom(7) if there is p € P such that p I+ o € p,
fix a maximal antichain of such conditions. Otherwise, take A, = &. Let

v={{o} x Ay, :0edom(7)}.

Fix an (M, P)-generic filter and suppose M[G] E ug € 7¢. We will show that M[G] = pg = vg.
First, we show that vg € ug: Let a € vg. Then, a = oG, where (o,p) € v and p € G. However,
p - o € u (by definition of A,) and so a € ug.
Second, we show that ug € vg: Suppose a € ug\vg. Then, a € ug € 7¢ and so a = o for some

o € dom(7). Furthermore, by hypothesis
M[G]Ecenunc .
Then, by the Truth Lemma, there is ¢ € G such that
g (oceuncév).

Thus, g I+ 0 € p and since ¢ I+ o ¢ v, we must have that ¢ is incomaptible with every p € A,
(otherwise, for r < g, p, we get 7 I+ o € v which is a contradiction). Thus, we reached a contradiction
to the hypothesis that A, is maximal. O

LeEMMA 5.13 (Upper bound). Fix P € M and assume that in M the forcing notion P is ccc,
%, A and § are infinite cardinals, x = [P|, § = x*. Let G be (M, P)-generic. Then

(2> < s)MIET,
PROOF. The name X\ = {(,1p) : € € A}, |A| = A. By the previous Lemma, there are no more

A many nice names for subsets of A and so we can list them as (ve: ¢ <6). Let f be the
following name:

than &

f: {(Op(évVC)vllP’) : C < 5}’
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where op(C, 1) = up(up(¢, €), up(C, ). In M[G], dom(fg) = 6 and fa(¢) = (v))g- If M[G]E
s C A, then s = ug for some p and so there is { < d such that

Ipik (LN = p=1).
Therefore M[G] e fg(¢) = s and so M[G] & P(\) cran(fg). Therefore M[G] = 2* < 4. Since P

is cce, P preserves cardinals ans so (6 is a cardinal)MIC], O

THEOREM 5.14. Let a < o(M) and let (k = Ro)M. Let P = Fn(kxw,2) and let G be P-generic
over M. Then (2% =R, = x)MIE],

PROOF. By a previous result (2% >}, = k)& and by the previous Lemma, (280 < x)MIC],
]

6. The Forcing Star Relation: Truth and Definability

Our goal in this section is to prove the Truth and Definability Lemmas. To do this, we will
introduce a relation between the elements of a given partial order P and the formulas in FLp
which will be definable and is in a very strong sense equivalent to the forcing relation. We will
refer to this definable relation as the forcing star relation and will denote it I-*. First we will
introduce the forcing star relation between the elements of P and the atomic formulas of FLp
by recursion on a well-founded and set-like relation R on the class P x FLp. After we establish
some basic properties of the so defined (fragment of the ) forcing star relation, we will extend its
definition to all formulas of the forcing language, by induction on complexity of the formulas.

We start with paying a special attention to the atomic formulas of FLp.

DEFINITION 6.1. Let ALp denote the class of all atomic sentences in FLp. That is, ALp
consists of all formulas of the form 7 = v and 7 € 7 for 7,7, v in V.

Now, we give the definition of the forcing star relation for atomic formulas.
DEFINITION 6.2. For a partial order P and 7,v, 7 in V' define:
(1) pi-* 7 =v iff for all 0 € dom(7) Uudom(r) and all g < p we have
g-"oeTiff g+ oev.
(2) pIF* 7 e iff the set
{g<p:Fo,r)ev(g<rand q-" m=0)}
is dense below p.

To justify that the above notion is well-defined, we will make use of the following relations R.

REMARK 6.3. The definition of the forcing star relation above is done by recursion on R,
where R is a relation on P x ALp defined as follows. Fix o1,7,09,7 in VP and p1,p2 in P and
define:

(1) (p1,01€1)R(p2,09 =12) iff (01 etrel(og) or oy € trcl(Tg)) and (7'1 =09 Or 7| = 7'2).
(2) (p1,01=71)R(p2,02 € 12) iff 01 = 09 and 7y € trcl().
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(3) Neither (p1,01 € 71)R(p2, 02 € T2), nor (p1,01 = 71)R(p2, 02 = 72).
Note that R is set-like, because P is a set. Moreover, we will show that R is well-founded. Proceed
as follows. Define
p(p,o=71) = p(p,o € 7) = max{rank(o), rank(7)}
and observe that if (p1,1)R(p2,2) then p(p1, 1) < p(p2,p2). Furthermore, let
x:PxALp - {0,1,2}
be defined via
1 if ¢ is of the form o =7
X(p,¢) =40 if ¢ is of the form o € 7 and rank(o) < rank(7)

2 if ¢ is of the form o € 7 and rank(o) > rank(7).
Now, define @ : P x ALp — ON as follows:

D(p, ) =3-p(p,p) + x(p,¢).

It remains to observe that if (p1,p1)R(p2,p2) then ®(p1,p1) < P(p2,¢2). Thus, by an earlier
Lemma, the relation R is indeed well-founded.

We continue by establishing some basic properties of I+*.

LEMMA 6.4 (Properties of I+* for Atomic Sentences). For ¢ € ALp:
(1) If pi-* » and py < p, then py IF* .
(2) pI-* @ iff {p1 <p:p1IF* ¢} is dense below p.

PRrROOF. Note that item (1) holds by definition. The direction (=) of item (2) holds by (1),

since {p1 <p:p1-* o} ={p1eP:p; <p}.
To see («<=) of item (2), consider an arbitrary formula ¢ of the form 7 € 7. Let

Alt,mer)={t' <t: Yo, t"Ver(t' <t' "' - 1=0)}.
Then, by definition p I+* 7 € 7 iff A(p, 7 €7) is dense below p. Suppose
{p1 <p:A(p1,meT) is dense below p;}

is dense below p. That is, for every g < p there is ¢’ < ¢ such that A(¢’, 7 € 7) is dense below ¢'.
Therefore A(p, 7 € 7) is dense below p and so pI-* me 7. O

Next, we extend the definition of the forcing star relation to the class of all negations of atomic
formulas, and so we obtain the relation for all basic formulas of the language.

DEFINITION 6.5 (Forcing Star for all Basic Formulas). For ¢ € ALp, p € P define
pIF* = iff =3g <p(q IF"* ).

