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CHAPTER 1

Ordinal and Cardinal Arithmetic

1. The Axiomatic System of Zermelo-Fraenkel

1.1. ZFC. In the following, we will formulate the axiomatic system of Zermelo-Fraenkel. For

this we work in the language of set theory, which has only one non-logical symbol, the binary

relation, membership! The language of set theory is denoted L∈. The Axioms (universal closure

of the following statements):

● Axiom 1 (Extensionality)

∀z(z ∈ x↔ z ∈ y) → x = y
● Axiom 2 (Foundation)

∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y))
● Axiom 3 (Comprehension Scheme) For each formula ϕ without y free:

∃y∀x(x ∈ y↔ x ∈ v ∧ ϕ(x))
● Axiom 4 (Pairing)

∃z(x ∈ z ∧ y ∈ z)
● Axiom 5 (Union)

∃A∀Y ∀x(x ∈ Y ∧ Y ∈ F → x ∈ A)
● Axiom 6 (Replacement Scheme) For each formula ϕ in which B is not a free variable

∀x ∈ A∃!yϕ(x, y) → ∃B∀x ∈ A∃y ∈ Bϕ(x, y)

Remark 1.1. To formulate the last three axioms, we need some de�ned notions, namely the

notions of a subset, emptyset, successor of a set, intersection and singleton:

(1) x ⊆ y i� ∀z(z ∈ x→ z ∈ y)
(2) x = ∅ i� ∀z(z ∉ x)
(3) y = S(x) i� ∀z(z ∈ y↔ z ∈ x ∨ z = x)
(4) y = v ∩w i� ∀x(x ∈ y↔ x ∈ v ∧ x ∈ w)
(5) Sing(y) i� ∃y ∈ x∀z ∈ x(z = y).

Note that S(x) = x ∪ {x}, Sing(y) = {y} and the ordered pair (x, y) is the set {{x},{x, y}}.
We continue with the axioms.

● Axiom 7 (In�nity)

∃x(∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x))
5



6 1. ORDINAL AND CARDINAL ARITHMETIC

● Axiom 8 (Power Set)

∃y∀z(z ⊆ x→ z ∈ y)
● Axiom 9 (Axiom of Choice)

∅ ∉ F ∧ ∀x ∈ F∀y ∈ F (x ≠ y → x ∩ y = ∅) → ∃C∀x ∈ F (Sing(C ∩ x))

We refer to the above system of Axioms as ZFC. Note that ZFC is an in�nite set of Axioms,

because Axioms 3 (Comprehension) and 6 (Replacement) are in fact axiom schemes (one axiom

for each formula). Moreover ZFC is not �nitely axiomatizable.

1.2. Relations and Functions.

Definition 1.2. Binary relation A set R is said to be a binary relation i� R is a set of ordered

pairs, i.e. for each u ∈ R there are x, y such that u = (x, y) = {{x},{x, y}}.

Remark 1.3. Recall the following notions associated to a binary relation R:

(1) R is a pre-order on A if R is re�exive and transitive on A.

(2) R partially orders A non-strictly if R is a pre-order on A and satis�es ¬∃x, y ∈ A(xRy ∧
yRx ∧ x ≠ y).

(3) R is a total-order on A if R is irre�exive, transitive and satis�es trichotomy, i.e. for any

a, b ∈ A either aRb, or bRa or a = b.

Definition 1.4. A binary relation R is a function if for every x there is at most one y such

that (x, y) ∈ R. If there is y such that xRy then R(x) denotes that unique y.

Definition 1.5. For any set A, idA = {(x,x) ∶ x ∈ A} is the identity function of A.

Proof. (Justi�cation of existence) Note that we can justify the existence of idA as follows:

idA = {(x,x) ∈ P(P(A)) ∶ x ∈ A}.
�

Remark 1.6. Note (x,x) = {{x},{x,x}} = {{x},{x}} = {{x}} and whenever x ∈ A and x ∈ B,
then

(x, y) = {{x},{x, y}} ∈ P(P(A ∪B)).

Definition 1.7. A ×B = {(x, y) ∶ x ∈ A ∧ y ∈ B}

Proof. (Justi�cation of existence) The existence of A×B follows from the Axioms of Power

Set and Comprehension, since A ×B = {(x, y) = {{x},{x, y}} ∈ P(P(A ∪B)) ∶ x ∈ A ∧ y ∈ B}. �

Remark 1.8. To claim that A×B is a set, alternatively one can use the Axioms of Replacement

and Union. By Replacement for each y ∈ B, A × {y} = {(x, y) ∶ x ∈ A} is a set. Again by

Replacement S = {A× {y} ∶ y ∈ B} is a set. Now, by the Union Axiom ⋃S is a set. Thus, we can

de�ne A ×B = ⋃S.

Definition 1.9. (Domain and Range) For every set R de�ne
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(1) dom(R) = {x ∶ ∃y((x, y) ∈ R)},
(2) ran(R) = {y ∶ ∃x((x, y) ∈ R)}.

Proof. (Justi�cation of existence: Using Union and Comprehension) If {{x},{x, y}} ∈ R,
then {x},{x, y} belong to ⋃R and so x, y ∈ ⋃⋃R. Thus, dom(R) = {x ∈ ⋃⋃R ∶ ∃y((x, y) ∈ R)},
and ran(R) = {y ∈ ⋃⋃R ∶ ∃x((x, y) ∈ R)}. �

Note that alternatively, one can use Replacement.

Definition 1.10. (Restriction) R ↾ A = {(x, y) ∈ R ∶ x ∈ A}

Proof. (Justi�cation of existence) By the Axiom of Comprehension. �

Remark 1.11. The notions of a function, injection, bijection, surjection, can be de�ned in a

similar way.

Lemma 1.12. Assume ∀x ∈ A∃!yϕ(x, y) and assume the Axiom of Replacement. Then there

is a function f such that dom(f) = A and such that ∀x ∈ A, f(x) is the unique y such that

ϕ(x, y).

Definition 1.13. (A set of functions) Given sets A,B let

BA = AB = {f ∣ f ∶ A→ B}.

Proof. (Justi�cation of existence: Power set and Comprehension) If f is a function from A

to B, then f ⊆ A ×B. Therefore AB ⊆ P(A ×B). �

Definition 1.14. Let A be a set and let R be a relation on A. Then, we say that

(1) R totally orders A strictly if R is transitive, irre�exive, satis�es trichotomy on A.

(2) R well-orders A i� R totally orders A and R is well-founded on A, i.e. every B ⊆ A has

an R-minimal element.

Lemma 1.15. If R is a well-order on a set A and X ⊆ A, then R is a well-order on X.

Proof. Clearly R is a total order on X. Moreover, every subset of X has an R-minimal

element. �

2. Ordinal Arithmetic

2.1. Ordinals.

Definition 2.1. A set z is an ordinal if z is transitive, i.e. ∀x(x ∈ z → x ⊆ z) and the

membership relation ∈ is a well-order on z.

Example 2.2.

● ∅,
● {∅},
● {∅,{∅}},
● {∅,{∅},{∅,{∅}}}
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● ⋯

Remark 2.3. Every natural number is an ordinal.

Notation. ON denotes the collection of all ordinals. Greek letters are used to denote ordinals.

Lemma 2.4. Suppose α is an ordinal, z ∈ α. Then z is also an ordinal.

Proof. By transitivity of α, z ⊆ α. Thus ∈ is well-founded on z. We need to check if z is

transitive. Let x ∈ z and y ∈ x. Then x ∈ α. But α is transitive and so x ⊆ α. Thus y ∈ α.
Therefore x, y, z are elements of α. But ∈ is transitive on α and so we have y ∈ x ∧ x ∈ z → y ∈ z.
Thus y ∈ z. That is x ⊆ z, i.e. z is transitive. �

Lemma 2.5. Let α, β be ordinals. Then α ∩ β is an ordinal.

Proof. Since α ∩ β ⊆ α, the ∈ is well-founded on α ∩ β. We need to show that α ∩ β is

transitive. Let x ∈ α∩β and y ∈ x. Then x ⊆ α∩β and so y ∈ α∩β. Thus x ⊆ α∩β, i.e. α∩β is a

transitive set. �

Lemma 2.6. Let α,β be ordinals. Then α ⊆ β if and only if α ∈ β ∨ α = β.

Proof. (⇐) If α ∈ β, then by transitivity of β, we have α ⊆ β. Therefore α ∈ β∨α = β implies

that α ⊆ β.

(⇒) If α = β, then clearly we are done. So, suppose α ≠ β. Thus X = β/α ≠ ∅ and so there is

ξ = minβ/α. Then
ξ ∈ β and ξ ∉ α.

We will show that ξ = α. First we will show that ξ ⊆ α. Let µ ∈ ξ. Then by transitivity of β,

we have ξ ⊆ β and so µ ∈ β. If µ ∉ α, we get a contradiction to the minimality of ξ. Thus µ ∈ α
and so ξ ⊆ α. Now, suppose ξ ⊆ α, but ξ ≠ α! Then take any pick µ ∈ α/ξ. Then µ ∈ β (because

α ⊆ β by hypothesis) and ξ ∈ β, since ξ = minβ/α. Thus, by the trichotomy of ∈ on β we get

µ = ξ ∨ µ ∈ ξ ∨ ξ ∈ µ.
(1) However µ ∈ α, but ξ ∉ α. Thus µ ≠ ξ.
(2) By the choice of µ, µ ∉ ξ.
(3) Thus ξ ∈ µ.

Since µ ∈ α and α is transitive, ξ ∈ α, which is a contradiction to the choice of ξ! Therefore

ξ = α. � �

Theorem 2.7. (The collection of all ordinals �behaves" like an ordinal)

(1) (Transitivity) For all α, β and γ ordinals, if α ∈ β ∧ β ∈ γ then α ∈ γ.
(2) (Irre�exivity) for every ordinal α, ¬(α ∈ α).
(3) (Trichotomy) for all α,β ordinals: α ∈ β ∨ β ∈ α ∨ α = β.
(4) (Well-foundedness) If X ≠ ∅ is a set of ordinals, then X has an ∈-least element.
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Proof. (1) Since γ is a transitive set, β ⊆ γ and so α ∈ γ.

(2) Suppose α ∈ α. That is α is an element of α. But ∈ is irre�exive on α and so ¬(α ∈ α). This
is a contradiction. Therefore α /∈ α.

(3) Let δ = α ∩ β. Then δ ⊆ α, δ ⊆ β. But then by a previous Lemma we have:

δ ∈ α ∨ δ = α and δ ∈ β ∨ δ = β.

● If δ = α, then α ⊆ β and so α ∈ β ∨ α = β.
● If δ = β, then β ⊆ α and so β ∈ α ∨ β = α.
● Thus suppose δ ≠ α, δ ≠ β. Therefore δ ∈ α and δ ∈ β, i.e. δ ∈ α ∩ β = δ, which is a

contradiction to (2).

(4) Let X ≠ ∅ and X be a set of ordinals. Let α ∈X. If α = minX, then we are done. Otherwise

X0 = {ξ ∶ ξ ∈ X ∧ ξ ∈ α} ≠ ∅. Then µ = minX0 exists, because X0 ⊆ α. Thus µ = minX ∩ α. Note
that µ = minX. Consider any δ ∈ X and suppose δ ∈ µ. Then δ ∈ α (since µ ⊆ α), which is a

contradiction to µ = minX ∩ α. �

Remark 2.8. The above theorem shows that the collection of all ordinals, �behaves" like an

ordinal. However, one may ask: Is the collection of all ordinals a set? Is there a set containing

all ordinals?

Theorem 2.9. (Bourali-Forty Paradox) There is no set containing all ordinals.

Proof. Suppose not and let X be a set containing all ordinals. Then let

Y = {y ∈X ∶ y is an ordinal}.

By the Axiom of Comprehension Y is a set. By the previous theorem ∈ is well-founded on Y and

Y is a transitive set. Thus, Y is an ordinal. But then Y ∈ Y , contradiction to (2) of the previous
theorem. Thus, there is no such X. � �

Notation. We will use the following notation:

(1) With ON we denote the class of all ordinals.

(2) Let α,β be ordinals. Then α < β denotes α ∈ β and α ≤ β denotes α ∈ β ∨ α = β.

Lemma 2.10. Let α, β be ordinals. Then

α ∩ β = min{α,β} and α ∪ β = max{α,β}.

Lemma 2.11. If A ≠ ∅ is a set of ordinals, then

(1) ⋂A = minA,

(2) ⋃A ∈ ON
(3) If ∀α ∈ A∃β ∈ A(α < β), then ⋃A is the smallest ordinal that exceeds all ordinals in A.

Thus, we denote ⋃A also supA.
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Proof. (2) We need to show that ⋃A is a transitive set and ∈ is well-founded on ⋃A. Let
α ∈ ⋃A. Thus there is β ∈ A such that α ∈ β. But β is transitive and so α ⊆ β. Therefore α ⊆ ⋃A.
To show well-foundedness of ∈, let X ⊆ ⋃A. Thus ∀x ∈ X there is αx ∈ A such that x ∈ αx. Now
{αx ∶ x ∈ X} is a set of ordinals and so by well-foundedness of the membership relation on ON,
there is α0 = min{αx ∶ x ∈X}. Then either α0 = minX or α0 ∩X ≠ ∅, in which case min(α0 ∩X)
is as desired.

(3) Let δ = ⋃A. Then δ = {α ∶ ∃β ∈ A(α ∈ β)}. Since for every α ∈ A there is β ∈ A such that

α < β, we get that every α ∈ A is an element of δ. Also, if α < δ, then α ∈ δ and so there is β ∈ A
such that α ∈ β. But, then β ∉ α and so α does not exceed all elements of A. �

Lemma 2.12. Let α be an ordinal. Then

(1) S(α) = α ∪ {α} is an ordinal,

(2) α < S(α) and
(3) for all ordinals γ, γ < S(α) i� γ ≤ α.

Proof. The membership relation is well-founded on S(α) and clearly S(α) is a transitive

set. The rest is straightforward. �

Definition 2.13. (Successor and Limit Ordinals) An ordinal β is

(1) a successor i� there is an ordinal α such that β = S(α) = α ∪ {α},
(2) a limit ordinal i� β ≠ 0 and β is not a successor ordinal,

(3) a �nite ordinal or a natural number if and only if ∀α ≤ β(α = 0 ∨ α is a successor).

Remark 2.14. If n is a natural number, then S(n) is a natural number and every element of

n is a natural number.

Theorem 2.15. (Principle of ordinary induction) If ∅ ∈X and for all y ∈X(S(y) ∈X), then
every natural number is in X.

Proof. Suppose not and let n ∈ N/X. Consider Y = S(n)/X. Then n ∈ Y and so Y ≠ ∅. Let
k = minY . Thus k ≤ n. Therefore k = ∅ or k is a successor. However ∅ ∉ Y , because ∅ ∈X and so

k = S(i) for some i. By minimality of k, we must have i ∈ X. But then also k = S(i) ∈ X, which

is a contradiction. �

Remark 2.16. Recall the Axiom of In�nity: ∃x(∅ ∈ X ∧ ∀y ∈ x(S(y) ∈ x)). Thus if X is a

set which contains all natural numbers, then {n ∈X ∶ n is a natural number} is a set.

Lemma 2.17. Let X be a set of ordinals, which is an initial segment of ON. That is

∀β ∈X∀α < β(α ∈X)).
Then X is an ordinal itself.

Proof. Note that ∈ is a well-order on X. Since X is an initial segment of the ordinals, X is

also a transitive set. Thus X is an ordinal. �

Remark 2.18. So in particular, every transitive set of ordinals is an ordinal.
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Definition 2.19. Let ω denote the set of all natural numbers.

Remark 2.20. Note that ω is an initial segment of ON and so ω is an ordinal. Moreover ω

is not a successor ordinal and ω is not �nite. Thus, ω is the �rst limit ordinal.

Definition 2.21. Assume the Axiom of In�nity and for each n ∈ N let

Bn = nB = {F ∣ F ∶ n→ B}.
Then let

B<ω = <ωB ∶= ⋃{Bn ∶ n ∈ ω}.
Proof. (Justi�cation of existence) Use the Power Set Axiom or the Axiom of Replacement.

�

Remark 2.22. Let L = (C,F ,R) be a �rst order language and let B be the set of all logical

and non-logical symbols of L. Then the set of formulas of L is a subset of B<ω. Thus, in particular

in a countable �rst order language (assuming AC) there are only countably many formulas.

Next, we will introduce the notion of an order type.

Lemma 2.23. Let α, β be ordinals and suppose that f ∶ (α, ∈) → (β, ∈) is an order preserving

bijection (i.e. an isomorphism). Then α = β and f = id.

Proof. Let ξ ∈ α. Then f(ξ) ∈ β. Furthermore, since f is order preserving f(ξ) = {f(µ) ∶
µ < ξ}. Suppose X0 = {ξ ∈ α ∶ f(ξ) ≠ ξ} ≠ ∅. Then X0 has a minimal element µ. Thus for all

ξ < µ, f(ξ) = ξ and so

f(µ) = {f(ξ) ∶ ξ < µ} = {ξ ∶ ξ < µ} = µ,
which is a contradiction. Therefore X0 = ∅ and so f is the identity. �

Theorem 2.24. Let A be a set and let R be a well-order on A. Then there is a unique ordinal

α such that (A,R) ≅ (α, ∈).
Remark 2.25. Uniqueness follows from the previous statement.

Proof. (Existence) For a ∈ A let a ↓∶= {x ∈ A ∶ xRa} and let

G = {a ∈ A ∶ ∃ξa ∈ ON((a ↓,R) ≅ (ξa, ∈))}.
Since A is a set, by the Axiom of Comprehension G is also a set. Since ∀a ∈ G ∃ξa as above, by
Replacement there is a set X ⊆ ON and a function f ∶ G → X such that for all a ∈ G, f(a) = ξa.
Then ∈ is a well-order on range(f) ⊆X. Moreover range(f) is a transitive and so it is an ordinal,

say α. Then f ∶ (G,R) ≅ (α, ∈). Note that:
● if G = A, then we are done.

● if G ⊆ A and G ≠ A, let e = minR(A/G). Then e ↓= G and f ∶ (e ↓,R) ≅ (α, ∈). That is
ξe = α. But, this implies that e ∈ G, which is a contradiction. Thus G = A.

�

Definition 2.26. (Order Type) Let R be a well-order on A. Then type(A,R) is the unique
ordinal α such that (A,R) ≅ (α, ∈). We denote this ordinal by type(A,R).
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2.2. Ordinal Arithmetic.

Definition 2.27. Let α, β be ordinals. Then

(1) The ordinal multiplication of α and β, denoted α ⋅ β, is the ordinal

type(β × α,<lex).

(2) The ordinal addition of α and β, denoted α + β, is the ordinal

type({0} × α ∪ {1} × β,<lex).

Lemma 2.28. If R well-orders A and X ⊆ A, then R well-orders X and

type(X,R) ≤ type(A,R).

Proof. We can assume that type(A,R) = (α, ∈) and that X, A are sets of ordinals. Let

δ = type(X,R) and let f ∶ (X,R) ≅ (δ, ∈). Suppose X0 = {ξ ∈ X ∶ f(ξ) > ξ} ≠ ∅ and let

µ = minX0. Then f(µ) > µ and ∀ξ ∈X ∩ µ(f(ξ) ≤ ξ). Since f is an isomorphism

f(µ) = {f(ξ) ∶ ξ < µ} ≤ µ,

which is a contradiction. Therefore for all ξ ∈X, f(ξ) ≤ ξ. Then

δ = {f(ξ) ∶ ξ ∈X} ⊆ α and so δ ⊆ α.

�

Example 2.29.

(1) ω + ω
0,1,⋯, n, n + 1,⋯, ω = ω + 0, ω + 1, ω + 2,⋯, ω + n,⋯

(2) ω ⋅ 2 = type({0,1} × ω,<lex)

(0,0), (0,1),⋯, (0, n),⋯, (1,0), (1,1),⋯, (1, n),⋯

Thus ω + ω = ω ⋅ 2 (because the order type is unique!).

(3) However 1 + ω = ω, while ω < ω + 1. Thus 1 + ω ≠ ω + 1.

(4) Also 2 ⋅ ω = type(ω × {0,1},<lex) = ω, while ω ⋅ 2 = ω + ω > ω.
(5) More precisely, what is 2 ⋅ ω?

(0,0), (0,1), (1,0), (1,1), (2,0), (2,1),⋯, (n,0), (n,1),⋯

(6) In particular 2 ⋅ ω ≠ ω ⋅ 2.
(7) Both, ordinal multiplication and ordinal addition are associative, but not commutative.

Theorem 2.30. (Trans�nite Induction on ON) Let ψ(α) be a formula. If there is an ordinal

α such that ψ(α), then there is a least ordinal ξ such that ψ(ξ).

Proof. Fix α such that ψ(α). If α is least, then we are done. Otherwise, X = {ξ ∈ α ∶
ψ(α)} ≠ ∅ and so ξ = minX is as desired. �
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Theorem 2.31. (Primitive Recursion on ON) Suppose for all s there is a unique y such that

ϕ(s, y) and de�ne G(s) to be this unique y. Then there is a formula ψ for which the following

two properties are provable:

(1) ∀x∃!yψ(x, y). Thus, ψ de�nes a function F , where F (x) is such that ψ(x,F (x)).
(2) ∀ξ ∈ ON(F (ξ) = G(F (ξ))).

Proof.

δ-approximations to F : Let δ ∈ ON and let App(δ, h) abbreviate
h is a function,dom(h) = δ,∀ξ ∈ δh(ξ) = G(h ↾ ξ).

Uniqueness: We will show that

δ ≤ δ′ ∧App(δ, h) ∧App(δ′, h′) → h = h′ ↾ δ.
In particular, the case δ = δ′ gives the uniqueness of h. Fix δ, δ′, h, h′ as above. Suppose h ≠ h′ ↾ δ.
Then X = {ξ < δ ∶ h(ξ) ≠ h′(ξ)} ≠ ∅ and so there is µ = minX. Then for all ξ < µ h(ξ) = h′(ξ).
That is h ↾ µ = h′ ↾ µ. But then h(µ) = G(h ↾ µ) = G(h′ ↾ µ) = h′(µ), which is a contradiction.

Therefore X = ∅ and h = h′ ↾ δ.
Existence: By trans�nite induction on ON show that ∀δ∃hApp(δ, h). Suppose not and let δ ∈ ON
be least such that ¬∃hApp(δ, h). Thus in particular ∀ξ < δ∃hξ such that App(ξ, hξ).

Case 1: δ = ∅ - impossible, since App(0,∅).
Case 2: If δ = β+1 let f = hβ∪{⟨β,G(hβ)⟩}. Then App(δ, f) which contradicts our hypothesis.
Case 3: δ is a limit ordinal. Let f = ⋃{hξ ∶ ξ < δ}. Then uniqueness implies that f is a

function and furthermore App(δ, f), which is a contradiction to the choice of δ.

Thus ∀δ ∈ ON∃!hApp(δ, h). Let ψ(x, y) be the following formula:

(x ∉ ON ∧ y = 0) ∨ (x ∈ ON ∧ ∃δ > x∃h(App(δ, h) ∧ h(x) = y)).
The uniqueness and existence of h imply that ∀x∃!yψ(x, y) and so ψ(x, y) de�nes a function F .

Now, let ξ ∈ ON. Then pick any δ > ξ and h such that App(δ, h). Then
F (ξ) = h(ξ) = G(h ↾ ξ) = G(F ↾ ξ)

as desired. �

Remark 2.32. One can de�ne ordinal addition and exponentiation by trans�nite recursion

on the ordinals as follows:

Ordinal addition Let α ∈ ON. Recursively over β ∈ ON de�ne α + β as follows:

(1) α + 0 = α,
(2) α + β = S(α + γ) if β = S(γ).
(3) α + β = ⋃γ∈β(α + γ) if β is a limit > 0.

Ordinal multiplication Let α ∈ ON. By recursion over β ∈ ON de�ne the ordinal α ⋅ β as follows:

(1) α ⋅ 0 = 0,



14 1. ORDINAL AND CARDINAL ARITHMETIC

(2) α ⋅ β = (α ⋅ γ) + α, if β = S(γ),
(3) α ⋅ β = ⋃γ∈β(α ⋅ γ), if β is a limit > 0.

Exercise 1. The latter two de�nitions are equivalent to the de�nitions of ordinal addition

and ordinal multiplication respectively, which we gave earlier in the lecture.

Definition 2.33. (Ordinal Exponentiation) Recursively, one can de�ne ordinal exponentia-

tion as follows:

α0 = 1, αS(β) = αβ ⋅ α, αγ = sup
β<γ

αβ for γ limit.

3. Cardinal Arithmetic

3.1. Comparing in�nities.

Definition 3.1. Let X,Y be sets.

(1) X ⪯ Y i� there is an injective function f ∶X → Y ;

(2) X ≈ Y i� there is a bijection f ∶X → Y .

Remark 3.2. Note that

● ⪯ is transitive and re�exive, and that

● ≈ is an equivalence relations.

So, we can think of di�erent in�nite sizes as equivalence classes, consisting of sets any two of

which are in bijective correspondence.

Lemma 3.3. If B ⊆ A and there is an injective f ∶ A→ B then A ≈ B.

Proof. Using the fact that f(A) ⊆ B ⊆ A obtain:

A ⊇ B ⊇ f(A) ⊇ f(B) ⊇ f2(A) ⊇ f2(B) ⊇ f3(A) ⊇ ...

Let f0 = id and for each n ∈ N let

Hn = fn(A)/fn(B), Kn = fn(B)/fn+1(A).

We will show that for each n, the functions

f ↾Hn ∶Hn →Hn+1 and f ↾Kn ∶Kn →Kn+1

are bijections.

Claim 3.4. f ↾Hn ∶Hn →Hn+1 is a bijection, where Hn = fn(A)/fn(B).

Proof. Let g = f ↾Hn. Clearly since f is injective, then also g is injective. We need to show

that g is onto. Let x ∈Hn+1. Thus x ∈ fn+1(A)/fn+1(B). So clearly, there is y ∈ fn(A) such that

x = f(y). We need to show that y ∉ fn(B). However, if y ∈ fn(B) then f(y) = x ∈ fn+1(B) which
is a contradiction. Thus, x = f(y) for some y ∈Hn = fn(A)/fn(B), i.e. g is a bijection. �
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Consider the set P = ⋂n∈ω fn(A) = ⋂n∈ω fn(B). Then
A = P ∪H0 ∪H1 ∪H2 ∪⋯ ∪K0 ∪K1 ∪⋯
B = P ∪H1 ∪H2 ∪H3 ∪⋯ ∪K0 ∪K1 ∪⋯

are partitions of A, B. Then the function k ∶ A→ B de�ned by

● k ↾Hn = f ↾Hn for each n,

● k ↾ P = id and

● k ↾Kn = id for each n,

is a bijection from A to B. �

Theorem 3.5. (Schröder-Bernstein) A ≈ B i� A ⪯ B and B ⪯ A.

Proof. (⇒) If f ∶ A→ B is a bijection, then f witnesses A ⪯ B and f−1 witnesses B ⪯ A.
(⇐) Suppose f ∶ A→ B and h ∶ B → A are injective. Let B̂ = h(B). Then B̂ ⊆ A and h ∶ B → B̂ is

a bijection. Thus, by de�nition B ≈ B̂. On the other hand B̂ ⊆ A and so h ○ f ∶ A → B̂ witnesses

A ⪯ B̂. Thus, by the previous Lemma A ≈ B̂. Since B ≈ B̂ we obtain A ≈ B. �

Definition 3.6. X ≺ Y i� X ⪯ Y and it is not the case that Y ⪯X.

Remark 3.7. By the theorem of Schröder-Bernstein, X ≺ Y means that X can be mapped

injectively into Y , but there is no bijection between X and Y .

Lemma 3.8. (Cantor's Diagonal Element) If F is a function, dom(f) = A and D = {x ∈ A ∶ x ∉
f(x)} then D ∉ ran(f).

Proof. Suppose D ∈ ran(f). Then there is x ∈ A such that D = f(x). There are two

possibilities: If x ∈ f(x), then x ∈ D (since f(x) = D) and so x satis�es the de�ning characteristic

of D, i.e. x is an element of A such that x ∉ f(x). This is a contradiction. If x ∉ f(x), then since

x ∈ A we have that x satis�es the de�ning characteristic of D and so we must have that x ∈ D, i.e.
x ∈ f(x). Again we reach a contradiction. Therefore D ∉ ran(f). �

Theorem 3.9. A ≺ P(A).

Proof. Clearly A ⪯ P(A) witnessed by the mapping x ↦ {x} for each x ∈ A. We claim that

P(A) /⪯ A. Well, suppose to the contrary that P(A) ⪯ A. Then by Schröder-Bernstein P(A) ≈ A
and so there is a bijection f ∶ A → P(A). Then since D = {x ∈ A ∶ x ∉ f(x)} ∈ P(A) and f

is onto we must have D = {x ∈ A ∶ x ∉ f(x)} ∈ ran(f) contradicting Cantor's Diagonal Element

Lemma. �

Corollary 3.10. N ≺ P(N).

Remark 3.11. Characteristic Functions Let A be a set and let B ⊆ A. Then we refer to

χB ∶ A→ 2 = {0,1} de�ned by

χB(a) =
⎧⎪⎪⎨⎪⎪⎩

1 if a ∈ B
0 otherwise
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as the characteristic function of B. The mapping B ↦ χB where B ∈ P(A) is a bijection between
A2 and P(A). Thus A2 ≈ P(A). In particular N2 = 2N ≈ P(N).

Remark 3.12. P(N) ≈ (0,1).

Definition 3.13. (Finite, countable and uncountable sizes)

(1) A set A is said to be countable, if A ⪯ ω.
(2) A set A is said to be �nite if A ⪯ n for some n ∈ ω.
(3) In�nite means not �nite. Uncountable means not countable.

(4) A countably in�nite set is a countable set which is in�nite.

3.2. Cardinal Numbers.

Fact 1.

(1) If B ⊆ α then type(B, ∈) ≤ α.
(2) If B ⪯ α, then B ≈ δ for some δ ≤ α.
(3) If α ≤ β ≤ γ and α ≈ γ then α ≈ β ≈ γ.

Proof. (2) If B ⪯ α, then B ≈ δ for some δ ≤ α (identify B with a subset of α and apply

part (1)). To see item (3) notice that α ⊆ β and β ⪯ α imply that α ≈ β. �

Thus, the ordinals come in blocks of the same size. Informally, the �rst ordinal in a block is

called a cardinal.

Definition 3.14. A cardinal is an ordinal α such that ξ ≺ α for all ξ ∈ α.

Remark 3.15. Thus, an ordinal α fails to be a cardinal i� there is ξ < α such that ξ ≈ α. We

denote by CD the collection of all cardinals.

Theorem 3.16.

(1) If α ≥ ω is a cardinal, then α is a limit ordinal.

(2) Every natural number is a cardinal.

(3) If A is a set of cardinals, then supA is a cardinal.

(4) ω is a cardinal.

Proof. (1) Let α ≥ ω be an in�nite cardinal. Suppose α is a successor ordinal. Thus

α = δ +1 = δ ∪{δ}. Then f ∶ δ ∪{δ} → δ de�ned by f(δ) = 0, f(n) = n+1 for all n ∈ ω and f(ξ) = ξ
for all ξ such that ω ≤ ξ < δ is a bijection. Thus δ ∈ α, but δ /≺ α, which is a contradiction to α

being a cardinal.

(2) Proceed by induction. Now, 0 is trivially a cardinal. Suppose n is a cardinal and suppose

S(n) = n + 1 is not a cardinal. Then ∃ξ(ξ < S(n)) such that ξ ≈ S(n). Thus there is a bijection

f ∶ ξ → S(n) = n ∪ {n}. Clearly ξ ≠ 0 and so ξ = S(m) for some m < n. But, then
f ∶m ∪ {m} → n ∪ {n}

is a bijection. We have the following options: If f(m) = n, then f ↾ m ∶ m → n is a bijection,

contradiction to the assumption that n is a cardinal. Otherwise f(m) = j ∈ n. Now n ∈ ran(f)
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and so there is i ∈ m such that f(i) = n. Consider the mapping g ∶ m → n de�ned by g(i) =
j and g ↾ m/{i} = f . Then g is a bijection, again a contradiction to the assumption that n is a

cardinal.