As an immediate corollary of Lemma 6.4 and the above definition we obtain:

COROLLARY 6.6. For ¢ € ALp, p € P we have

pIE @ iff =3¢ < p(qI-* =p).
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PROOF. (=) Take p such that pI+* . Suppose ¢ <p and ¢ I+* =¢. Then, by definition
-3¢" < q(q" 1+ ).

However for every extension ¢” of ¢ we have ¢ < p and so by by Lemma 6.4.(1), ¢” I+* ¢, which
is a contradiction.

(<) By definition of p IF* =—¢, since —=—¢p is equivalent to ¢ (indeed, by definition p IF* =—¢
iff -3¢ <p(qIF* —p)). O

LeMMA 6.7 (Forcing Star Lemma for Atomic Sentences). Let M be a ctm of ZF-P, P e M.
Let ¢ € ALpn M and let G be (M, P)-generic filter. Then:
(1) fpe G and (p-* )™ then M[G] & ¢.
(2) If M[G] & ¢ then there is p € G such that (p-* @)M.

ProoF. We proceed by induction on rankg px 4z
(1) Let p e G. We have two cases to consider: ¢ is m €7 and ¢ is 7 = v.
Suppose ¢ is w € 7. That is p I+* 7 € 7. Consider the set

Alpyrer)={q<p:Ho,ryer(q<raqi"m=0)}.

Then A(p,me7)e M and A(p,n € 7) is dense below p by definition of I+*. Since G is (M, P)-
generic, we can fix g e GNA(p,m € 1). So, there is (o,7) € 7 such that ¢ <r and ¢ I+* 7 = 0. Note
that (¢,m = 0)R(p,m € 7) and so we can apply the Inductive Hypothesis to ¢ IF* m = 6. Thus,
MI[G] & m =0 and so mg = 0. On the other hand r € G (as G is upwards closed) and so by
definition of evaluation of names o¢ € 7¢. Therefore 7 € 7, i.e. M[G] =7 € 7, as we wanted.
Suppose ¢ is T=v and p IF* 7 = v. We will prove that M[G] E (7 € vg and vg € 7).

We will show that 7o € vg. Take any og € 7¢. Thus, there is r € G such that (o,r) € 7. Let
q € G(q<p,r). Then since q < r, we obtain that A(q,o € 7) is dense below ¢ and so by definition
q +* o € 7. Moreover, by Lemma 6.4.(1) we have that ¢ I-* 7 = v. Again by definition of I+* we
obtain g I-* o € v. Since (q,0 € u)R(p,7 = v), we can apply the inductive hypothesis and obtain
M[G] E o € v. Therefore og € vg. The proof of vg € 7 is similar.

(2) Suppose M[G] & g € 7. We need to find p € G such that

A(p,rer)={q<p:o,r)er(¢g<raq-"n=0)}

is dense below p. By definition of the evaluation of names, we can find r € G and (o,7) € 7 such
that 7 = 0. By the inductive hypothesis there is p € G such that p +* 7 = 0. Without loss of
generality p < r. But then for every ¢ < p we have that the pair (o,7) is a witness to g € A(p, 7 € 7)
and so A(p,m € 1) is dense below p. Thus pI+* 7€ 7.

Suppose M[G] E 7¢ = vg. Recall that p I+* 7 = v iff for every o € dom(7) U dom(v) and for
every ¢ <p (qI-* o e7 iff ¢I+* o e v). Consider, the set D € P of all p € P such that

e cither pI-* 7 =1,
e or there is o € dom(7) udom(v) such that pi-* c et and pI+* o ¢ v,
e or there is 0 e dom(7) udom(v) such that pI-* o ¢ 7 and pI+* o e v.
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Then D € M and D is dense. Let pe GnD. If pI+* 7 = v, we are done. Suppose there is
o € dom(7) udom(v) such that pi-* o €7 and pI+* o ¢ v. By Part (1), M[G] E o € 7 and so by
definition of evaluation of names og € 7¢ and since 7g = vg we also get og € vg. By the Inductive
Hypothesis of item (2), there is ¢ € G such that ¢ I+ o € v. Since ¢,p € G there is r € G such
that r < p,q. But, then r I-* o € v, contradicting that p Iv* (o € v), which by Corollary 6.6 is
equivalent to -3¢’ <p(¢' +* o e V). O

LEMMA 6.8 (Equivalence of I+ and I+* for Atomic Sentences). Let M be a ctm for ZF-P with
PeM. Forpe M, pe ALpn M,

pi- @ iff (pir* o)™,

PROOF. (<) If (p F* ©)™. Then by Lemma 6.7 for every (M,P)-generic filter G such that
p € G, we have M[G] & p. However, by definition this is exactly p I- .

(=) Suppose by way of contradiction that p - ¢ and (p I ¢)™. Then by Corollary 6.6 there
is ¢ < p such that ¢ I-* = and so by definition of I+*, =3r < q(r IF* ). Take an (M, P)-generic
filter G such that ¢ € G. Then p € G and so M[G] E ¢. By the previous Lemma, there is s € G
such that (s I-* @)™, Since ¢,s € G there is r € G such that r < ¢ and r < s. However I-* is
inherited by stronger conditions and so (r I-* ¢)™. Since ¢ is atomic, we have (r -* )™ iff
rI+* ¢ and so 7 IF* ¢. Thus, since r < ¢, we reached a contradiction. O

Next, we extend the forcing star relation to the class of all formulas of the forcing language.

DEFINITION 6.9. Let PP be a forcing notion, ¢ € FLp. Then

(1) pIE* = iff -3¢ <p(q IH* ¢).

(2) pi-* oAy iff pIF* @ and pIF* .

(3) pi-* >y iff =3¢ < p(qI-* ¢ and q IF* =1)).

(4) pir* v iff {geP: (qI* ¢) or (qI+* 1)} is dense below p.

(5) pIrrp ey iff -3¢ <p(qI-* ¢ and ¢ IF* =), and -3¢ < p(qI-* ¢ and g I-* —p).
(6) pIF* Yao(x) iff pIr* () for all 7€ V.

(7) pir* 3zp(x) iff {g: AT e VE(qi-* (7))} is dense below p.

We extend the properties we observed in Lemma 6.4 and Corollary 6.6 to all of FLp.

LeEMMA 6.10. (Properties of I+*) For ¢ € FLp:
(1) If pi-*  and py < p, then py IF* .
(2) pI-* @ iff {p1 <p:p1 IF* ¢} is dense below p.
(3) pI-* @ iff =3¢ < p(qIF* =p).