(3) Suppose, by way of contradiction that supA = ⋃A is not a cardinal. Thus there is ξ < supA

such that ξ ≈ supA. Recall that supA is the least ordinal, which is greater or equal each element

of A. Thus there is α ∈ A such that ξ < α. However ξ < α ≤ supA and ξ ≈ supA implies ξ ≈ α
which is a contradiction to α being a cardinal.

(4) Note that ω = supn∈N n = ⋃n∈N n and so the claim follows from items (2) and (3) above. �

Definition 3.17.

(1) We say that a set A is well-orderable, if there is a relation R on A such that (A,R) is a
well-order.

(2) If A is well-orderable, then the cardinality of A, denoted ∣A∣, is the least ordinal α such

that A ≈ α.

Remark 3.18. The cardinality of a set is always a cardinal number. Under the Axiom

of Choice every set can be well-ordered and so under the AC every set is characterised by its

cardinality.

Lemma 3.19.

(1) If A is a set, which can be well-ordered and f ∶ A → B is an onto mapping, then B can

be well-ordered and ∣B∣ ≤ ∣A∣.
(2) Let κ be a cardinal and B ≠ ∅. Then B ⪯ κ if and only if there is an onto mapping

f ∶ κ→ B.

Corollary 3.20. (A) set B ≠ ∅ is countable if and only if there is an onto function f ∶ ω → B.

Theorem 3.21. (Hartogs, 1915) Let A be a set. Then there is a cardinal κ such that κ /⪯ A.

Proof. Fix A and let W = {(X,R) ∶ X ⊆ A ∧R well-orders X}. Then if α is an ordinal, we

have that

α ⪯ A i� ∃(X,R) ∈W s.t. α = type(X,R).
By the Axiom of Replacement Z = {type(X,R) + 1 ∶ (X,R) ∈W} is a set. But then β = supZ is

an ordinal. Moreover, for each α ⪯ A, we have that β > α. Thus, β /⪯ A. Take κ = ∣β∣. Then κ ≈ β
and κ /⪯ A. �

Definition 3.22. Let A be a set. Then ℵ(A) denotes the least cardinal κ such that κ /⪯ A.
For ordinals α de�ne α+ = ℵ(α).

Definition 3.23. By trans�nite recursion on ON, de�ne the cardinal numbers ℵξ as follows:
(1) ℵ0 = ω0 = ω
(2) ℵξ+1 = ωξ+1 = (ℵξ)+
(3) ℵη = ωη = sup{ℵξ ∶ ξ < η} whenever η is a limit ordinal.
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Remark 3.24. (The class of all cardinals) The collection of all cardinals is a proper class.

ℵ0 = ∣N∣ < ℵ1 < ℵ2 < ... < ℵn... < ℵω < ℵω+1 < ...

Discussion 3.25. The cardinality of the real line How large is R? What is ∣R∣? Note that

∣R∣ = ∣P(N)∣ and ∣P(N) = 2ℵ0 where 2ℵ0 is cardinal exponentiation (to be de�ned shortly) and is

the cardinality of the set of functions from N to 2.

Theorem 3.26. (Hessenberg, 1906) Suppose α ≥ ω is an ordinal. Then ∣α × α∣ = ∣α∣. Thus in
particular, if κ ≥ ω is a cardinal, then ∣κ × κ∣ = κ.

Remark 3.27. Observe that it is su�cient to prove the claim for cardinal numbers. Indeed.

Suppose α is an in�nite ordinal and we have proved that ∣∣α∣ × ∣α∣∣ = ∣α∣. Now α ≈ ∣α∣, which
induces a bijection witnessing ∣α∣ × ∣α∣ ≈ α × α and so ∣∣α∣ × ∣α∣∣ = ∣α∣.

Proof. De�ne a relation ⊲ on ON ×ON as follows: (ξ1, ξ2) ⊲ (η1, η2) i�
● either max{ξ1, ξ2} < max{η1, η2},
● or max{ξ1, ξ2} = max{η1, η2} and (ξ1, ξ2) <lex (η1, η2).

Note that ⊲ is a well-order. It is su�cient to show that

Claim 3.28. For each in�nite cardinal κ, type(κ × κ,⊲) = κ.

Proof. Proceed by trans�nite induction on κ. Let κ be the least in�nite cardinal such that

type(κ×κ,⊲) ≠ κ. Now, let δ = type(κ×κ,⊲) and let F ∶ (δ,<) → (κ×κ,⊲) be an order preserving

bijection. Since δ ≠ κ, there are two options δ > κ or δ < κ.
Suppose δ > κ. Then F (κ) is de�ned and so ∃(ξ1, ξ2) ∈ κ × κ such that F (κ) = (ξ1, ξ2). Let

α = max{ξ1, ξ2} + 1. Then since κ is a limit ordinal, α < κ. Moreover since F is order preserving,

F ′′κ ⊆ α×α. Therefore κ ⪯ α×α ≺ κ, which is clearly a contradiction. Now, suppose δ < κ. Then
κ ⪯ κ × κ ≈ δ, which is a contradiction, since κ is a cardinal.

Therefore there is no such κ, i.e. for each in�nite cardinal κ, ∣κ×κ∣ = κ. This proves the claim
and the theorem. �

�

3.3. Cardinal Arithmetic. Note that

(1) If A ≺ B and C ≺D, then AC ⪯ BD.

(2) If 2 ⪯ C, then A ≺ P(A) ⪯ AC, simply because P(A) ≈ A2 ≺ AC.

Lemma 3.29.

(1) C(BA) ≈ C×BA

(2) (B∪C)A ≈ BA × CA, where B and C are disjoint.

Proof. (1) Consider the mapping Φ ∶ C(BA) → C×BA de�ned by

Φ(f)(c, b) = (f(c))(b).
(2) Consider the mapping Ψ ∶ B∪CA→ BA × CA given by

Ψ(f) = (f ↾ B,f ↾ C).
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�

Definition 3.30. (Cardinal addition, multiplication and exponentiation) Let κ and λ be

cardinals. Then:

(1) κ + λ is de�ned to be the cardinality of the set {0} × κ ∪ {1} × λ.
(2) κ × λ is de�end to be the cardinality of the set κ × λ.
(3) κλ is the cardinality of the set κλ ∶= {f ∣ f ∶ κ→ λ}.

Lemma 3.31. (Monotonicity) Let κ,κ′, λ, λ′ be cardinals such that κ ≤ κ′, λ ≤ λ′. Then:
(1) κ + λ ≤ κ′ + λ′,
(2) κ ⋅ λ ≤ κ′ ⋅ λ′,
(3) κλ ≤ (κ′)λ′ .

Proof. (1) Note that {0} × κ ∪ {1} × λ ⊆ {0} × κ′ ∪ {1} × λ′. Thus id ∶ κ + λ ⪯ κ′ + λ′ and so

κ + λ ≤ κ′ + λ′.

(2) Similarly κ × λ ⊆ κ′ × λ′ and so id ∶ κ ⋅ λ ⪯ κ′ ⋅ λ′. Therefore κ ⋅ λ ≤ κ′ ⋅ λ′.

(3) Consider the mapping ϕ ∶ λκ→ (λ′)(κ′) de�ned by

● ϕ(f) ↾ λ = f and

● ϕ(f)(ξ) = 0 for all λ ≤ ξ < λ′.
When κ = κ′ = 0, note that 00 = ∣00∣ = ∣{∅}∣ = 1 and for λ > 0, 0λ = ∣λ0∣ = ∣∅∣ = 0. �

Lemma 3.32. Let κ, λ, θ be cardinals. The following properties refer to cardinal arithmetic:

(1) κ + λ = λ + κ,
(2) κ ⋅ λ = λ ⋅ κ,
(3) (κ + λ) ⋅ θ = κ ⋅ θ + λ ⋅ θ,
(4) κ(λ⋅θ) = (κλ)θ,
(5) κ(λ+θ) = κλ ⋅ κθ.

Proof. To see (1) note that A ∪ B = B ∪ A. To see (2) note that A × B = B × A. To see

(3) observe that (A ∪B) ×C = A ×C ∪B ×C. To see (4) note that C(BA) ≈C×B A. To see (5)
observe that (B∪C)A ≈ BA × CA provided that B,C are disjoint. �

Example 3.33.

(1) ω, ω ⋅ ω, ω + ω are three di�erent ordinals, all of the same cardinality.

(2) ωω as ordinal exponentiation is equal to supn∈ω ω
n, which is a countable set.

(3) However, ωω as cardinal exponentiation is uncountable: ∣ωω∣ = ∣P(ω)∣ = ℵℵ0
0 = 2ℵ0 (to be

proven shortly).

Lemma 3.34. Let κ, λ be cardinals and suppose at least one of them is in�nite.

(1) Then the cardinal sum of κ and λ is equal to max{κ,λ}.
(2) If none of them is 0, then the cardinal product of κ and λ is equal to max(κ,λ).
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Proof. Let κ ≤ λ. Thus λ is in�nite. But then λ ⪯ κ + λ ⪯ λ × λ. However we proved that

λ × λ ≈ λ. Therefore λ ⪯ κ + λ and κ + λ ⪯ λ. Therefore κ + λ = max{κ,λ} = λ. To see the second

claim assume that κ ≤ λ. Thus λ is in�nite. Then λ ⪯ κ × λ ⪯ λ × λ ≈ λ and so κ × λ ≈ λ. �

Lemma 3.35. If 2 ≤ κ ≤ 2λ and λ is in�nite, then κλ = 2λ. All exponentiation here is cardinal

exponentiation.

Proof. 2λ ⪯ κλ ⪯ (2λ)λ ⪯ 2λ×λ = 2λ⋅λ = 2λ. � �

Corollary 3.36. 2ω = ωω.

Remark 3.37. (CH and GCH)

(1) For every ordinal α, 2ℵα ≥ ℵα+1.

(2) The Continuum Hypothesis(abbreviated CH) is the statement that 2ℵ0 = ℵ1.

(3) The Generalized Continuum Hypothesis (abbreviated GCH) is the statement 2ℵα = ℵα+1

for all α ∈ ON.

Remark 3.38. Thus CH is the statement that the cardinality of the real line is the �rst

uncountable cardinal. If CH holds, then there are no in�nite sizes between ∣N∣ and ∣R∣.

4. Co�nality and Lemma of König

4.1. Co�nality.

Definition 4.1. (Co�nality) If γ is a limit ordinal, then the co�nality of γ is de�ned as

follows:

cf(γ) = min{type(X) ∶X ⊆ γ ∧ sup(X) = γ}.
We say that γ is a regular cardinal, if cf(γ) = γ.

Remark 4.2. Note that cf(γ) ≤ γ.

Example 4.3. ℵ0 < ℵ1 < ... < ℵn < ... < ℵω < ... Then cf(ℵω) = ω.

Lemma 4.4. Let γ be a limit ordinal. Then:

(1) If A ⊆ γ and sup(A) = γ, then cf(γ) = cf(type(A)).
(2) cf(cf(γ)) = cf(γ). Thus cf(γ) is a regular ordinal.

(3) ω ≤ cf(γ) ≤ ∣γ∣ ≤ γ.
(4) If γ is a regular ordinal, then γ is a cardinal.

Proof. (1) Let α = type(A). Since γ is limit and A is unbounded in γ, α must be limit as

well. Let f ∶ (α, ∈) → (A, ∈) be an isomorphism.

cf(γ) ≤ cf(α): If Y ⊆ α is unbounded in α, then f ′′(Y ) is unbounded in γ and type(f ′′(Y )) =
type(Y ). Now, take Y ⊆ α such that type(Y ) = cf(α). Then Y ⊆ γ is unbounded in γ, type(Y ) =
cf(α). Thus cf(γ) ≤ cf(α).



4. COFINALITY AND LEMMA OF KÖNIG 21

cf(α) ≤ cf(γ): Let X ⊆ γ be unbounded and let type(X) = cf(γ) and consider the mapping

h ∶ X → A(⊆ γ) given by h(ζ) = min{η ∶ η ∈ A ∧ η ≥ ζ}. Then h is non-decreasing. Consider the

set

X ′ = {η ∈X ∶ ∀ξ ∈X ∩ η(h(ξ) < h(η))}.
Therefore h ↾ X ′ ∶ X ′ → A is order preserving and so injective. Thus h(X ′) is unbounded in A.

However the set A was chosen to be of order type α. Therefore

cf(α) ≤ type(X ′) ≤ type(X) = cf(γ).

(2) Let A ⊆ γ be an unbounded subset of γ of order type cf(γ). Then by part (1) of this Lemma,

cf(γ) = cf(type(A)) = cf(cf(γ)).

(3) By de�nition ω ≤ cf(γ) and ∣γ∣ ≤ γ. So, we need to show that cf(γ) ≤ ∣γ∣. For this purpose, let
κ ∶= ∣γ∣ and �x an onto function f ∶ κ→ γ. Recursively, de�ne a function g ∶ κ→ ON as follows:

g(η) ∶= max{f(η), sup{g(ξ) + 1 ∶ ξ < η}}.

What can we say about g?

(1) dom(g) = dom(f) = κ,
(2) g(η) ≥ f(η) for all η ∈ κ,
(3) if ξ < η then g(ξ) < g(η), because g(η) ≥ g(ξ) + 1 > g(ξ),
(4) If η = ζ + 1, then

g(ζ + 1) = max{f(ζ + 1), sup{g(ξ) + 1 ∶ ξ ≤ ζ}} = max{f(ζ + 1), g(ζ) + 1}.

In particular we have that g ∶ κ ≅ ran(g) and so type(ran(g)) = κ.
If ran(g) ⊆ γ, then since g(η) ≥ f(η) and ran(f) = γ, we have ran(g) is unbounded in γ.

Therefore cf(γ) ≤ κ = ∣γ∣ and we are done.

If ran(g) /⊆ γ, we can �nd η ∈ κ least such that g(η) ≥ γ. Suppose η = ξ + 1. Then

g(η) = g(ξ + 1) = max{g(ξ) + 1, f(η)}.

However g(η) ≥ γ and f(η) < γ. Thus g(η) = g(ξ) + 1. By minimality of η, g(ξ) < γ and so

g(ξ) + 1 ≤ γ. Therefore g(η) = g(ξ) + 1 ≤ γ ≤ g(η). But then γ = g(ξ) + 1 is a successor, which is a

contradiction! Therefore η is a limit ordinal and g′′η is unbounded in γ. Moreover g ↾ η ∶ η ≈ g′′η.
In particular type(g′′η) ≤ η. Then cf(γ) ≤ type(g′′η) ≤ η < κ = ∣γ∣.

(4) This is a direct corollary to (3). Indeed, suppose γ is regular. Then γ = cf(γ). However by
item (3) we have that cf(γ) ≤ ∣γ∣ ≤ γ. Therefore γ ≤ ∣γ∣ ≤ γ and so γ = ∣γ∣ is a cardinal. �

Definition 4.5. (Regular and Singular Cardinals) Let γ be an in�nite cardinal.

(1) If γ = cf(γ), we say that γ is regular.

(2) If cf(γ) < γ, we say that γ is singular.

Remark 4.6. By the previous Lemma, part (1), we have that cf(α + β) = cf(β). Indeed, the
set A = {α + ξ ∶ ξ < β} is unbounded in α + β. Thus, for every limit ordinal γ < ω1, cf(γ) = ω. For
every limit ordinal γ such that γ < ω2, either cf(γ) = ω or cf(γ) = ω1.
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Lemma 4.7. Let γ be a limit ordinal.

(1) Suppose γ = ℵα, where α = 0 or α = β + 1 is a successor ordinal. Then γ is regular.

(2) If γ = ℵα for a limit ordinal α, then cf(γ) = cf(α).

Proof. (1) If α = 0, then ℵα = ℵ0 = ω and ω ≤ cf(ω) ≤ ∣ω∣ ≤ ω is regular. Thus, suppose

γ = ℵβ+1. Consider any A ⊆ ℵβ+1 such that type(A) < ℵβ+1. It is su�cient to show that A is not

unbounded in ℵβ+1, since then ℵβ+1 ≤ cf(γ). But cf(γ) ≤ ∣γ∣ = ℵβ+1 and so cf(ℵβ+1) = ℵβ+1.

To show that A is not unbounded in γ, consider supA = ⋃A. Note that ∣A∣ ≤ ℵβ , because
∣A∣ ≤ type(A) < ℵβ+1. Moreover, every element of A is of cardinality at most ℵβ . Therefore we

can view A as a collection of ≤ ℵβ-many sets, each of cardinality at most ℵβ . Then, by the Axiom
of Choice we obtain that ∣ supA∣ = ∣⋃A∣ ≤ ℵβ (see Lemma 4.10). Thus supA < ℵβ+1 (otherwise

contradiction to the notion of a cardinal!) Thus A can not be unbounded in ℵβ+1.

(2) Let A = {ℵξ ∶ ξ < α}. Then A ⊆ ℵα and supA = ℵα. By a previous Lemma cf(ℵα) =
cf(type(A)). However cf(type(A)) = cf(α). Thus cf(ℵα) = cf(α). �

Example 4.8.

● cf(ℵn) = ℵn for each n ∈ ω, and
● cf(ℵω) = ω.

4.2. König's Lemma.

Remark 4.9. Let A,B be sets such that A ≠ ∅. Then there is an injective function g ∶ B → A

if and only if there is an onto function f ∶ A→ B.

Lemma 4.10. (AC) Let κ be an in�nite cardinal. If F is a family of sets with ∣F∣ ≤ κ and

∣X ∣ ≤ κ for each X ∈ F , then ∣ ⋃F∣ ≤ κ.

Proof. Assume F ≠ ∅ and ∅ ∉ F . Then there is an onto function f ∶ κ → F . Similarly, for

each B ∈ F �x an onto function

gB ∶ κ→ B.

This de�nes an onto mapping h ∶ κ × κ→ ⋃F given by

h(α,β) = gf(α)(β).
Since ∣κ × κ∣ = κ, we obtain an onto mapping from κ onto ⋃F . �

Theorem 4.11. (AC) Let θ be a cardinal.

(1) Suppose θ is regular and F is a family of sets, such that ∣F∣ < θ and moreover ∣S∣ < θ for

all S ∈ F . Then ∣ ⋃F∣ < θ.
(2) Suppose cf(θ) = λ < θ. Then there is a family F of subsets of θ with ∣F∣ = λ and ∣ ⋃F∣ = θ

such that ∣S∣ < θ for all S ∈ F .

Proof. (1) Let X = {∣S∣ ∶ S ∈ F}. Then X ⊆ θ, ∣X ∣ < θ and so type(X) < θ. Since

θ is regular, type(X) < cf(θ) and so X is not unbounded in θ. Thus sup(X) < θ. Consider

κ ∶= max{sup(X), ∣F∣}. Then κ < θ. If κ is in�nite, then by Lemma 4.10 ∣ ⋃F∣ ≤ κ. If κ is �nite,

then ⋃F is �nite. In either of those two cases ∣ ⋃F∣ < θ.
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(2) Just take F to be a subset of θ such that type(F) = λ and sup(F) = ⋃F = θ. �

Theorem 4.12. (König) Let κ ≥ 2 and λ be in�nite. Then cf(κλ) > λ.

Proof. Let θ = κλ. Note that θ is in�nite and θλ = κλ⋅λ = κλ = θ. Thus, we can enumerate
λθ is order type θ, i.e. λθ = {fα ∶ α ∈ θ}. There are two options. Either cf(κλ) ≤ λ or cf(κλ) > λ.

If cf(κλ) ≤ λ < 2λ ≤ κλ, then by Theorem 4.11 we have θ = ⋃ξ<λ Sξ, where each ∣Sξ ∣ < θ. Let
g ∶ λ → θ be the function g(ξ) = min(θ/{fα(ξ) ∶ α ∈ Sξ}). Then g ∈ λθ and so there is α ∈ θ such

that g = fα. Take ξ < λ such that α ∈ Sξ. Then g(ξ) ≠ fα(ξ), contradiction.
Therefore cf(κλ) > λ. �

Example 4.13.

(1) cf(2ℵ0) > ℵ0 = ω and so 2ℵ0 can not be ℵω.
(2) Consistently (using the method of forcing) 2ℵ0 is any cardinal of uncountable co�nality,

e.g. ℵ2020, ℵω+1, ℵω1 , etc.

Theorem 4.14. Assume GCH. Let κ, λ be cardinals such that max{κ,λ} ≥ ω.
(1) Suppose 2 ≤ κ ≤ λ+. Then κλ = λ+.
(2) Suppose 1 ≤ λ ≤ κ. Then κλ = κ provided that λ < cf(κ) and κλ = κ+ provided that

λ ≥ cf(κ).

Proof. (1) Since we have GCH, 2λ = λ+. Then 2 ≤ κ ≤ 2λ. But then 2λ ≤ κλ ≤ (2λ)λ = 2λ⋅λ =
2λ and so κλ = 2λ. Thus by GCH we obtain κλ = λ+.
(2) Since 1 ≤ λ ≤ κ we have that κ ≤ κλ ≤ κκ = 2κ = κ+ (the latter equality by GCH). Therefore

either κλ = κ or κλ = κ+. By König's Lemma cf(κλ) > λ. Thus:
If cf(κ) ≤ λ, then κλ ≠ κ. Therefore κλ = κ+. Done!
If λ < cf(κ), then every f ∶ λ → κ is bounded. Thus for all f ∈ λκ there is αf < κ such that

f ∈ λαf and so λκ = ⋃α<κ λα. Now λα ⊆ P(λ × α) and for α < κ, ∣λ × α∣ < κ. Therefore ∣λα∣ ≤ κ by

GCH. Then by Lemma 4.10 we have also ∣λκ∣ ≤ κ and so κλ = κ. Done! �

Definition 4.15. (The beth function) By recursion on the ordinals de�ne ℶζ as follows:
(1) ℶ0 = ℵ0 = ω,
(2) ℶζ+1 = 2ℶζ ,

(3) ℶη = sup{ℶζ ∶ ζ < η} for η limit ordinal.

Remark 4.16. CH is equivalent to the statement that ℶ1 = ℵ1 and GCH is equivalent to the

statement that ℶξ = ℵξ for all ξ ∈ ON.

Definition 4.17. A cardinal κ is said to be weakly inaccessible if κ > ω, κ is regular and

κ > λ+ for all λ < κ. A cardinal κ is strongly inaccessible if κ > ω is regular and κ > 2λ for all

λ < κ.

Remark 4.18. If κ is strong inaccessible, then κ is weakly inaccessible. The existence of a

strong inaccessible cardinal is not provable in ZFC.





CHAPTER 2

Foundations and Consturctibility

1. Well-founded relations

1.1. Well-foundedness.

Definition 1.1. Let R be a relation on a class A. If y ∈ A, let
y ↓= predR(y) = predA,R(y) = {x ∈ A ∶ xRy}.

The relation R is said to be set-like on A i� for all y ∈ A, y ↓ is a set.

Example 1.2.

(1) If A = V , where V denotes the collection of all sets and R is the membership relation,

then y ↓= y and so ∈ is set-like.
(2) If A = V , where V denotes the collection of all sets and R is the subset relation, then

y ↓= P(y). Thus R is set-like if and only if the power set axiom holds.

(3) The membership relation is set-like on the class of all ordinals.

(4) Let A be the class of all pairs of ordinals and R be the lexicographic order. Fix any pair

(α,β). Then for any ordinal γ, (∅, γ) ≤lex (α,β) and so (α,β) ↓ is a proper class.

Definition 1.3. Let A be a class and R a relation on A.

(1) An R-path of n steps in A, where n ∈ N and n ≥ 1 is a function s with domain n+ 1 such

that for all i < n(s(i)Rs(j + 1)). Moreover, s is said to be a path from s(0) to s(n).
(2) The transitive closure of R on A, denoted as R∗ = R∗

A is the set of all pairs (a, b) of

elements of A such that there is a path from a to b.

Lemma 1.4. Let R be a relation on a class A. Then

(1) The transitive closure R∗ of R is a transitive relation on A.

(2) If R is set-like on A, then R∗ is set-like on A.

Proof. The relation R∗ is transitive on A, since the composition of two paths is a path.

Suppose R is set-like on A. For each n ≥ 1, let

Dn(a) = {x ∈ A ∶ ∃ path in A from x to a of n steps}.
By induction on n we will show that for each a ∈ A, Dn(a) is a set. Fix a ∈ A. Then D0(a) = ∅,
D1(a) = predR(a) which is a set, since R is set-like. Suppose n ≥ 1 and Dn(a) is a set. Then by

the axiom of replacement

E = {predR(y) ∶ y ∈Dn(a)}
25
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is a set and so by the union axiom, ⋃E =Dn+1(a) is also a set. Now, by the axiom of replacement

F = {Dn(a) ∶ n ∈ ω}
is also a set and so by the union axiom, predR∗(a) = ⋃F is also a set. Therefore R∗ is indeed

set-like. �

Theorem 1.5. (Trans�nite Induction on Well-Founded Relations) Assume R is well-founded

and set-like on A. Let X be a non-empty subclass of A. Then X has an R-minimal element.

Proof. Fix a ∈ A. Then, since R∗ is set-like, we have that Y = {a} ∪ (predR∗(a) ∩X) is

a set. By de�nition, R is well-founded and so there is b = minR Y . If there is y such that yRb

then y ∈ predR∗(a). Now, if y ∈ X then y ∈ Y and yRb is a contradiction to the minimality of b.

Therefore either there is no such y, or y ∉X. �

Theorem 1.6. (Trans�nite Recursion on Well-founded Relations) Let A be a de�ned class

and let R be a de�ned relation on A, which is set-like and well-founded on A. Suppose for all x, s

there is a unique y such that ϕ(x, s, y) and so ϕ de�nes a function G with the property that for all

x, s, G(x, s) = y where ϕ(x, s, y). Then, there is a formula ψ such that the following are provable:

(1) ∀x∃!yψ(x, y) and so ψ de�ned a function, which we denote F

(2) for all a ∈ A we have

F (a) = G(a,F ↾ (a ↓)) = G(a,F ↾ predA,R(a)).

Proof. Consider the formula App(d, h) which states:

(1) h is a function

(2) d = dom(h) ⊆ A
(3) for all y ∈ d, predA,R(y) ⊆ d
(4) for all y ∈ d, h(y) = G(y, h ↾ (y ↓)).

Note that item (3) implies that predA,R∗(y) ⊆ d for all y ∈ d. By item (4), h is an approximation

to F . Since R is set-like, R∗ is also set-like and for all x ∈ A, dx = {x}∪predA,R∗(x) is a set. Now,
let ψ(x, y) be the following formula

x ∉ A ∧ y = ∅) ∨ (x ∈ A ∧ ∃d, h(App(d, h) ∧ x ∈ d ∧ h(x) = y)).
Uniqueness of Approximations: Suppose App(d, h) ∧App(d′, h′). We will show that App(d ∩

d′, h ∩ h′). Note that for all y ∈ d ∩ d′ we have predA,R(y) ⊆ d ∩ d′. Furthermore, by induction

using item (4) one can show that h ↾ d∩ d′ = h′ ↾ d∩ d′. Indeed, if this is not the case, then there

is y0 ∈ d ∩ d′ such that h(y0) ≠ h′(y0) and without loss of generality, we can assume that y0 is

R-least with this property. But, then by item (4) we have
h(y0) = G(y0, h ↾ (y0 ↓)) = G(y0, h

′ ↾ (y0 ↓)) = h′(y0),
which is a contradiction.

Existence of Approximations: We want to show that ∀x ∈ A∃d, g(App(d, h) ∧ x ∈ d). Note

that if App(d, h) ∧ x ∈ d then App(dx, hx) where hx = h ↾ dx. We proceed, by induction. Suppose

X = {x ∈ A ∶ ¬∃d, h(App(d, h) ∧ x ∈ d)} ≠ ∅.
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Let a = minR(X). Since a is R-least, for each x ∈ predR,A(a) there are dx, hx such that

App(dx, hx). Take
d̃ = ⋃{dx ∶ x ∈ predR,A(a)}, h̃ = ⋃{hx ∶ x ∈ predR,A(a)}.

Then App(d̃, h̃). Now, take d ∶= d̃ ∪ {a} and h ∶= h̃ ∪ {(a,G(a, h̃ ↾ (a ↓)))}. Then App(d, h) and

since a ∈ A, we reach a contradiction to a ∈X.

By the uniqueness and existence of the approximating functions we obtain that ∀x ∈ A∃!yψ(x, y).
Therefore, ψ de�nes a function F as desired. �

Remark 1.7. Note that if F and F ′ satisfy item (2) of the above theorem, then F (a) = F (a′)
for all a ∈ A. Indeed, if this is not the case, then X = {a ∈ A ∶ F (a) ≠ F ′(a)} is non-empty and so

we can take a = minRX. But then, by minimality of a we have that F ↾ (a ↓) = F ′ ↾ (a ↓) and so

F (a) = G(a,F ↾ (a ↓)) = G(a,F ′ ↾ (a ↓)) = F ′(a),
which is a contradiction.

1.2. Rank.

Definition 1.8. Let R be a relation, which is well-founded and set-like on a class A. For

y ∈ A de�ne

rank(y) ∶= rankA,R(y) = ⋃{S(rank(x)) ∶ x ∈ predA,R(y)}.
Let rank(y) = ∅ for y ∉ A.

Justi�cation Let G(x, s) = ⋃{S(t) ∶ t ∈ range(s)}. Then G(x, s) does not depend on x and is

de�ned for all s, x. Then F (a) = G(a,F ↾ (a ↓)) = ⋃{S(F (c)) ∶ c ∈ A, cRa}.

Lemma 1.9. Let R be well-founded and set-like on A. Then

(1) For all y ∈ A, rank(y) is an ordinal and so

rank(y) = sup{rank(x) + 1 ∶ x ∈ predA,R(y)}.
(2) If x ∈ predA,R(y), then rank(x) < rank(y).

Proof. To see item (1) proceed by induction. Suppose y is R-minimal such that rank(y)
is not an ordinal. However rank(y) = ⋃{S(rank(x)) ∶ x ∈ predA,R(y)} = sup{rank(x) + 1 ∶ x ∈
predA,R(y)} which is an ordinal and so we reached a contradiction. To see item (2) consider any
x ∈ predA,R(y). Then by de�nition rank(y) ≥ rank(x) + 1 > rank(x). �

Lemma 1.10. Let A be a de�ned class, R a de�ned relation on A. If there is a de�ned function

Φ ∶ A→ ON such that

if xRy then Φ(x) < Φ(y)
then R is well-founded in A.

Proof. Let X be a subset of A, X ≠ ∅. Then {Φ(x) ∶ x ∈ X} is a set (by replacement) of

ordinals and so it has an ∈-minimal elements α = Φ(y) for some y. Clearly, y is R-minimal in

X. Indeed, if zRy and z ∈ X, then Φ(z) < Φ(y), which is a contradiction to the minimality of

Φ(y). �
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Lemma 1.11. Let A be a de�ned class and R a de�ned relation on A. If R is set-like and

well-founded on A, then R∗ is well-founded in A.

Proof. De�ne Φ ∶ A → ON by Φ(x) ∶= rankA,R(x). If xR∗y, then there is a path from x

to y of n steps, where n ≥ 1 and so by Lemma 1.9 rank(x) < rank(y), i.e. Φ(x) < Φ(y). By

Lemma 1.10. R∗ is well-founded on A. �

Lemma 1.12. Let A be a de�ned class and R a de�ned relation which is set-like and well-

founded on A. Fix b ∈ A and α < rankR,A(b). Then, there is a ∈ A such that aR∗
Ab and

rankR,A(a) = α.

Proof. Consider the class

X = {c ∈ A ∶ rank(c) > α and ¬(∃u ∈ predA,R∗(c) ∧ rankA,R(u) = α)}.

Suppose X ≠ ∅. Since R is set-like and well-founded on A, there is c ∈ X which is R-minimal.