PRrROOF. By induction on the formulas. O

LEMMA 6.11 (Forcing Star Lemma). Let M be a ctm for ZF-P, Pe M, ¢ €e FLpn M and let
G be (M, P)-generic filter. Then:

(a) If pe G and (pi-* )™ then M[G] E .

(b) If M[G] E ¢ then there is p € G such that (p I-* ©)M.
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Proor. By induction on the formula ¢, we will prove the statement L(¢) = (a), A (b),
where

(a), If pe G and (p +* )™ then M[G]E ¢.
(b), If M[G] = ¢ then there is p € G such that (pi-* p)M.

Suppose L(p) holds. We will show L(-¢). To show (a)-,, take any p € G such that (p I+*
-¢)™ and suppose by way of contradiction that M[G] & ¢. Then by (b),, we have that there is
r € G such that (7 I-* ©)™. Since p,r € G there is g € G such that ¢ < p,r. Then ¢ IF* ¢ (since
g < ). Since ¢ < p, we get a contradiction to (p I-* =)™, Next we will show (b)_,. Since I+* is
a definable relation, the set

D={peP:(pt+~ cp)M of (pI+* —mp)M} e M.

By definition of I-* ~p, D is dense. Now, suppose M[G] E -, and let pe GnD. If (pI-* =)™,
we are done. Otherwise, (p I-* )™ and so by (a),, M[G] & ¢, which is a contradiction to the
hypothesis M[G] & —.

Suppose, we have show V7 e MF(L(p(7))). We will prove L(3z¢(z)). To see (@)30p()
suppose p € G and (p I-* Jzp(x))™. Then, by definition

D={q:3re M"(q " o(r))™}

is dense below p. Thus Gn D # @ and so 3¢ € G n D such that ¢ I-* ¢(7))™ for some 7 ¢ MF.
By hypothesis, M[G] & o(7) and so M[G] F Jzp(z). To see (b)3zp(s), note that if M[G] =
Jzp(z), then there is 7 € MF such that M[G] & (7). By part (b) for ¢(7) in the inductive
hypothesis, there is p € G such that (p IF* ¢(7))™. Then (p -* Jzp(z))™, because for all ¢ < p,

q I+ o(T). O

LEMMA 6.12 (Equivalence of I+ and I+*). Let M be a ctm of ZF-P, P e M, Pe M, p € P,
peFLpn M. Then

pi- g iff (pir* )™,
PRrROOF. Analogously to the case for atomic formulas. 0

On the basis of Lemma 6.11 and Lemma 6.12, we can complete the proofs of the Truth and
Definability Lemmas.

LEMMA (Truth Lemma). Let M be a c.t.m. for ZF-P, P € M a forcing notion, 1 a sentence
of FLpn M and let G be an (M, P)-generic filter. Then

M[G] = iff Ipe G(p I+ ).
PROOF. By Lemma 6.11, M[G] & ¢ iff there is p € G such that p I+* 1. By Lemma 6.12,
pI-* Y iff pi-
and so M[G] ¢ iff Ipe G(pI- ). O
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LEMMA (The Definability Lemma). Let M be a ctm for ZF-P, let p(z1,---,x,) be a formula
in L¢, with all free variables shown. Then, the set of all finite tuples (p,P,<p,1lp,v1,, )
where (P,<,1p) is a forcing notion, p € P, (P,<p,1p) € M, vy, v, are elements of M" and
plkp (v, o+, V) is definable over M without parameters.

ProOOF. By Lemma 6.12,
ik o,y ) HE (pIF (v, oo )M
However (pIF* (1, -, v,))M is definable over M. O

As a corollary, we obtain:

COROLLARY 6.13. For any forcing notion P € M, names 7,v, 7 € MF:
(1) pir7=viff Vo e dom(7) udom(v)Vg<p(qi- o et iff g IF 0 € p).
(2) prrmeTiff {g<p:Io,r)er(¢<rand qI-7=0)} is dense below p.

PROOF. By equivalence of the relations, I+ and I-~. O

7. Complete and Dense Embeddings

DEFINITION 7.1 (Complete Embedding). Let (Q,<q,1g) and (P,<p,1p) be forcing posets
and ¢:Q — P. Then ¢ is a complete embedding iff
(1) i(1g) - 1r
(2) for all g1,q2 in Q, we have that if g1 <g g2 then i(¢1) <pi(q2).
(3) for all g1,g2 we have that (¢1 Lo g2 iff i(q1) Lp i(g2)).
(4) If A cQ is a maximal antichain in Q, then the image of A under 7, i.e. the set {i(a) :
a € A} is a maximal antichain in P.

DEFINITION 7.2 (Dense Embedding). We say that ¢ is a dense embedding, if items (1) — (3)
above hold and i(Q) is a dense subset of P.

DEerINITION 7.3. The partial order QQ is a complete suborder of PP, denoted Q < P, if

(1) for all n € w and all q1,--+, g, in Q if there is p € P such that p < ¢; for all ¢, then there is
q € Q such that g < ¢; for all 1.
(2) if AcQ is a maximal antichain in Q, then A is a maximal antichain in P.

DEFINITION 7.4. Let P, Q, 7 satisfy items (1) —(3) from Definition 7.1. Let p e P. A condition
p* € Q is said to be a reduction of p to Q if for all ¢ € Q we have that
if i(¢) Lp p then ¢ Lg p™.
REMARK 7.5. We will use the following notation. Let P be a partial order and let A ¢ P,
A#@. Then p L A iff for all a € A we have that p L a.

LEMMA 7.6 (Characterization of Complete Embeddings). If Q, P, ¢ satisfy items (1) — (3) of
Definition 7.1, then ¢ is a complete embedding iff for all p € P there is p* € Q which is a reduction

of p to Q.
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PROOF. (<) Suppose for all p € P there is p* € Q which is a reduction of p to Q. We will
show that whenever A is a maximal antichain in Q then {i(a) : @ € A} is a maximal antichain
in P. Suppose by way of contradiction that there is a maximal antichain A in Q such that the
image of A under i is not a maximal antichain in P. Then there is p € P such that p 1 i(a) for all
ac€ A. Let p* € Q be a reduction of p. Since A is a maximal antichain in Q, there is a € A such
that p* [ a. However, by hypothesis i(a) L p and since p* is a reduction of p, we must have that
a 1 p*, which is a contradiction.