Note that rankA,R(c) = sup{rank(t) + 1 ∶ t ∈ predA,R(c)}. Since rank(c) > α ≥ 0, predA,R(c) ≠ ∅.
If rank(t) + 1 ≤ α for all t ∈ predA,R(c) then rank(c) ≤ α which is a contradiction to the choice of

c. Therefore there is t ∈ predA,R(c) such that rank(t) + 1 > α, i.e. rank(t) ≥ α. Fix such t.

If rank(t) = α, then tR∗b is a contradiction to c ∈X.

If rank(t) ≥ α + 1 > α, then since t ∈ predA,R(c) and c is R-minimal in X, t ∉ X. Thus, there

is d ∈ predA,R∗(t) such that rank(d) = α. But then d ∈ predA,R∗(c) which is a contradiction to

c ∈X.

Therefore, X = ∅ and so there is a ∈ predA,R∗(b) such that rankA,R(a) = α. �

Lemma 1.13. Let α be an ordinal.

(1) Then rankON,∈(α) = α.
(2) If the Axiom of Foundation holds, then rankV,∈(α) = α.

Proof. To prove item (1) observe that ∈ is set-like and well-founded on ON and so we can

de�ne rankON,∈. We proceed by induction. If the claim is not true, then

X = {α ∈ ON ∶ rankON,∈(α) ≠ α}

is non-empty and so it has an ∈-minimal element α. Then

rankON,∈(α) = sup{ξ + 1 ∶ ξ < α} = α,

which is a contradiction.

To see item (2) consider X = {α ∈ ON ∶ rankV,∈(α) ≠ α}. If X ≠ ∅, then it has a least element

and the proof continues as in part (1). �

Lemma 1.14. Suppose A ⊆ B and R is well-founded and set-like on B.

(1) If b ∈ A then rankA,R(b) ≤ rankB,R(b)
(2) If b ∈ A and predB,R∗B

(b) ⊆ A, then rankA,R(b) = rankB,R(b).
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Proof. (1) Suppose not. Then X = {x ∈ A ∶ rankA,R(x) > rankB,R(x)} ≠ ∅. Since R is

well-founded on B (and set-like), it is also well-founded on A. Then X ⊆ A has an R-minimal

element a. Then

rankA,R(a) = sup{rankA,R(t) + 1 ∶ t ∈ predA,R(a)}
≤ sup{rankB,R(t) + 1 ∶ t ∈ predA,R(a)}
≤ sup{rankB,R(t) + 1 ∶ t ∈ predB,R(a)} = rankB,R(a),

which is a contradiction.

(2) The second claim is proven similarly. Suppose by way of contradiction that

X = {b ∈ A ∶ predB,R∗B(b) ⊆ A ∧ rankA,R(b) < rankB,R(b)} ≠ ∅.
Let b be R-minimal in X. Then

rankA,R(b) = sup{rankA,R(t) + 1 ∶ t ∈ predA,R(b)}
= sup{rankB,R(t) + 1 ∶ t ∈ predB,R(b)}
= rankB,R(b),

which is a contradiction. �

Definition 1.15. Let x be a set. Let

(1) ⋃0x = x
(2) For n ≥ 1 let ⋃n+1x = ⋃⋃nx.

Finally, let trcl(x) = ⋃{⋃nx ∶ n ∈ ω}.

Lemma 1.16. Let b be a set. Then the membership relation is well-founded on trcl(b) i� it is

well-founded on {b} ∪ trcl(b).

Proof. Note that if b ∈ trcl(b) then the two sets coincide and so the statement is trivially

true. Suppose b ∉ trcl(b).
(⇒). Suppose ∈ is well-founded on trcl(b). Let X ⊆ {b}∪trcl(b). If b ∉X, then X ⊆ trcl(b) and

so by hypothesis X has an ∈-minimal element. If X = {b} then b = min∈X. Thus, suppose b ∈ X
and X/{b} ≠ ∅. Since X/{b} ⊆ trcl(b), we can take c = min∈(X/{b}). In particular c ∈ trcl(b). If
b ∈ c, then since trcl(b) is a transitive set we obtain that b ∈ trcl(b), contrary to our hypothesis.

Therefore b ∉ c and so c = min∈X.

(⇐) Straightforward, since trcl(b) ⊆ trcl(b) ∪ {b}. �

Remark 1.17. If b ∈∗ b, i.e. b ∈ trcl(b) then ∈ is not well-founded on trcl(b), since ∈ is not

irre�exive.

Definition 1.18. A set b is said to be well-founded if ∈ is well-founded on trcl(b). For a

well-founded set b, let rank(b) = rank{b}∪trcl(b),∈(b). WF denotes the class of well-founded sets.

Corollary 1.19. Let T be a transitive class and let ∈ be well-founded on T . Then T ⊆WF

and rank(b) = rankT,∈(b) for all b ∈ T .

Proof. If b ∈ T then predT,∈∗(b) = trcl(b) ⊆ T . Thus, the statement follows by Lemma 1.14.

�
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Corollary 1.20. The class of all ordinals is a subclass of the class of well-founded sets and

so WF is a proper class. Moreover, rank(α) = α for all α ∈ ON.

Corollary 1.21. The Axiom of Foundation is equivalent to the statement that V =WF.

1.3. Basic Properties of Well-founded Sets.

Lemma 1.22.

(1) Suppose b is a well-founded set and x ∈ b. Then x is well-founded and rank(x) < rank(b).
Thus, in particular, WF is a transitive class.

(2) ∈ is well-founded on WF.

(3) If b is a set of well-founded sets, then b is well-founded.

(4) Let b ∈WF. Then rank(b) = rankWF,∈(b).
(5) Let b ∈WF. Then rank(b) = sup{rank(x) + 1 ∶ x ∈ b}.
(6) Let b ∈WF and c ⊆ b. Then c ∈WF and rank(c) ≤ rank(b).
Proof. (1) Since trcl(x) ⊆ trcl(b), ∈ is well-founded on the transitive closure of x and so

x ∈WF. Then rank(x) = rank{x}∪trcl(x),∈(x) (by de�nition) and by Lemma 1.14

rank{x}∪trcl(x),∈(x) = rank{b}∪trcl(b),∈(x) < rank{b}∪trcl(b),∈(b).
(2) Exercise!
(3) Suppose x consists of well-founded sets. Then trcl(x) is a set of well-founded sets and

since ∈ is well-founded on WF, it is well-founded on trcl(x). Thus x is well-founded by de�nition.

(4) The claim is immediate from Lemma 1.14.(2) since trcl(b) ⊆WF.

(5) Immediate from item (4) and Lemma 1.9.

(6) By (3) c ∈WF. By (4)
rank(c) = sup{rank(x) + 1 ∶ x ∈ c} ≤ sup{rank(x) + 1 ∶ x ∈ b} = rank(b),

just because c ⊆ b. �

Corollary 1.23. Let x, y ∈WF. Then

(1) {x, y} ∈WF and rank({x, y}) = max(rank(x), rank(y)) + 1.

(2) ⟨x, y⟩ ∈WF and rank(⟨x, y⟩) = max(rank(x), rank(y)) + 2.

(3) If P(x) exists, then P(x) ∈WF and rank(P(x)) = rank(x) + 1.

(4) ⋃x ∈WF and rank(⋃x) ≤ rank(x)
(5) x ∪ y ∈WF, rank(x ∪ y) = max(rank(x), rank(y)).
(6) trcl(x) ∈WF and rank(trcl(x)) = rank(x).
Proof. (1) By assumption, x ∈ WF and y ∈ WF, so {x, y} ⊆ WF. However, every set

consisting of well-founded sets is well-founded (by Lemma 1.22(3)) and so {x, y} ∈ WF. To

calculate the rank, proceed as follows:

rank ({x, y}) = sup{ rank(z) + 1 ∶ z ∈ {x, y}} by Lemma 1.22(5)

= max{ rank(x) + 1, rank(y) + 1}
= max{ rank(x), rank(y)} + 1.
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(2) By (1), we have that both {x} and {x, y} are in WF. Then again by (1) we have ⟨x, y⟩ =
{{x},{x, y}} ∈ WF. To calculate the rank, note that

rank (⟨x, y⟩) = sup{ rank(z) + 1 ∶ z ∈ ⟨x, y⟩} by Lemma 1.22(5)

= max{ rank({x}) + 1, rank({x, y}) + 1}
= max{ rank(x) + 2,max{rank(x), rank(y)} + 2} by (1)

= max{ rank(x), rank(y)} + 2.

(3) Since x ∈ WF, it follows from Lemma 1.22(1) that x ⊆ WF. Note that for every z ⊆ x,
we have z ⊆ x ⊆ WF, and so z ∈ WF. Thus P(x) is a set, consisting of well-founded sets and so

P(x) ∈ WF. By Lemma 1.22.(6) for each z ⊆ x we have rank(z) ≤ rank(x). Then

rank(x) + 1 ≤ rank(P(x)) = sup{rank(z) + 1 ∶ z ∈ P(x)} ≤ rank(x) + 1,

where for the �rst inequality we used x ∈ P(x). Thus rank(P(x)) = rank(x) + 1.

(4) Suppose z ∈ ⋃x. Then there is w ∈ x such that z ∈ w ∈ x. Then w ∈ WF by Lemma

1.22(1), and so also z ∈ WF, since it consists of well-founded sets and so ⋃x ∈ WF. Furthermore,

for every such z ∈ ⋃x, we have rank(z) + 1 ≤ rank(x). Thus

rank (⋃x) = sup{ rank(z) + 1 ∶ z ∈ ⋃x} ≤ rank(x).

(5) We have x, y ∈ WF, so x, y ⊆ WF, which implies x ∪ y ⊆ WF and thus x ∪ y ∈ WF by

Lemma 1.22.(3). To compute the rank, using Lemma 1.22(5) we have

rank(x ∪ y) = sup{ rank(z) + 1 ∶ z ∈ x ∪ y}
= max{ sup{rank(z) + 1 ∶ z ∈ x}, sup{rank(z) + 1 ∶ z ∈ y}}
= max{ rank(x), rank(y)}.

(6) By assumption, x ∈ WF, and by induction it follows that every ⋃n x ∈ WF for every n ≥ 1,

by (4) above. Thus trcl(x) = ⋃{⋃n x ∶ n ≥ 0} ⊆ WF, and so trcl(x) ∈ WF. By induction, one can

show that rank(∪nx) ≤ rank(x) for each n and so

rank ( trcl(x)) = sup{ rank(z) + 1 ∶ z ∈ trcl(x)}
= sup{ rank(z) + 1 ∶ z ∈ ⋃nx, for some n}
= sup{ sup{rank(z) + 1 ∶ z ∈ ⋃nx} ∶ n ≥ 0}
= sup{ rank (⋃n x) ∶ n ≥ 0}
= rank(x).

�

With this, we can de�ne initial segments of the well-founded universe:

Definition 1.24. Let α be an ordinal and let R(α) = {x ∈WF ∶ rank(x) < α}.
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Lemma 1.25. Let b be a set, α ∈ ON. Then

b ∈ R(α + 1) i� b ⊆ R(α).

Proof. (⇒) Let b ∈WF and rank(b) < α + 1. Take x ∈ b. Then x is well-founded, rank(x) <
rank(b) ≤ α. Thus, b ⊆ R(α).

(⇐) Let b ⊆ R(α). Then in particular, b is a set of well-founded sets and so b is well-founded.

For each x ∈ b, we have rank(x) < α. Thus, rank(b) = sup{rank(x) + 1 ∶ x ∈ b} ≤ α < α + 1. �

Lemma 1.26. Assume the Power Set Axiom. Then for each α ∈ ON, R(α) is a set. Moreover:

(1) R(0) = ∅,
(2) R(α + 1) = P(R(α)), and
(3) R(γ) = ⋃α<γ R(α) for γ limit ordinal.

Proof. By induction on α. If α = 0, then R(0) = ∅. Now, suppose R(α) is a set. Then by

the Power Set Axiom P(R(α)) is a set and by the previous Lemma R(α + 1) = P(R(α)). If α is

a limit and for each γ < α, R(γ) is a set then by the Replacement and Union Axioms ⋃γ<αR(γ)
is a set, which by de�nition of R(α) is exactly R(α). �

Remark 1.27. The Power set axiom is not necessary to de�ne the notion of a rank. As we

will see, the rank of a set is absolute for transitive models of ZF-P.

2. Mostowski Collpase

2.1. Mostowski Collapsing Function.

Definition 2.1. Let R be a relation, which is well-founded and set-like on A. For y ∈ A,
de�ne the Mostowski collapsing function mos(y) as follows:

mos(y) = mosA,R(y) = {mos(x) ∶ x ∈ predA,R(y)}.

Justi�cation: For each pair of sets x, s de�ne G(x, s) ∶= range(s). Note that G does not depend

on x. Now, de�ne

F (y) = G(y,F ↾ (y ↓)) = {F (x) ∶ x ∈ predA,R(y)}.

Lemma 2.2. Let R be a de�ned relation which is well-founded and set-like on A. Then mos′′A

is transitive.

Proof. Let mos(y) ∈ mos′′A. Then mos(y) = {mos(x) ∶ x ∈ predA,R(y)} ⊆ mos′′A. Thus,

mos′′A is transitive. �

Definition 2.3. A relation R is said to be extensional if

∀x, y ∈ A(predA,R(x) = predA,R(y) → x = y).

Note that if A under the membership relation is a transitive class, then ∈ is extensional on A.

Lemma 2.4. Let R be a well-founded and set-like relation on A.

(1) mosA,R is injective i� R is extensional on A.
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(2) If R is extensional on A, then mos ∶ (A,R) ≅ (mos′′A, ∈).

Proof. (1) Assume mosA,R is injective, but R is not extensional on A. Thus, there are a ≠ b
such that predA,R(a) = predA,R(b). But, then mosA,R(a) = mosA,R(b), which is a contradiction.

Suppose, R is extensional on A. By way of contradiction, suppose X = {a ∈ R ∶ ∃y ∈ A(y ≠
a ∧ mos(a) = mos(y)} ≠ ∅. Let a ∈ X be R-minimal. Then, there is b ∈ X such that b ≠ a and

mos(a) = mos(b). Since R is extensional on A, we must have predA,R(b) ≠ predA,R(a). There are
two cases to consider:

Case 1 Suppose there is c ∈ predA,R(a)/predA,R(b). However mos(c) ∈ mos(a) = mos(b) and

so there is d ∈ predA,R(b) such that mos(c) = mos(d). Since c ∉ predA,R(b), c ≠ d. Thus c ∈ X.

However c ∈ predA,R(a) is a contradiction to the minimality of a.

Case 2 Otherwise, there is d ∈ predA,R(b)/predA,R(a). Just as in Case 1, �nd c ∈ predA,R(a)
such that mos(c) = mos(d). But, then c ∈ X and cRa is a contradiction to the minimality of a.

Therefore if R is extensional on A, then mosA,R is injective.

(2) Straightforward. �

Lemma 2.5. Assume ∈ is well-founded and extensional on A. Let T ⊆ A be transitive. Then

mosA,∈(y) = y for all y ∈ T .

Proof. Suppose not. Then {y ∈ T ∶ mos(y) ≠ y} has an ∈-minimal element. Now mos(a) =
{mos(y) ∶ y ∈ predA,∈(a)} = {y ∶ y ∈ y} = a, which is a contradiction. �

Lemma 2.6. (Transitive ∈-models are unique) Let A,B be transitive sets with A ∈ WF. Let

f ∶ (A, ∈) ≅ (B, ∈) be an isomorphism. Then f = idA and hence A = B.

Proof. Let a ∈ A and b = f(a). Then since A,B are transitive, we have

∀y(y ∈ b↔ ∃x ∈ a(f(x) = y)).

Thus, f(a) = {f(x) ∶ x ∈ a}. But, A is well-founded and so f = mosA,∈. By the previous Lemma

f = id and so A = B. �

Remark 2.7. If two countable transitive models are isomorphic, then they coincide.

Corollary 2.8. Let A be a well-founded set and let B be a set such that

(trcl(A) ∪ {A}, ∈) ≅ (trcl(B) ∪ {B}, ∈).

Then A = B.

Definition 2.9. Let κ be a cardinal. Then H(κ) = {x ∈ WF ∶ ∣ trcl(x)∣ < κ}. In particular,

HC =H(ℵ1) denotes the set of hereditarily countable sets.