(=) Suppose i: Q - P is a complete embedding and let p € P. We will find a reduction p* of
p. Consider the collection P of all A ¢ Q such that A is an antichain and i”A 1L p. Then @ € P
and by Zorn’s Lemma, there is A € P which is maximal under inclusion. Then i” A 1 p and since
i is a complete embedding, A is not a maximal antichain in Q (otherwise, we get a contradiction
to property (4)). So, let p* € Q be such that p* 1 A.

We claim that p* is a reduction of p. Let ¢ € Q and suppose i(q) L p, but g f p*. Let g1 < q,p*.
Then ¢; < p* and since p* 1 A, we must have that ¢; 1L A. That is Au {q¢;} is an antichain. On
the other hand i(¢q1) < i(q) and since i(q) L p, we must have i(q;) L p. Therefore Au{q} € P,
which is a contradiction to the maximality of A in P. Thus, for all ¢ € Q if i(q¢) L p then ¢ L p*
and so p* is a reduction of p to Q. O

LEMMA 7.7. Let M be a transitive model of ZFC, Q, P forcing posets, elements of M. Let
i:Q — P be a complete embedding, let i € M and let G be (M, P)-generic filter. Then i1(G) is
(M, Q)-generic.

PRrROOF. Let D € Q be a dense subset of Q, D € M. Fix a maximal antichain A ¢ D such that
A e M. Then i A c P is a maximal antichain of P and since i is a complete embedding, we have
that
Dijay={deP:3a  ci(A)(d<a’)}
is dense in P. Then G'n D;(4) # & and so there is a’ € i(A) and there is d € G such that d < a’.

However G is upwards closed and so a’ € G. Then, since a’ = i(a) for some a € A, we get
aeit(G)nAandsoi'(G)nD=#@. Thus, i '(G) is (M,Q)-generic. O

LEMMA 7.8. If G1, Go are both (M, P)-generic and G1 € G5 then Gy = Gs.

PROOF. Fix pe Go and let D ={reP:r<pvr Lp}. The set D is dense and D € M. Since
Gy is (M, P)-generic, there is r € Gy n D. If r L p, we get a contradiction to the elements of G
being pairwise compatible. Then r < p. Then p € Gy and so G; € G2 € G1. O

REMARK 7.9.
(1) Recall that if M is a ctm of ZF-P, P e M and G is a filter on P, then M ¢ M[G] and if
N is a transitive ZF-P model with M c N, G e N, then M[G] c N.
(2) Now, suppose i is as in Lemma 7.7 and let H =i"*(G), N' = M[G]. Then i,G € N and
so i 1(G) = H e N. Therefore M[H] < N = M[G].

Furthermore, there is a natural inclusion induced by the following correspondence of names.
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DEFINITION 7.10. Let P, Q be forcing posets, i : Q - P. Define iy : V@ - VP by
i (1) = {{ix(0),i(q)) : {o,q) € T}.
REMARK 7.11. Note that 7. is absolute for transitive models.

LEMMA 7.12. Let M be a transitive model of ZFC, with P, Q forcing notions in M. Assume
i:Q — P is a complete embedding, i € M. Let G be (M, P)-generic and let H = i"*(G). Then

(1) For each 7€ M@, i, (7) e MF and i, (7)q = 5.

(2) M[H] < M[G].
ProOOF. Straightforward. 0
DEFINITION 7.13. If i : Q > P and H € Q, let

i(H)={peP:3qe Hi(q) <p}.

That is, 2(H) is the upwards closure of the pointwise image of H under i.

LEMMA 7.14 (Characterisation of Dense Embeddings). Let M be a transitive model of ZFC,
Q, P, iin M. Assume i:Q — P is a dense embedding. Then:
(1) If H < Qis (M,Q)-generic and G = i(H), then G is P-generic over M and H =i *(G).
(2) If G cPis (M,P)-generic and H =i~ '(G), then H is (M, Q)-generic and G = i(H).
(3) If items (1) and (2) hold, then M[H] = M[G].
(4) q g @(11,, 1) iff i(q) IFp @(ix(T1), - 94 (7)), Where ©(z1,--, zy) is a formula of L.,
q€Qand 71,7, are in MY

PROOF. (1) It is easy to see that G is a filter.
CrLamv 7.15. G is (M, P)-generic.

PROOF. Let D be a dense subset of P, D e M and let D = {geP:3d e D(q<d)}. That is,
D is the closure of D with respect to stronger conditions (we say that D is dense open). Then
D e M. Now, note that i~'(D) is dense in Q and so there is g € Hni~'(D), where H is (M, Q)-
generic. Then i(q) € i(H) n D. But, then there is d € D such that i(¢) < d and since 7(H) is the
upwards closure of i(H) we have that d € i(H) n D. Therefore G = i(H) is (M, P)-generic. [

CrLamv 7.16. H =i 1(Q).

PROOF. Now H €i71(G) and since i }(G) is also (M, Q)-generic, we must have H = i~}(G).
U

(2) H=i"'(G) is (M, Q)-generic. Then by item (1), i2(H) is (M, P)-generic. However G € i(H)
(indeed G = i(i"(G)) = i(H) ci(H)) and so G = i(H).

(3) Since i is a complete embedding, by part (2), M[H] ¢ M[G]. Since H, i are in M[H], we
have that G = i(H) € M[H]. Therefore by the minimality of the forcing extension M[G] ¢ M[H].
Thus, M[H] = M[G].
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(4) Let H,G be as in (1) and (2). That is G = i(H) and H = i"'(G). Then, we have that ¢ ¢ H
if and only if i(q) € G. For each M%name 7, we have (7)g = (i.(7))g and so M[H] = M[G]
ol(m1)m, - (tn)m] if and only if M[H] = M[G] E ¢[i«(T1)q, - i+(Tn)G]. Therefore

q1-Q 30(7—17 ""Tn) iff l(‘]) IFp Sp(i*(Tl)v "‘7i*(Tn))'

8. Maximality Principle

LEMMA 8.1. In M let A € P be an antichain such that for every ¢ € A there is a P-name o,.
Then there is a P-name 7 such that for all g€ A, g I- 7 = 0y.

PROOF. Let ¢ l={peP:p<q}. In M define

7= J{{m,r) edom(ay) xq l:ri-meay}.
qeA

Let g € A and let G be (M,P)-generic such that ¢ € G. Let
17q ={rg:medom(og) AIreGngl st. ri-meoy}.