Remark 2.10. In particular, HC = H(ℵ1) denotes the set of hereditarily countable sets and

HF =H(ℵ0) the set of hereditarily �nite sets. Note that H(ω) = R(ω).

Lemma 2.11. Let κ be an in�nite cardinal. Then ∣H(κ)∣ = 2<κ and H(κ) ⊆ R(κ).
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Proof. Let x ∈ H(κ) and let α = rank(x). Since trcl(x) is a transitive set, for each ξ < α
there is z ∈ trcl(x) such that rank(z) = ξ. However, this implies that α = {rank(z) ∶ z ∈ trcl(x)}
and since ∣ trcl(x)∣ < κ, we obtain α < κ. Thus, in particular x ∈ R(κ).

We will show that ∣H(κ)∣ = 2<κ = sup{2λ ∶ λ < κ} in two steps. First we show that ∣H(κ)∣ ≥ 2<κ.

If λ < κ, then P(λ) ⊆ H(κ), we get that ∣H(κ)∣ ≥ 2λ. But, this is true for each λ < κ and so

∣H(κ)∣ ≥ 2<κ.

To see that ∣H(κ)∣ ≤ 2<κ consider the mapping F ∶ H(κ) → ∪{P(λ × λ) ∶ λ < κ} de�ned as

follows. Let x ∈H(κ) and let λ = ∣ trcl(x) ∪ {x}∣. Thus λ < κ. Assuming the Axiom of Choice, we

can �nd F (x) ⊆ λ × λ such that (λ,F (x)) ≅ (trcl(x) ∪ {x}, ∈). By Corollary 2.8, the function F

is injective and so

∣H(κ)∣ ≤ ∣⋃{P(λ × λ) ∶ λ < κ}∣ = sup
λ<κ

2λ = 2<κ.

�

Remark 2.12. If κ is an uncountable cardinal, then ∣R(κ)∣ = ℶκ. By the above Lemma

∣H(κ)∣ = 2<κ and so H(κ) is much smaller than R(κ). Note also that ∣HC∣ = 2ℵ0 = ℶ1 and

∣R(ω1)∣ = ℶω1 .

3. The Consistency of Foundation

We will make use of the following notation and theories.

Remark 3.1.

(1) ZFC− denotes the axiomatic system ZFC without the axiom of foundation;

(2) Z denotes the axiomatic system ZFC without the axiom of choice and without the axiom

of replacement;

(3) ZF-P denotes the axiomatic system ZFC without the axiom of choice and the power set

axiom;

(4) BST denotes the set {Axiom 1-5} ∪ {Power set axiom ∨ Replacememt}.
(5) If Γ is a sub-theory of ZFC then Γ− denotes the same theory without the axiom of

foundation;

(6) In the discussion below all theories are extensions of BST−.

Our next goal is to provide a proof of the following statement.

Theorem 3.2. Let Γ be one of the theories ZF-P, ZFC-P, ZF, ZFC. Let Γ− be

Γ/{Axiom of Foundation}.
Then there is a �nitistic proof of Con(Γ−) → Con(Γ). That is if we can �nd a contradiction from

Γ, then we can �nd a contradiction from Γ−.

3.1. Relative interpretation.

Definition 3.3. Let Λ be a set of axioms in L∈ and let L be a �nite, conservative (only

de�ned notions are allowed) extension of L∈. A relative interpretation of L is a class A de�nable

by a formula α(x) such that Λ ⊢ ∃xα(x) such that
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(1) for every n-ary function symbol f in L, where n > 0, there is a formula ϕ(x1,⋯, xn, y)
such that Λ ⊢ ∀x1⋯xn ∈ A∃!y ∈ Aϕ(x̄, y) (thus, ϕ is the intended interpretation of f);

(2) for every n-ary predicate symbolp, where n > 0, there is a formula ϕ(x1,⋯, xn) with

Fr(ϕ) = {x1,⋯, xn} such that if ā = (a1,⋯, an) then ā is in the intended interpretation

of p if and only if Λ ⊢ ∧nj=1α(aj) ∧ ϕ(a1,⋯, an);
(3) for every constant symbol c, there is a formula ϕ such that Λ ⊢ ∃!y(α(y) ∧ ϕ(y));
(4) for every 0-ary predicate symbol p, there is a closed sentence ϕ such that the intended

interpretation of p is true i� Λ ⊢ ¬ϕ and the intended interpretation is false i� Λ ⊢ ϕ.

Remark 3.4. The above relative interpretation extends in a natural way to all terms and

formulas in the language, by substituting all non-logic symbols with their relative interpretations;

∀x with ∀x ∈ A and ∃x with ∃x ∈ A. Relative interpretations are usually clear from context.

Discussion 3.5. Suppose A has a relative interpretation of L in Λ.

(1) Whenever ψ,ϕ1,⋯, ϕn are closed and {ϕ1,⋯, ϕk} ⊢ ψ, then Λ ⊢ (ϕA1 ∧⋯ ∧ ϕAk ) → ψA.

(2) Let Γ be a set of sentences and suppose for each ϕ ∈ Γ, we have Λ ⊢ ϕA. Then the

consistency of Λ implies the consistency of Γ. Indeed, if we can derive a contradiction

from Γ, then we can derive a contradiction from Λ.

3.2. ∆0 formulas.

Definition 3.6.

(1) An ∈-model for L∈ is any structure A = (A,E) where E = {(a, b) ∈ A ×A ∶ a ∈ b}(=∈A).
(2) A transitive model is any ∈-model the universe of which is a transitive set.

Definition 3.7. Let A ⊆ B and ϕ a L∈-formula. Then a formula ϕ is said to be absolute

between A and B if for every assignment σ in A we have

A ⊧ ϕ[σ] i� B ⊧ ϕ[σ].

Definition 3.8. Let L be an expansion of L∈. The set of ∆0-formulas of L is de�ned as

follows:

(1) All atomic formulas are ∆0-formulas.

(2) if ϕ is a ∆0 formula, y is a variable, τ is a term such that y does not occur in τ , then

∀y ∈ τϕ and ∃y ∈ τϕ are ∆0-formulas.

(3) If ϕ is a ∆0-formula, then so is ¬ϕ.
(4) If ϕ and ψ are ∆0-formulas, then so are ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ and ϕ↔ ψ.

Lemma 3.9. Let L be an expansion of L∈ and assume A ⊆B are models of L, the universe A
of A is a transitive set and ∈A= {(a, b) ∈ A ×A ∶ a ∈ b}, ∈B= {(a, b) ∈ B ×B ∶ a ∈ b}. Then all ∆0

formulas of L are absolute between A and B.

Proof. Induction on ϕ. The case in which ϕ is atomic is straightforward and so are the

inductive steps, regarding logical connectives. Assume ϕ(x̄, z) is
∃y(y ∈ τ(x̄, z)) ∧ ψ(x̄, y, z)
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where ψ is ∆0 and A ⪯ψ B. Since A is a substructure of B, we have that whenever ā and c are

from A then τA[ā, c] = τB[ā, c]. Then, by de�nition of the satisfaction relation we have:

A ⊧ ϕ[ā, c] i� ∃b ∈ A(b ∈ τA[ā, c] ∧A ⊧ ψ[ā, b, c]) by de�nition of ϕ

i� ∃b ∈ B(b ∈ τB[ā, c] ∧B ⊧ ψ[ā, b, c]) since A ⪯ψ B, τA[ā, c] ⊆ A ⊆ B
i� B ⊧ ϕ[ā, c] by de�nition.

�

Example 3.10. Examples of formulas in L∈ which are logically equivalent to ∆0-formulas:

(1) (x ⊆ y); ∀z(z ∈ x→ z ∈ y) is logically equivalent to ∀z ∈ x(z ∈ y);
(2) x = ∅; ∀z(z ∉ x) is logically equivalent to ∀z ∈ x(z ≠ z);
(3) y = S(x); x ∈ y ∧ x ⊆ y ∧ ∀z ∈ y(z = x ∨ z ∈ x)
(4) y = v ∩w: ∀x(x ∈ y ↔ x ∈ v ∧ x ∈ w) which is equivalent to (y ⊆ v ∧ y ⊆ w ∧ ∀x ∈ v(∀x ∈

w(x ∈ y)));
(5) Sing(x): ∃y ∈ x∀z ∈ x(z = y).

Definition 3.11. A formula ϕ is said to be absolute for A if A ⪯ϕ V .

Remark 3.12.

(1) If A has a relative interpretation of L, where L is a �nite extension of L∈ in Λ, then

∆0-formulas are absolute between A and B, whenever A ⊆B and A is transitive.

(2) Let x̄ = (x1,⋯, xn) be an n-tuple of variables. Suppose ϕ(x̄) and ψ(x̄) are L∈-formulas
and ∀x(ϕ(x̄) ↔ ψ(x̄)). Then M ⪯ϕ V i� M ⪯ψ V . In particular, if M is transitive,

to show that a given ϕ is absolute for M , it su�ces to show that ϕ is equivalent to a

∆0-formula.

Lemma 3.13. Let M be a model of the Axioms of Extensionality, Comprehension, Pairing

and Union. Then ∅M , SM , ∩M are de�ned and if M is transitive then these are also absolute for

M .

3.3. Axioms 1-6 in WF.

Lemma 3.14. (ZF−-P) If M is a transitive class, then the Axiom of Extensionality holds in

M .

Proof. We have to show that ∀x∀y(∀z(z ∈ x ↔ z ∈ y) → x = y). We relativize this to M :

∀x ∈ M∀y ∈ M(∀z ∈ M(z ∈ x ↔ z ∈ y) → x = y). Now, �x x, y in M . Since M is transitive

x, y ⊆ M . Now, if ∀z ∈ M(z ∈ x ↔ z ∈ y), then in fact we have ∀z(z ∈ x ↔ z ∈ y) which by the

Axiom of Extensionality implies x = y. �

Lemma 3.15. (ZF−-P) If M is a class consisting of well-founded sets, then the Foundation

Axiom holds in M .

Proof. The Foundation Axiom states:

∀x∃y(y ∈ x) → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y)).
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Relativizing the above to M we get:

∀x ∈M∃y ∈M(y ∈ x) → ∃y ∈M(y ∈ x ∧ ¬∃z ∈M(z ∈ x ∧ z ∈ y)).
Fix x ∈ M and suppose ∃y0 ∈ M such that y0 ∈ x. Since M consists of well-founded sets, x is

well-founded. Let µ(x) be a �rst order formula de�ning M . Then ∆ = {z ∈ x ∶ µ(z)} is a set

(by the Axiom of Comprehension). Since x is well-founded, we can take y = min∈ ∆. Then since

y ∈ ∆, we have µ(y) and so y ∈M . Moreover, if ∃z ∈M(z ∈ x∧ z ∈ y) then z would contradict the

minimality of y and so we are done. �

Lemma 3.16. (ZF−-P) If ∀z ∈M∀y ⊆ z(y ∈M), then the Comprehension Axiom holds in M .

Proof. Fix a formula ϕ. The comprehension axiom for ϕ is:

∀z∃y∀x(x ∈ y↔ x ∈ z ∧ ϕ(x))
Now ϕ = ϕ(x, z, x0,⋯, xn−1) and we must show that

∀z, x0,⋯, xn−1 ∈M∃y ∈M∀x ∈M(x ∈ y↔ x ∈ z ∧ ϕM(x, z, x̄)).
By Comprehension in V , y = {x ∈ z ∶ ϕM(x, z, x̄)} is a set and y ⊆ z. By hypothesis y ∈M and so

the relativized instance of comprehension holds in M . �

Lemma 3.17. (ZF−-P) If x, y ∈M({x, y} ∈M) then the pairing axiom holds in M .

Proof. Recall the Pairing axiom ∀x, y∃z(x ∈ z ∧ y ∈ z). Relativized to M this is

∀x, y ∈M∃z ∈M(x ∈ z ∧ y ∈ z).
Since by assumption for all x, y ∈M the pair {x, y} ∈M , we can just take z = {x, y} above. �

Lemma 3.18. If ∀F ∈M(⋃F ∈M) then the union axiom holds in M .

Proof. Straightforward. �

Lemma 3.19. (ZF−-P) Suppose M is a transitive class and for all functions f the following

holds: if dom(f) ∈M and ran(f) ⊆M , then ran(f) ∈M . Then, the Replacement Axiom holds in

M .

Proof. Recall the Replacement Axiom: For each formula ϕ without B free:

∀A∀x ∈ A∃!yϕ(x, y) → ∃B∀x ∈ A∃y ∈ Bϕ(x, y).
Let A ∈ M . Now, suppose ∀x ∈ M(x ∈ A → ∃!y ∈ MϕM(x, y)). By Comprehension in V ,

∆ = {x ∈ A ∶ µ(x)} is a set. We are given that ∀x ∈ ∆∃!y(ϕM(x, y) ∧ µ(y)), where again µ(y) is

the de�ning formula for M . By Replacement in V , there is a function f such that dom(f) = ∆

and for all x ∈ ∆, f(y) is the unique y such that ϕM(x, y) ∧ µ(y). We extend f to a function f ′

such that dom(f ′) = A by de�ning f ′ ↾∆ = f and f ′(y) = a0 for each y ∈ A/∆, where a0 ∈ ran(f)
is �xed. Then dom(f ′) = A ∈M , ran(f ′) = ran(f) ⊆M and so by hypothesis, ran(f ′) ∈M . Then,

take B = ran(f ′). �

Corollary 3.20. (ZF−-P) Axioms 1 − 6 holds in WF.

Proof. The su�cient conditions given in the previous six lemmas hold in WF. �
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3.4. The Power Set Axiom, Axiom of In�nity and Axiom of Choice in WF. Recall

the Power Set Axiom: ∀x∃y∀z(z ⊆ x → z ∈ y). Since ⊆ is de�ned by a ∆0 formula in L∈, the
formula x ⊆ y is absolute for transitive classes.

Lemma 3.21. (ZF−) Let M be a transitive class.

(1) If for all x ∈M , P(x) ∩M ∈M , then PSA holds in M .

(2) If (PSA)M and M satis�es Comprehension, then ∀x ∈M(P(x) ∩M ∈M).

Proof. Note that (PSA)M is the formula

∀x ∈M∃y ∈M∀z ∈M(z ⊆ x→ z ∈ y),
where we used absoluteness of ⊆. To obtain (1) take y = {z ⊆ x ∶ µ(z)} = P(x) ∩M ∈ M . To

obtain (2) consider any x ∈ M . By (PSA)M , there is y ∈ M such that P(x) ∩M ⊆ y. However

being a subset is absolute and so ∆ = {z ∈ y ∶ z ⊆ x ∧ µ(z)} = P(x) ∩M . �

Corollary 3.22. (ZF−) The Power Set Axiom holds in WF.

Proof. Let x ∈WF. If z ⊆ x, then z ∈WF (since a set of well-founded sets is well-founded).

Therefore P(x) ∩WF = P(x) ∈WF, where we also used the Power Set Axiom in V . Then by the

above Lemma, (PSA)WF. �

Lemma 3.23. (ZF−-P) Let M be a transitive class, such that Extensionality, Comprehension,

Pairing and Union hold in M .

(1) If ω ∈M , then the Axiom of In�nity holds in M .

(2) The Axiom of Choice holds in M i� every disjoint family of non-empty sets in M has a

choice set in M .

Proof. (1) The Axiom of In�nity holds i� ∃x(∅ ∈ x ∧ ∀y ∈ y(S(y) ∈ x)). Let ϕ(x) be the

following formula: ∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x)). Thus, (Axiom of In�nity)M i� ∃x ∈ M(ϕ(x)M).
However ϕ(x) is ∆0 in the notions ∅, S, both of which are absolute for M . Thus ϕ(x)M = ϕ(x).
Since ω ∈Mand ϕ(ω) holds, we get (AXiom of In�nity)M .

(2) Let df(F ) be the following formula saying that F is a non-empty set of pairwise disjoint

non-empty sets ∅ ∉ F ∧ ∀x ∈ F (x ≠ ∅) ∧ ∀x ∈ F∀y ∈ F (x ≠ y → x ∩ y = ∅) and let cs(C,F ) be

the following formula saying that C is a choice function for F , ∀x ∈ F (Sing(C ∩ x)). Note that
both df(F ) and cs(C,F ) are ∆0 (as so are ∅, ∩, Sing) and so they are absolute for M . Therefore

(AC)M is equivalent to ∀F ∈M∃C ∈M(df(F ) → cs(C,F )). �

Corollary 3.24. (ZF−-P)

(1) The Axiom of In�nity holds in WF.