Clearly 7¢ € (04)g- Indeed: If 7 € 7 then there is 7 € G such that r I- 7 € 04 and so g € (04)c-
Thus, 7¢ € (04)g. To verify (o4)g S 7 consider any 7g € (04)g, where m € dom(o,). Then by
the Truth Lemma there is r € G such that r I m € 0, and without loss of generality r < ¢ (since
g€ @). Then (m,r) e T and so g € 7. Thus (04)¢ € 76- O

REMARK 8.2. Recall that p - Jzp(z) iff {g<p:3re MF(qI- (7))} is dense below p.

THEOREM 8.3 (Maximality Principle). Let M be a ctm and let P € M be a forcing notion,
o(x) € FLp N M with a single free variable x. Then

p - zp(x) iff It e MEp - (7).

PROOF. Note that (<) is clear from the definition of the forcing relation. To show (=)
assume p I Jzp(x). By the above Remark 8.2, we can find an antichain A which is maximal
below p such that

Vge Ado e MP(q - (o).

Now, for all q € A pick o, € M¥ such that q I+ ¢(o,) and using the above Lemma find 7 € M¥
such that for all g € A, ¢ I 7 = 04. Then, in particular, for all g € A, g I+ p(7).

We claim that p I (7). Suppose, this is not the case. Then there is r < p such that r I- —¢(7).
On the other hand p I+ Jz¢(x) and since r < p we must have r I+ Jzp(z). By Remark 8.2, there
is s < r and there is ¢ € MF such that s I- p(c). Again, since s <7, s I ~(7) and so s L A.
Then A u{s} contradicts the maximality of A. O
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9. Models where GCH fails first above X

DEFINITION 9.1. Let I,J be sets, A a cardinal. Let Fny(I,J) be the partial order of all
p e [Ix J]** such htat p is a graph of a function with extesnion relation ¢ < p iff ¢ 2 p and 1 = @.
ExamMPLE 9.2.
e Fn(I,J) =Fny(I,J) is the poset of finite partial functions from I to J.
e Fny, (I,J) is the poset of countable partial functions from I to J.
REMARK 9.3. For A\ > w, the partial order Fny(Z,.J) is not absolute: take I,J in M and
(Fna(Z, J)™.
DEFINITION 9.4 (6-cc). Let 6 be a cardinal. The p.o. P is said to have the §-chain condition
(shortly 8-cc) if in P every antichain A ¢ P is of cardinality strictly smaller than 6.

REMARK 9.5. Thus, in particular, ccc is Rj-cc.

LEMMA 9.6. Let A\ > w. Then Fny(I,J) has the (|J|**)*-cc. Thus, whenever |J| < 2}
Fny(I,J) has the (2°*)*-cc.

ProOF. Let & = (]J]**)*. Without loss of generality |.J| > 2 and so & is regular, x > A. Let
W c Fny(1,J) be an antichain, |IW| = k. We have to reach a contradiction.

Note that, we can assume that \ is regular. Indeed, if not, then for all v € W, |p| < A and
since k is regular, there is o < A such that W’ ={pe W : |p| < o} is of cardinality . Then, taking
A=o0"and W =W’ it is sufficient to reach a contradiction from the assumption that X is regular.

Enumerate W as {p, : @ < k} and let S, = dom(p,). Then, we can apply the A-system
Lemma to {S, : @ < k} to find B C k, |B| = « such that for all o, in B, S, n Sz = R for some
Rc I, |R| < \. However |J%| < k and so there are a # 3 in B such that p, } R =ps | R. Then
Pa U DB < Da,Pg, Which is a contradiction to p, L pg. ]

DEFINITION 9.7. Let P e M, M be a ctm, (6 is a cardinal)™. We say that:

(1) P preserves cardinals > 6 iff whenever 6 < 5 < o(M):
(8 is a cardinal)™ iff (8 is a cardinal)[¢],
(2) P preserves cofinalities > 6 iff for all limit v < o(M) such that cf(v) > 6:
M () = M ().
REMARK 9.8. We saw the above for 8 = (w1 )™. Note also that ¢ () > cfMIC1(4).

LEMMA 9.9. Let P e M be a forcing notion, (6 is a regular cardinal)™.

(1) P preserves cofinalities > 6 if and only if
() for all limit 8 with 6 < 8 < o(M), if (3 is regular)™ then (3 is regular )¢,
(2) If P preserves cofinalities > 6, then P preserves cardinals > 6.

REMARK 9.10. The proof is very similar to the case 6 = (w1)™. To conclude (2) from (1)
observe that if 8 > 6 is singular, then 5 =sup{r, : vy < A}, where r,, > 0 is regular for all ~.
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LeEMMA 9.11. Let P e M, (6 an uncountable cardinal)™, (P is f-cc)™. Fix A, B € M and let
G be (M,P)-generic. Let f e M[G], f: A— B. Then, there is F': A > P(B) with F € M such
that for all a € A, f(a) € F(a) and (|[F(a)| < )M.

Using the above Lemma and arguing similarly to the case 6 = (w1)™ one can show:

THEOREM 9.12. IfP e M and (0 is reqular)™, (P is 6-cc)™, then P preserves cofinalities > 6
and hence preserves cardinals > 0.

DEFINITION 9.13. A forcing notion PP is A-closed iff whenever 6 < A and (pe : £ < §) is a
sequence in [P such that for all § < & <9, pg, < pg,, then there is ¢ € P such that for all £ < 0,
q < pe. We say that P is countably closed, if it is wy-closed.

LEMMA 9.14. If X is regular, then Fny (7, J) is A-closed.

PRrROOF. Let (pg : £ < d), 0 < A be as in the above definition. Then ¢ = Up¢ is a common
extension. g

THEOREM 9.15. Let M be a ctm, A, B e M, (P is A-closed)™, (|A| < \)™M. Let G be (M, P)-
generic, f e M[G], f: A— B. Then feM.

PROOF. It is sufficient to show that f € M when A = a < A. In the general case, fix j € M such
that j : @« — A is a bijection and apply the particular case of A being an ordinal to foj:a > B
to show that foje M and so f e M.

So, without loss of generality A =a <. Let K := (*B)M =*Bn M and f € *Bn M[G]. We
want to show that f € K. Suppose not. Then there is 7 € MF such that f = 7¢ and p € G such
that

pll—T:@—’B/\T¢K.
Recursively (in M) define sequences {p, : n < a} € P, {2, :n < a} ¢ B such that: pg = p, p, < pe
for all £ <n and
P+t - T(7) = 2.
Successor steps Suppose p;, has been defined. Then p, < p and so p, - 7:d — B. Then, in

particular p, I~ 3z € B(7(7}) = x). Then there is 2, € B and pj+1 < py, such that p,.1 - 7(7) = Z,.

Limit steps For n limit, use the fact that P is A-closed, to find p, < pe¢ for all £ < 7. Let
g=(z:n<a)ie g:a-> B, g(n) =2. Note that g € M and so g € K. Now, let H
be (M,P)-generic such that p, € H. Then p € H. However M[H] & 7 = § € K, which is a
contradiction. g

THEOREM 9.16. In M, let P = Fny(I,J) where X > Rq is reqular, 2* = X\, [J| < X. Then P
preserves cofinalities and (hence) cardinals.

PROOF. Sufficient to show that if (3 is regular)™ then (3 is regular )YMIC] for all limit 8
such that w < 5 < o(M).

If § < A, then AN M =9Xn M[G] for all § < X and so cfM(7) = fMICl(5) for all limit v < A.
If § > A, then P is A*-cc and so P preserves all cardinals and cofinalities > A*. O
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THEOREM 9.17. In M, assume P = Fny(kx\,2) where k, X are cardinals such that k > X\ > R,

X is reqular, K = k, 2* = X\. Then P preserves cofinalities and so cardinals, and MG E N =k
where G is (M, P)-generic.

PROOF. By the previous theorem, cofinalities and cardinalities are preserved. Let G be
(M,P)-generic. Then UG : kK x A - 2 encodes a k-sequence of pairwise distinct functions in
22. Therefore M[G] & 2* > k. On the other hand, if A ¢ P is an antichain, then |A| < X and since
|P| = k** = k, there are no more than |[P]*}| = &
x* = k many nice names for subsets of \. Since every subset of X in M[G] has a nice name, we
obtain M[G] & 2* < k. Thus, M[G]E 2* = k.

To see that (2* < k)MIC] we proceed by counting names. If A € P is an antichain, then |A| < A

and [P| = k°* = k. Therefore, there are no more than |[P]}| = k* = & antichains. Therefore there
A

= k many antichains in P and so no more than

are no more than £* = K many nice names for subsets of \. O

COROLLARY 9.18 (Top Down Approach). Assume there is a countable transitive model for
ZFC. Then, there is a ZFC model such that CH holds, 2% = R5, 282 = R, and for all § > Ro,
29 = max{6*, R}

PrOOF. (Outline) Assume M = GCH. Let P = Fn, (wws1 x wo,2)™ and let G be (M,P)-
generic. Consider N' = M[G]. Then in N, CH holds and 2% = Ry by the wo-closure of P.
Furthermore 22 = R,,; (the same analysis as in the general case) and counting names V6 >
R (27 = max{0*, Rus1}). Let Q = (Fny, (ws xw1,2)) and let H be (M[G], Q)-generic. Note that
Q preserves cofinalities and cardinalities, and (2! = R )N (1] Moreover since Q is wq-closed in N,
(“2)NH] = (“2)N and so N[H] e CH; Since N 2% = R, and N ¢ N[H], and cardinals are
preserved, we must have N[H] E 282 > ®,,,1; To show that N[H] E V6 > ®y(27 = max{0*, 8,11 })
count nice names in N. O



CHAPTER 5

Forcing combinatorics

1. Cohen Forcing

In the following we will consider some properties of Cohen forcing.

DEFINITION 1.1 (Cohen Forcing). Let C be the partial order consisting of all finite partial
functions p: w - w with extension relation ¢ < p superset. That is ¢ is an extension of p if g 2 p.

Since C is a countable partial order, it trivially has the countable chain condition.

1.1. The Cohen generic real in unbounded.

DEFINITION 1.2.

(1) Let “w be the set of all functions from w to w. For f,g in “w define f <* g if there is
a natural number n such that for all m > n, f(m) < g(m). We say that g eventually
dominates f.

(2) A family F ¢ “w is said to be dominating if Vg € “w3f € G such that g <* f.

(3) We let 0 = min{|D| : D ¢ “w, D is dominating} and refer to this cardinal value as the
dominating number.

LEMMA 1.3. Rp<0d <.
Proor. Easy diagonalization. O
LEMMA 1.4. Assume MA. Let D ¢ “w be such that |D| < ¢. Then D is not dominating.

PRrROOF. Consider the partial order C. If G ¢ C is a filter, then fa =UG =U{p:pe G} isa
partial functions, since the elements of a filter are pairwise compatible. Note that to guarantee
that fo has a full domain, i.e. is a function from w to w is is sufficient to guarantee that for each
n € w there is p € G such that n € dom(p). Moreover, we have the following;:

Craim. For each n € w the set Dy, = {peC:nedom(p)} is dense.

PROOF. Take any p € C. If n e dom(p) then p € D,,. Otherwise, take ¢ =pu{(n,m)} isin D,
and extends p, where m € w was arbitrary. ]

Now, given an arbitrary function f € “w in order to guarantee that fg £* f it is sufficient to
provide that there are infinitely many m € w such that f(m) < fg(m).

91
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CrAaiM. Let f e“w. Then the set
Dyn={peC:3m>n(p(m)> f(m))}

is dense.

PROOF. Take any p € C and let m be a natural number such that m > n and m ¢ dom(p).
Then g =pu {(m, f(m)+1)} € Ds,, and ¢ <p. O

Consider, the family of A = {Dys,, : f e D,new}u{D, :ncw}. Then |A| < ¢ and so by MA
there is a filter G € C which meets every element of A on a non-empty set. Thus, fo = UG is
function with domain w which is not dominated by any element of D. U

COROLLARY 1.5. MA implies that 0 = c.

LEMMA 1.6. Let M be a ctm, C e M and let G be a C-generic filter over M. Let fo =UG.
Then for every f €“wn M we have

M[G]E fa £ f.

With other words for each f € Mn“w, 1¢ IF fg £* f, where fg is a C-name for fg and fg £* f is
an abbreviation for a formula of the forcing language. We say that the Cohen real is unbounded.