(2) AC ⇒ (AC)WF .

Proof. (1) Since w ∈ WF, the statement holds by the previous Lemma. To see (2) assume

AC and let F ∈ WF such that df(F). Then by the Axiom of Choice there is a set C such that

cs(F ,C). Note that C ∩⋃F ∈WF is also a choice set for F and so again the statement holds by

the previous Lemma. �
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Now, we can prove Theorem 3.2.

Theorem. Let Γ be one of the theories ZF-P, ZFC-P, ZF, ZFC. Let Γ− be

Γ/{Axiom of Foundation}.
Then there is a �nitistic proof of Con(Γ−) → Con(Γ). That is if we can �nd a contradiction from

Γ, then we can �nd a contradiction from Γ−.

Proof. We can work in Γ− and using the above established results prove each axiom of Γ

relativized to WF . �

3.5. Set models of large ZFC framents.

Theorem 3.25. (ZF−) Let γ > ω be a limit ordinal. Then

(1) R(γ) ⊧ ZF/{Axiom of Replacement}.
(2) AC⇒ R(γ) ⊧ ZFC/{Axiom of Replacement}.

Proof. (1) We proceed by discussing each axiom.

Extensionality By Lemma 3.14, it su�ces to show that R(γ) is transitive. Suppose x ∈ R(γ)
and let y ∈ x. Then rank(y) < rank(x) < γ and so y ∈ R(γ). Therefore x ⊆ R(γ).

Foundation Since R(γ) ⊆ WF, by Lemma 3.15 the Axiom of foundation holds in R(γ).
Comprehension Let z ∈ R(γ) be arbitrary and let y ⊆ z. Then rank(y) ≤ rank(z) < γ and thus

y ∈ R(γ). By Lemma 2.3.16 it follows that the comprehension axiom schema holds in R(γ).
Pairing Let x, y ∈ R(γ) be arbitrary. Then rank(x), rank(y) < γ and thus rank{x, y} =

max(rank(x), rank(y))+1 < γ, by Corollary 2.1.23 and since γ is a limit ordinal. Thus by Lemma

2.3.17 the pairing axiom holds in R(γ).
Union Let F ∈ R(γ) be arbitrary. Then rank(F) < γ, so rank(⋃F) ≤ rank(F). Thus

⋃F ∈ R(γ). By Lemma 2.3.18 it follows that the Union Axiom holds in R(γ).
In�nity We have already shown that R(γ) is a transitive class which satis�es Extensionality,

Comprehension, Pairing and Union. Furthermore, rank(ω) = ω < γ. Thus ω ∈ R(γ). By Lemma

3.23, it follows that the Axiom of In�nity holds in R(γ).
Power Set Let x ∈ R(γ) be arbitrary. Then rank(x) < γ, so rank (P(x)) = rank(x) + 1 < γ

by Corollary 1.23.(3). Furthermore, rank (P(x)∩R(γ)) ≤ rank (P(x)) < γ by Lemma 1.22. Thus

P(x) ∩R(γ) ∈ R(γ). It now follows from Lemma 3.22 that the Power Set Axiom holds in R(γ).
(2) Let C be a choice set for F ∈ R(γ). Consider C ′ = C ∩⋃F . Then rank(C ′) ≤ rank(⋃F) ≤

rank(F) < γ and is also a choice set for F . Thus the Axiom of Choice holds in R(γ). �

Remark 3.26.

(1) If γ > ω and R(γ) ⊧ Axiom of Replacement then γ = ℶγ and ∣{δ < γ ∶ δ = ℶδ}∣ = γ.
(2) If γ is a successor ordinal then R(γ) does not satisfy Pairing, as R(γ) ⊧ ∃x∀y(x ∉ y).

We will make use of the following Lemma:
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Lemma 3.27. Let x, y be sets. Then

(1) if x ∈ y, then trcl(x) ⊆ trcl(y),
(2) if x ⊆ y, then trcl(x) ⊆ trcl(y),
(3) trcl({x, y}) = trcl(x) ∪ trcl(y) ∪ {x, y},
(4) trcl(⋃x) ⊆ trcl(x).

Proof. Straightforward. �

Theorem 3.28. (ZF−) Let κ be a regular uncountable cardinal. Then

(1) H(κ) ⊧ ZF ∖ {Power Set Axiom}.
(2) AC⇒H(κ) ⊧ ZFC ∖ {Power Set Axiom}.

Proof. (1) By the above Lemma and the various closure criteria, H(κ) satis�es Extension-
ality, Foundation, Comprehension, Pairing and Union. Since ω ∈H(κ), Lemma 3.24 implies that

H(κ) ⊧ Axiom of In�nity.

(2) Let C be a choice set for F ∈H(κ). Then trcl(C∩⋃F) ⊆ trcl(F) and so trcl(C∩⋃F)∣ < κ.
Therefore C ∩⋃F ∈H(κ). �

Theorem 3.29.

(1) If κ is a regular, uncountable cardinal and κ is not strongly inaccessible, then the Power

Set Axiom is false in H(κ).
(2) If κ is strongly inaccessible, then R(κ) =H(κ) ⊧ Power Set Axiom.

Proof. (1) By Lemma 3.21, it su�ces to �nd x ∈H(κ) such that P(x)∩H(κ) /∈H(κ). Since
κ is not strongly inaccessible, there is λ < κ such that 2λ ≥ κ. Let x ∶= λ. Then λ = trcl(λ) and thus
λ ∈ H(κ). Furthermore, for every y ∈ P(x), y ⊆ λ and so y ∈ H(κ). Thus P(x) ∩H(κ) = P(x).
Finally, we have κ ≤ 2λ = ∣P(λ)∣ ≤ ∣ trcl(P(λ))∣, and so P(x) /∈ H(κ). Therefore H(κ) does not

satisfy the Power Set Axiom. �

Theorem 3.30. (ZF−) HF = R(ω) = H(ω) ⊧ ZFC/{Axiom of In�nity}. In fact, the Axiom

of In�nity is false in HF .

Proof. Let ϕ(x0) be the formula ∅ ∈ x ∧ ∀y ∈ x(S(y) ∈ x). However, there is no x0 ∈ HF
such that ϕ(x0). Therefore the Axiom of In�nity does not hold in HF . To see that the Axiom of

Choice holds in HF , note that HF can be well-ordered and so every non-empty set of pairwise

disjoint non-empty sets has a choice function. �

4. Elementary Submodels and De�nability

4.1. Tarksi-Vaught and Löwenheim-Skolem. Recall the following:

Lemma 4.1. (Tarski-Vaught) Let A, B be structures. The following are equivalent:

(1) A ⪯B

(2) For all existential formulas ϕ(x̄) of L, i.e. formulas of the form ∃yψ(x̄, y) and all ā from

A: if B ⊧ ϕ[ā], then there is b ∈ A such that B ⊧ ψ[ā, b].
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Lemma 4.2. (Downward Löwenheim-Skolem Theorem) ZFC− Let B be a L-structure and let

κ be such that max(∣L∣,ℵ0) ≤ κ ≤ ∣B∣. Let S ⊆ B, ∣S∣ ≤ κ. Then, there is A ⪯ B such that S ⊆ A
and ∣A∣ = κ.

Proof. Let ϕ be an existential formula with n free variables (x1,⋯, xn). Let x̄ = (x1,⋯, xn).
Thus ϕ(x̄) is of the form ∃yψ(y, x̄). De�ne a function fϕ ∶ Bn → B as follows: if B ⊧ ϕ(ā) for

some ā ∈ Bn, then ∃b ∈ B such that B ⊧ ψ[b, ā]. For each ā choose such b ∈ B and de�ne fϕ(ā) = b.
If for a given ā there is no such b, then pick an arbitrary element of B.

Let F = {fϕ ∶ ϕ is existential in L}. Then ∣F∣ ≤ κ since ∣L∣ ≤ κ. Take any S′ such that

S ⊆ S′ ⊆ B such that ∣S′∣ = κ. Now take A to be the closure of S′ under F . That is A = ⋃n∈ω S′n
where S′0 = S′, S′1 = S′ ∪ {fϕ(ā) ∶ ā ∈ [S′0]<ω}, S′n+1 = S′n ∪ {fϕ(ā) ∶ ā ∈ [S′n]<ω}. Then ∣A∣ = κ.

It remains to show that A is the universe of an elementary substructure of B, which is

straightforward with the use of the Tarski-Vaught Criterion. �

Exercise 2. (ZFC−) Let γ > ω1 be a limit ordinal. Show that there is a countable, transitive

model M and ordinals α,β ∈M such that M ≡ R(γ) and (α ≈ β)M is false, while (α ≈ β)R(γ) is

true.

Hint Let A be a countable set such that ω, ω1 are in A and A ⪯ R(γ) (take for example the Skolem-hull

of any countable set A0 ⊆ R(γ) which contains ω,ω1. Consider the Mostowski Collapse M of A.

4.2. De�nable Subsets.

Definition 4.3. Let A be a structure for L with P ⊆ A. Fix k > 0.

(1) S ⊆ Ak is de�nable over A with parameters in P i� ∃n ≥ 0 and there is a formula

ϕ(x1,⋯, xk, y1,⋯, yn) of L with k+n free variables such that for some b̄ = (b1,⋯, bn) ∈ P ,
S = {ā ∈ An ∶ A ⊧ ϕ[a1,⋯, ak, b1,⋯, bn]}.

(2) S ⊆ Ak is de�nable over A with parameters i� S is de�nable over A with parameters in

A and S is de�nable over A without parameters i� S is de�nable over A with parameters

in ∅.
(3) For a ∈ A, we say that a is de�nable with or without parameters in P if {a} is de�nable

with or without parameters in P .

Example 4.4. Note that P(R) = 2c = 22ℵ0 . Since L∈ is countable, there are only ℵ0-many

subsets of R which are de�nable without parameters and ∣R<ω ∣ = ∣R∣ = c = 2ℵ0 many subsets of R
which are de�nable with parameters. Recall that R<ω = ⋃n∈ω Rn.

Remark 4.5.

(1) Let P be a set of parameters in A. If every element of P is de�nable over A without

parameters, then every set de�nable with parameters in P is also de�nable without

parameters.

(2) Every heraditarily �nite set a is a de�nable element of HF. Every subset of HF which

is de�nable with parameters in HF is de�nable also without parameters. The de�nable

subsets of HF are called arithmetical.
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Definition 4.6. Let A be a set and P ⊆ A. Then
(1) D(A,P ) = {X ∶X ⊆ A,X is de�nable over (A, ∈) with parameters from P}.
(2) D+(A) =D(A,A), D−(A) =D(A,∅).
(3) If D+(A) =D−(A), then we denote them by D(A).
(4) D(∅) =D+(∅) =D−(∅) = {∅}.

Remark 4.7. Note that every �nite subset of A is in D+(A). Indeed, if a = {b1,⋯, bn} then

a is de�nable via the formula x = y1 ∨⋯ ∨ x = yn.

5. Absoluteness and Re�ection

From now on, except explicitly stated otherwise, we assume the Axiom of Foundation and

thus, unless explicitly stated otherwise, we work in ZFC. Recall that the following are transitive

models of BST : R(γ) for γ > ω and H(κ) for κ regular uncountable.

Lemma 5.1. Each of the following notions is given by a formula, which is equivalent to a ∆0

formula in BST. Thus, each of those notions are absolute to transitive models of BST:

(1) x is a transitive set;

(2) x is an ordinal, x is a successor ordinal; x is a limit ordinal

(3) x = ∅;
(4) x is a natural number;

(5) x = ω.

Lemma 5.2. If M is a transitive model of BST then the following are absolute for M :

(1) ∅, S, ∩ (2-ary intersection function), ∪ (2-ary union function),

(2) 1-ary union and intersection given by ∩∅ = ∅ and ∪∅ = ∅
(3) The ternary relation {x, y} = z
(4) The 2-ary unordered pairing function {x, y}, the 1-ary singleton function {x}, the 2-ary

ordered pairing function ⟨x, y⟩.
(5) The properties; z is an ordered pair; x is a relation;

(6) dom(x), ran(x)
(7) The properties f is a function, f is an injection, f is a surjection, f is a bijection.

(8) The binary relation x × y.
(9) All relational properties of a relation R on a set A: R is transitive, re�exive, irre�exive,

trichotomy, symmetry, partial order, total order, equivalence relation.

Lemma 5.3. HC is a model of ZFC-P together with the statement that all sets are countable

and the statement that P(ω) does not exist.

Proof. Recall that HC =H(ℵ1) = {x ∶ ∣trcl(x)∣ < ℵ1}. Observe that
∀x ∈ HC∃f ∈ HC(f ∶ x→ ω)

is injective. However being an injective function is absolute and so

∀x ∈ HC∃f ∈ HC(f ∶ x ⪯ ω)HC.
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Thus (All sets are countable)HC.
If HC ⊧ P(ω) exists, then by the above observation HC ⊧ ∃f ∶ P(ω) ⪯ ω. By absoluteness,

this gives that P(ω) is countable, which is a contradiction. �

Lemma 5.4. The function α + β and α ⋅ β are absolute for transitive models of ZF-P.

Proof. IfM is a transitive model of ZF-P with α,β ∈M then α+M β and α ⋅M β are de�ned.

Let γ = α ⋅M β. We want to show that γ = α ⋅ β. Let f ∈M be such that

M ⊧ f ∶ (β × α,<lex) ≅ (γ, ∈).

Being a lexicographic order, and being an isomorphism are absolute and so

f ∶ (β × α,<lex) ≅ (γ, ∈).

But then γ = α ⋅ β = type(β × α,<lex). The proof for α +M β is similar. �

Lemma 5.5. The notions �R well-orders A� and �R is well-founded on A� are absolute for

transitive models of ZF-P.

Proof. Let M be a transitive model of ZF-P. Being a total order is absolute, so we will

verify the absoluteness of being a well-founded.

Let A,R be such that R is a well-order on A suppose A,R are elements of M . We have

to verify if M ⊧ (R is a well-order on A). Suppose this is not the case. Let ψ(A,R,X) be the

formula

X ⊆ A ∧X ≠ ∅ ∧X has no R minimal element,

which is the same as

X ⊆ A ∧X ≠ ∅ ∧ ∀z ∈X∃y ∈X(yRx).
Since by hypothesis (R is not well-founded on A)M , then ∃X ∈M such that (ψ(A,R,X))M . But

ψ(A,R,X) is absolute and so ψ(A,R,X) is true, contradiction to R being well-founded on A.

Suppose (R is well-founded on A)M . Now, since M ⊧ ZF-P, then M ⊧ (∃ a rank function).
That is there is Φ ∈M such that

M ⊧ (Φ is a function,dom(Φ) = A,∀x ∈ AΦ(x) ∈ ON, xRy → Φ(x) < Φ(y)).

The above statement is absolute and so there is such a function in V . Therefore R is well-founded

on A. Indeed, if X ⊆ A, then any a ∈X with Φ(a) = min{Φ(x) ∶ x ∈X} is R-minimal in X. �

Corollary 5.6. The properties �R well-orders A� and �R is well-founded on A� are absolute

for R(γ), for any limit γ.

Lemma 5.7. Let M be a transitive model of BST. Then:

(1) [M]<ω ⊆M
(2) HF ⊆M
(3) <ωM ⊆M .
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Proof. (1) Consider the function f ∶ ⟨x, y⟩ ↦ x ∪ {y}. Then f is absolute and moreover

if x, y ∈ M then f(x, y) ∈ M . Note that M ⊆ M . For each x, y ∈ M , the pair {x, y} ∈ M by

absoluteness of the pairing function. Note that z ∈ [M]n+1 i� z = x ∪ {y} = f(x, y) for some

x ∈ [M]n and y ∈M/x. Now, if we assume that [M]n ⊆M then by absoluteness of f , whenever

x, y ∈M we have also f(x, y) = x ∪ {y} ∈M and so [M]n+1 ⊆M .

(2) By induction on n, we can show that R(n) ⊆M for each natural number. Thus HF ⊆M .