ProoOF. Since for each n € w and each f € “wn M, the sets D, and Dy, from Lemma 1.4 are
not only dense in C but also elements of M, by genericity of G we have that G has a non-empty
intersection with each of those sets. But, then just as in Lemma 1.4 it is straightforward to
show that in M[G], the function fg is not eventually dominated by any ground model function
feMn“w. O

1.2. The Cohen generic real is splitting. Consider the partial order Fn(w,2) consisting
of all finite partial functions from w to 2 = {0, 1} with extension relation superset. That is ¢ < p iff
g2p. If G is a filter in Fn(w,2) then fg:w — 2 is a (possibly partial) function. If dom(fg) = w,
then we fg is in particular the characteristic function of ag = fél(l).

DEFINITION 1.7.

(1) Let a,be[w]”. We say that a splits b if both bna and b\a are infinite.

(2) We say that a set a € w is infinite, co-infinite if both a and its complement w\a are
infinite. Note that if b splits a, then @ is infinite co-infinite.

(3) A family A ¢ [w]® is said to be un-split, if no infinite subset of w simultaneously splits
every element of A.

(4) The least cardinality of an un-split family is denoted v and is called the shattering number.

LEMMA 1.8. Assume MA. Let D ¢ [w]® be a family of cardinality strictly smaller than c.
Then D is not un-split.

PRrROOF. Consider Fn(w,2). Let be [w]* and n € w. We will show that the set
Dy = {p € Fn(w,2) : 3my > n(my e bnp (1)) and Img > n(mg e bnp 1(0))}
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is dense. Fix any p € Fn(w,2). Since dom(p) is finite and b is infinite, there are m; # mg such
that mi,mg are not in dom(p), they are both greater than n and they both belong to b. Take
q=pu{(mi,1)}u{(mz,0)}. Then m; € ¢"'(1)nb and my € g1 (0) Nb.

Suppose G ¢ Fn(w,2) is a filter such that Gn D,, # @ for each n € w, where D, = {p €
Fn(w,2) : n € dom(p)}. Thus, fo:w — {0,1} is a function with dom( fs) = w. Now, suppose in
addition that G n Dy, # @ for all n € w. Then in particular, for each n € w there are mi,ma >n
such that my € f5'(1) nb and ma € f51(0) nb. Thus each of f5!'(1) nb and f5'(0) nb contains
arbitrarily large natural numbers, which means that they are both infinite. Take ag = fél(l).
Then w\ag = f5'(0) and so we showed that ag splits b.

To complete the proof of the Lemma, consider the family of dense sets

A={Dp,:beD,newtu{D,:new}.

Since |A| < ¢, by MA there is a filter G having a non-empty intersection with each element of A.
But then ag = f5'(1) splits every element of D and so D is not un-split. O

COROLLARY 1.9. MA implies that v =c.

LEMMA 1.10. Let M be a ctm and let G be Fn(w,2)-generic over M. Then for every b €
[w]¥ " M we have that
M[G]E[bnag|=|bn (w\ag)| = w,
where ag = f5'(1) for fo = UG. With other words for each b € M n[w]”, we have L)
ag splits b, where ag is a Fn(w,2)-name for ag and |bnag| = |b n (w\ag)| = w abbreviates a
formula of the forcing language. We say that the Cohen real adds a splitting real.

PROOF. Take any b € [w]¥ n M. Then, for every natural number m, the set Dy, is not only
dense in Fn(w,2), but also belongs to M since it is definable from parameters in M. Since G is
generic over M, G N Dy, # @ for all n € w. O

2. Hechler Forcing for Adding a Dominating Real

DEFINITION 2.1.

(1) Let “w be the set of all functions from w to w. We say that g eventually dominates f,
denoted f <* g, if there is n € w such that for all m >n, f(m) < g(m).

(2) A family F € “w is said to be unbounded if it is not the case that there is g € “w such
that Vf e F(f <* g). With other words, F is unbounded, if for all g € “w3f e F(f £" g).

(3) Let b =min{|B|: B is unbounded}. We say that b is the bounding number.

DEFINITION 2.2 (Hechler Forcing for adding a dominating real). Hechler forcing (known also
as Hechler forcing for adding a dominating real) is the partial order consisting of all pairs (s, F)
where s € W = Upe, "w and F € [“w]“ with extension relation (¢, H) < (s, F') defined as follows:
e t end-extends s (that is if dom(¢) =m and dom(s) =n then n<m and ¢ | n = s),
e HoF|
e for all k e dom(t)\dom(s)Vfe F(t(k)> f(k)),
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In our application below we will consider a special variant of Hechler forcing, known as the
relativization of Hechler forcing to a family of reals, or as restricted Hechler forcing.

LEMMA 2.3. MA implies that b = 2%0.

ProOF. Consider a set F € “w such that |F| < c. We aim to show that under MA, F is not
unbounded. Let H(JF) be the restriction of 2.2 to the filter the family F, that is H(F) consisting
of all pairs (s, F') € H for which F e [F]* with extension relation just as in Definition 2.2. Note
that if (s, F') and (¢,H) are conditions in H(F) and s = ¢, then (s,F u H) is their common
extension. This implies that H(F) is o-centered and so in particular ccc (also in fact, Knaster).
For a filter G consider the set

fa=U{s:3F(s,F) e G}.
Now, if Gn D,, + @ for each n € w, where D,, = {(s, F') e H(F) : n € dom(s)} then fg is a function
with domain w.

Fix an f € F and note that Dy = {(s,F) : f € F} is dense. Indeed, if (¢,H) ¢ H(F) and
f ¢ H then (¢t,Hu{f}) is an extension of (¢, H) from D¢. Now, suppose (s, F) e Gn Dy and fg
has a full domain. Take any m € w such that m > maxdom(s). Then m € dom(fs) and so by
definition of fg there is some (¢, H) € G such that m € dom(¢). However (¢,H) and (s, F') are
compatible, as they belong to a filter. Take (7, F') € G which is their common extension. Note
that (r,FE) ¢ (sut,HUF) and that sut is in fact just the set ¢. Since G is upwards closed
(t, HUF) € G. But then fg(m) =t(m) > f(m) by definition of the extension relation and the
fact that (¢, HUF) < (s, F).

Now, it remains to find a filter G ¢ H(F) which meets all sets {Dy}fer and {Dy, }neo. Since
|F| < ¢ and H(F) is ccc the existence of this filter is guaranteed by Martin Axiom. O

COROLLARY 2.4. Let M be a ctm and let M[G] be a H generic extension of M. Then for
every f €“wn M, we have

M[G]E f < fq
where fG is a H-name for fg from the above Lemma and f <* fG is in fact an abbreviation for a
formula in the forcing language. With other words, for each fe M n“w

g - f <* fa.

Thus in the Hechler generic extension the ground model reals are dominated. We also say that
Hechler forcing adds a dominating real.

PROOF. Note that, the first paragraph in the above proof shows that 1y I+ dom(fg) = w,
while the second paragraph shows that for each f e M n“w, for each (s, F') € H with f € F' and
each m > maxdom(s), we have (s, F) I~ f(m) < fg and so

(s, F)IF f<* fa.

It remains to observe that for f e M, the set Dy = {(s,F') e H: f € F'} is not only dense, but also
an element of M. O
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3. Mathias Forcing Relativized to a Filter

DEFINITION 3.1.

(1) A family € ¢ [w]® has the Strong Finite Intersection Property (abbreviated SFIP) if for
every finite F € [E]“ the set NF is infinite.

(2) Let A, B be in [w]¥. We say that A is almost contained in B, denoted A c* B, if A\B
is finite. A set K € [w]¥ is a pseudo-intersection of a family € ¢ [w]“ if for all Z € £, we
have K c* Z.

(3) The pseudo-intersection number p is defined as the minimal cardinality of a family &
which has SFIP but no pseudo-intersection.

REMARK 3.2. If F has SFIP then F generates a filter F defined as the least subset of
[w]¥ containing F which is closed with respect to finite intersections and with respect to
supersets. That is, the filter generated by F is the least family F ¢ [w]® such that

o« FCF,
e for all finite H < F the intersection NH € F,
e forall A, Be[w]”if AcF and Ac B then Be F.

DEFINITION 3.3 (Mathias Forcing). Let F ¢ [w]“ be a filter and let M[(F) be the partial order
of all pairs (s, F') where s € [w]*¥, F € F and max s < min F’ with extension relation (¢, H) < (s, F)
defined as follows:

e ¢ end-extends s (i.e. s is an initial segment of t) and t\s ¢ F,
e HC F.

LEMMA 3.4. MA implies that p = 250,

ProOF. Consider a set Fy ¢ [w]¥ such that [Fo| < ¢, Fp has SFIP and let F be the filter
generated by Fg. We aim to show that MA implies that F has a pseudo-intersection and so in
particular Fy has a pseudo-intersection. Consider the forcing notion M(JF). Note that if (s, F')
and (t,H) are elements of M(F) and s = ¢, then (s, n H) is their common extension since
F n H e F. This implies that M(F) is o-centered and so in particular ccc. Take any F € Fy. We
will show that the set Dp = {(s,E) e M(F) : E ¢ F} is dense. Well, take any (¢, A) € M(F).
Then AnF e F and so (t, An F') is an extension of (¢, A) from Dp.

Let G € M(F) be a filter and let ag = U{s : 3E(s, E) € G}. Then for each n € w, the set
Dy, ={(t,A) e M(F):3m>n(met)} is dense and so if Gn D,, + @ for all n € w, then ag is an
infinite subset of w.

Consider and F € Fy and suppose (s, A) € DpnG. Take any m € ag and m > maxs. Then,
by definition of aq there is (¢, F) € G such that m € t. But (s, A) and (¢, E') being elements of a
filter are compatible and so there is (r, H) € G which is their common extension. Then sut cr
and (r, H) < (s, A). Thus m € r\s and so by definition of the extension relation m € A. But Ac F
and so m € F'. Therefore ag\(maxs+1) € F and so ag c* F.

Thus, to obtain a pseudo-intersection of the family Fy it is sufficient to find a filter G € M(F)
which meets every dense set D,, for n € w and every Dp for F € Fy. Since |Fp| < ¢, the existence
of such a filter is guaranteed by MA. 0
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REMARK 3.5. One can ask: For which filters F does M(F) add a dominating real? This
is a very interesting and deep question, which is in the hart of on-going research in set theory.
Filters for which M(F) does not add a dominating real are known as Canjar filter and are subject
of continuing research in combinatorial set theory. For a recent survey on the subject, see the
Master thesis of my student Lukas Schembecker available at <www.logic.univie.ac.at/~vfischer>.

REMARK 3.6. It is natural to ask: What if we drop the relativization to F7 Indeed, let M
be the partial order of all pairs (s, F) € [w]™ x [w]¥ such that maxs < min F' and extension
relation as in Definition 3.3. Then M is a forcing notion, known as Mathias forcing, which
has broad applications. However the partial order is not ccc and will be discussed only next
semester. Nevertheless, what we can state is the following: If G is M-generic over M and
ac =U{s:3JA(s,A) € G}, then for every a e M n[w]¥

M[G]Eag <" aorac” w\ag.
With other words, for every A € M n[w]¥,
ImiFag € Aorag ¢ w\A

and we say that Mathias forcing adds an unsplit real. Can you express the latter property in
terms of dense sets? If (s, A) is arbitrary and B € [w]¥ then either An B or An(w\B) is infinite.
Thus, either (s,An B) or (s,Anw\B) is an extension of (s, A). This implies that for every
B e [w]¥, the set Dp ={(s,A) : A< Bor Acw\B} is dense, which completes the proof of the
above claim.

LEMMA 3.7. Let G be M-generic over M. Then in M[G] there is a real which eventually
dominates every ground model real.

PRrROOF. Let f e Mn%w. Without loss of generality f is strictly increasing. For an infinite
subset = of w, we identify z with its enumerating function, i.e. the function such that 2(0) = minx
and for each n > 1, z(n+1) = min{m € x : (n) <m}. Note that the set Dy = {(t,F) e M: Vn >
ltl,n € w(f(n) < E(n))} is dense in M. Indeed. Consider an arbitrary (s,A) € M. Since A is
infinite, we can find Ay ¢ A such that for each n > |s|, n e w, Ay(n) > f(n). Then (s,Ay) € Dy
and (s,Af) < (s, A).

Let G be M-generic and let ag = U{s : JA(s, A) € G}. We identify ag with its enumerating
function. Consider any f e Mn®“w. Then, there is (s,4) € DynG and so ag\s € A. But then for
each n > |s|, ag(n) > A(n) > f(n). Thus f <* ag. O