(3) Recall that <ωM = ⋃{f ∶ n → M ∶ f is a function, n ∈ ω}. For each such f note that f is a

�nite subset of M and so by (1), f ∈M . �

Remark 5.8. Let Fin(x) be the formula ∃n, f(nat(n) ∧ bij(f, n, x)) and let HrdFin(x) be

the formula ∃n, t, f(x ⊆ t∧ tran(t) ∧ nat(n) ∧ bij(f, n, t)), where tran(x) says that x is transitive,

nat(x) says that x is a natural number and bij(f, x, y) says that f is a bijection from x onto

y. Thus, Fin(x) says that x is �nite and HrdFin(x) says that x is hereditarily �nite. Note that

Fin(x) and HrdFin(x) are absolute for transitive models of BST. Indeed, �x M transitive model

of BST. Then:

● Suppose x ∈M and M ⊧ Fin(x). That is M ⊧ ∃n∃f ∈M(nat(n)∧bij(f, n, x)). However
nat and bij are absolute and so x is �nite.

● Suppose Fin(x). Thus there are n and f such that nat(n)∧bij(f, n, x). Suppose x ∈M .

Now n ∈M and since M is transitive also x ⊆M . Thus f ∈ nx ⊆ nM ⊆M (by item (1)
of the previous Lemma). Thus f ∈M and so (Fin(x))M .

The proof that HrdFin(x) is absolute is similar.

Corollary 5.9. The following are absolute for transitive models of ZF-P:the 0-ary function

HF; the 0-ary function ω; the 1-ary function [x]<ω and <ωx. So if M is transitive and M ⊧ ZF-P
and x ∈M then all �nite subsets of x are in M and all �nite tuples of x are in M .

5.1. Absoluteness of recursively de�ned notions.

Theorem 5.10. Let A be a de�ned class, R a de�ned 2-ary relation on A which is well-founded

and set-like, and let G be a de�ned 2-ary function. Let F be a de�ned 1-ary function such that

∀a ∈ A(F (a) = G(a,F ↾ (a ↓))
and F (a) = ∅ for a ∉ A. Let M be a transitive model of ZF-P such that R,A,G are absolute for

M , (R is set like on A)M and for all a ∈M , a ↓= predR(a) ⊆M . Then FM(a) is de�ned for all

a ∈M and F is absolute for M .

Proof. Note that (R is well-founded on A)M and since predR(a) = (predR(a))M for each

a ∈M , also (R is set-like on A)M . The existence and uniqueness of F were proved in ZF-P and

so FM is de�ned. Suppose there is a ∈ M such that FM(a) ≠ F (a) and pick a which is R-

minimal in {x ∈ M ∶ FM(x) ≠ F (x)}. Then since (predR(a))M = predR(a) and ∀x ∈ predR(a),
F (x) = FM(x), we obtain that FM ↾ (predR(a))M = F ↾ (predR(a)) and so

FM(a) = G(a,FM ↾ (predR(a))M) = G(a,F ↾ predR(a)) = F (a),
which is a contradiction. �
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Corollary 5.11. The functions α + β, α ⋅ β, αβ , rank(x), D(A,P ), D+(A) and D−(A) are

absolute for transitive models of ZF-P.

5.2. Upwards and downwards absoluteness.

Definition 5.12.

(1) A formula ϕ is Σ1 i� ϕ is of the form ∃y1⋯∃ynψ for some n ≥ 0 and ψ which is ∆0.

(2) A formula ϕ is Π1 i� ϕ is of the form ∀y1⋯ynψ for some n ≥ 0 and ψ which is ∆0.

Lemma 5.13. Let M be a transitive model of BST. Consider an extension L∈ in which all

new non-logical symbols are absolute for M . Let ϕ(x̄) and ψ(x̄) be a Σ1 and a Π1 formulas in L
where x̄ = (x1,⋯, xn). Then for all ā ∈Mn:

(1) if ϕM(ā) then ϕ(ā) (upwards absoluteness);
(2) if ψ(ā) then ψM(ā) (downwards absoluteness).

Proof.

(1) Let ϕ(ā) be of the form ∃y1⋯∃ykψ(x̄, ȳ) where ψ is ∆0. If ϕM(ā) holds, then there are

b1,⋯, bk in M such that ψM(ā, b̄) where b̄ = (b1,⋯, bk). However ψ is ∆0 and so ψ(ā, b̄) holds as
well. Therefore ϕ(ā) holds.
(2) Let ψ(ā) be of the form ∀y1⋯∀ykψ(x̄, ȳ) and suppose ψ(ā) holds for some ā in M . Thus,

whenever b̄ = (b1,⋯, bk) ∈ Mk we have that ψ(ā, b̄). However by absoluteness of ψ we have that

ψM(ā, b̄) and so M ⊧ ψ(ā). �

Example 5.14.

(1) Note that �R is well-founded on A� can be expressed by a Π1 formula in absolute notions

and so it is downwards absolute. On the other hand �R is well-founded on A� can be

expressed by a Σ1-formula in absolute notions, ∃Φ(Φ is a rank function) and so it is

upwards absolute.

(2) Being countable is upwards absolute for transitive models of ZF-P. Indeed, given a set

x the formula ∃f ∶ x ⪯ ω says that x is a countable set. Thus, being countable can be

expressed via a Σ1 formula in absolute notions (for transitive models of ZF-P). Note

that being countable is not necessarily absolute.

5.3. Re�ection Theorems.

Theorem 5.15. (Tarski-Vaught Criteria for Classes) Let ϕ0, ϕ1,⋯, ϕn−1 be a sub-formula

closed list of formulas, i.e. for each i ∈ n every subformula of ϕ appears in this list and no formula

uses universal quanti�er. Let A ⊆ B be classes, A non-empty. The following are equivalent:

(1) for all i ∈ n, A ⪯ϕi B
(2) if ϕi = ϕi(x1,⋯, xn) is an existential formula of the form ∃yϕj(x̄, y), then for all ā =

(a1,⋯, an) ∈ An we have (ϕBi (ā) → ∃b ∈ AϕBj (ā, b)).

Proof. (1) ⇒ (2) Fix ϕi, ā ∈ An. Then since A ⪯ϕi B, we have that ϕBi (ā) → ϕAi (ā). By

de�nition of ϕi we get ∃b ∈ AϕAj (ā). But ϕj is also absolute and so we have ∃b ∈ AϕBj (ā).
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(2) ⇒ (1) We proceed by induction on the length of the formulas appearing in the given list.

Consider ϕi and assume for each ϕj such that ϕj is shorter than ϕi the claim holds, i.e. ϕj
is absolute between A and B. Atomic formulas, as well as formulas obtained via logical con-

nectives from formulas which are absolute, are absolute. Thus suppose ϕi = ∃yϕj(ā, y) and let

ā = (a1,⋯, an) ∈ An. Then
ϕBi (a) → ∃b ∈ BϕBj (a) → ∃b ∈ AϕBj (ā, b) → ∃b ∈ AϕAj (ā, b) → ϕAi ,

where in the second implication we used (2) and in the third implication we used the inductive

hypothesis on ϕj . On the other hand:

ϕAi → ∃b ∈ AϕAj (ā, b) → ∃b ∈ AϕBj (ā, b) → ∃b ∈ BϕBj (a) → ϕBi (a),
where the second implication used the absoluteness of ϕj and the third implication used the fact

that A is a subclass of B. �

Theorem 5.16. (Re�ection Theorem) Let ϕ0, ϕ1,⋯, ϕn−1 be any list of formulas of L∈, B a

non-empty class and ∀ξ ∈ ON let A(ξ) be a set. Further, assume that:

(1) if ξ < η then A(ξ) ⊆ A(η),
(2) A(η) = ⋃ξ<ηA(ξ) for limit η,

(3) B = ⋃ξ∈ONA(ξ). Then ∀ξ∃η > ξ such that η is a limit, A(η) ≠ ∅ and for each i ∈ n, ϕi
is absolute between A(η) and B.

Proof. Without loss of generality ϕ0,⋯, ϕn−1 is subformula closed and none of the formulas

contains universal quanti�ers. Indeed, we can always extend the list by adding all subformulas and

substitute each universal quanti�er �∀� with �¬∃�. What we want to do is: climb up the hierarchy

to gather all the witnesses! For each existential formula ϕi(x) of the form ∃yϕj(x1,⋯, xni , y)
de�ne Fi ∶ Bni → ON as follows:

Fi(ā) =
⎧⎪⎪⎨⎪⎪⎩

min{ζ ∶ ∃b ∈ A(ζ)ϕB(ā, b)} if ϕBi (ā) holds
0 otherwise.

Now, for each ξ ∈ ON de�ne

Gi(ξ) = sup{Fi(a1,⋯, ani) ∶ ā = (a1,⋯, ani) ∈ (A(ξ))ni}
and let

K(ξ) = max{ξ + 1,max
i∈n

Gi(ξ)}

where Gi(ξ) = 0 if ϕi is not existential. Thus K(ξ) is the least ordinal greater than ξ such that

A(K(ξ)) contains all witnesses to existential formulas with parameters in A(ξ).
Fix ξ and recursively de�ne an increasing sequence ⟨ζn⟩n∈ω as follows. Let

ζ0 = min{ζ ∶ ζ > ξ ∧A(ζ) ≠ ∅}
and for each n, ζn+1 = K(ζn). Then take η = supi∈ω ζi. Then A(η) contains all witnesses to

existential formulas (from the given list) with parameters in A(η), i.e.
Fi ∶ (A(η))ni → A(η).
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But, then by the Tarski-Vaught Criteria we have have that for all i, A(η) ⪯ϕi B. �

Corollary 5.17. Let Λ = {ϕ0,⋯, ϕn−1} be a �nite set of axioms of ZF. Recall that Z is the

set of all Axioms 1-8, except the Axiom of Replacement and ZC is the set of all Axioms 1-8, again

except Replacement. Then:

(1) ZFC ⊢ ∃η(R(η) ⊧ Z ∪Λ)
(2) ZFC ⊢ ∃η(R(η) ⊧ ZC ∪Λ)
(3) ZFC ⊢ ∃M(M ⊧ ZC ∪Λ ∧ ∣M ∣ = ℵ0 ∧M is transitive).

Remark 5.18. In particular, Λ might be �nitely many instances of Replacement.

Proof. (1) − (2). By the Re�ection Theorem there is η > ω limit such that for each i ∈ n,
R(η) ⪯ϕi V . Since for each i, ϕi is an axiom, (ϕi)V and so R(η) ⊧ ϕi for each i. Recall that ZF−
proves that R(η) ⊧ Z (i.e. ZF− ⊢ R(η) ⊧ Z) and respectively ZFC− proves that R(η) ⊧ ZC. But

then ZF ⊢ R(η) ⊧ Z ∪Λ and ZFC ⊢ R(η) ⊧ ZC ∪Λ.

(3) To obtain a countable, transitive model for ZC∪Λ �nd a countable elementary submodel

N of R(η) (using a Skolem hull, i.e. gathering existential witnesses) and take M = mos′′R(η),∈N .

ThenM≅N and soM⊧ ZC ∪Λ. �

Corollary 5.19. Let Λ = {ϕ0,⋯, ϕn−1} be a set of L∈-formulas. Then
ZFC ⊢ ∃C(C ⊧ ZC ∧ ∣C ∣ = ℵ0 ∧ ∧j<n)ϕCj ↔ ϕj .

Proof. Use Re�ection to �nd a limit η > ω such that ∧j<nR(η) ⪯ϕj V and the Downwards-

Löwenheim-Skolem Theorem to get a countable elementary submodel C of R(η). �

Theorem 5.20. (ZFC) Let κ > ω be a regular cardinal and for each ξ ≤ κ, let A(ξ) be a set

such that:

(1) if ξ < η then A(ξ) ⊆ A(η)
(2) A(η) = ⋃ξ<ηA(ξ) for limit η ≤ κ
(3) ∣A(ξ)∣ < κ for all ξ < κ and ∣A(κ)∣ = κ.

Then ∀ξ < κ∃η such that ξ < η < κ, η is a limit, A(η) ≠ ∅ and A(η) ⪯ A(κ).1

Proof. Let {ϕi}i∈ω enumerate all existential and all quanti�er free L∈-formulas. For each i
such that ϕi is existential, de�ne

Fi ∶ (A(κ))ni → κ,

where ϕi = ∃yϕj(x̄, y) and x̄ = (x0,⋯, xni−1) and x̄ = (x0,⋯, xni−1) just as before, i.e.

Fi(ā) =
⎧⎪⎪⎨⎪⎪⎩

min{ζ < κ ∶ ∃b ∈ A(ζ)ϕA(κ)(ā, b)} if A(κ) ⊧ ϕi(ā)
0 otherwise

and let

Gi(ξ) =
⎧⎪⎪⎨⎪⎪⎩

sup{Fi(a1,⋯, ani) ∶ (a1,⋯, ani) ∈ (A(ξ))ni} if ϕi is existential

0 otherwise.

1
Here we consider the sets A(ξ) as ∈-models for L∈.
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Since ∣A(ξ)∣ < κ for all ξ < κ and κ is regular, we obtain Gi(ξ) < κ for all ξ < κ. De�ne
K(ξ) = max{ξ + 1, sup{Gi(ξ) ∶ i < ω}}.

Then since κ is regular, uncountable, K(ξ) < κ for all ξ. Just as in the Re�ection Theorem take

ζ0 = min{ζ ∶ ζ > ξ,A(ζ) ≠ ∅} and for all n ≥ 0, de�ne ζn+1 =K(ζn). Then η = limn ζn is as desired

(indeed, since κ is regular, η > κ). �

Corollary 5.21. (ZFC) If κ is strongly inaccessible, then

{η < κ ∶ R(η) ⪯ R(κ)}
is unbounded in κ.

6. The Constructible Sets

Consider L∈. Let A be a set and let P ⊆ A. Recall the de�nitions of D(A,P ), D+(A) =
D(A,A), D−(A) =D(A,∅) and D(A).

Definition 6.1. (The Constructible Hierarchy) De�ne L(δ) recursively on δ ∈ ON as follows:

(1) L(0) = ∅,
(2) L(β + 1) =D+(L(β)),
(3) L(γ) = ⋃α<γ L(α) for limit γ.

Then L = ⋃{L(α) ∶ α ∈ ON} is called the Constructible Universe.

Lemma 6.2.

(1) For each ordinal α, L(α) ⊆ R(α).
(2) For each α ∈ ON, L(α) is a transitive set.

(3) For each α,β ∈ ON such that α ⊆ β, L(α) ⊆ L(β).
(4) For each α ∈ ON, L(β) ∩ON = β.

Proof. (1) We proceed by induction on α. Note that L(0) = R(0) = ∅. Suppose L(α) ⊆
R(α). Then L(α + 1) ⊆ P(L(α)) ⊆ P(R(α)) = R(α + 1). If γ is a limit and for all β < γ,

L(β) ⊆ R(β), then ⋃β<γ L(β) ⊆ ⋃β<γ R(β).
(2) Again we proceed by induction on α. If α = 0, or α is a limit and ∀β < α, L(β) is transitive,
then clearly L(α) is transitive. Thus, suppose L(β) is transitive and let b ∈ L(β + 1). Then

b ⊆ L(β), as b is a de�nable subset of L(β). However:
Claim: L(β) ⊆ L(β + 1).
Proof: Indeed. Let c ∈ L(β). Then by hypothesis, c ⊆ L(β) and furthermore c = {z ∈ L(β) ∶ z ∈ c}.
Thus, c is de�nable over L(β) with parameter the set c, i.e. c ∈ L(β + 1). �

But, then since b ⊆ L(β) and L(β) ⊆ L(β + 1), we obtain b ⊆ L(β + 1), i.e. L(β + 1) is transitive.
(3) Fix α ∈ ON. By induction on β ≥ α, we will show that L(α) ⊆ L(β). Well, if β = α, then we

are done. Suppose β > α and L(α) ⊆ L(β). Since L(β) ⊆ L(β + 1), we obtain L(α) ⊆ L(β + 1). If
β > α is a limit, then since L(β) = ⋃γ<β L(γ), we obtain directly that L(α) ⊆ L(β).
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(4) Note that ON ∩ L(ω) = ON ∩ R(ω) = HF ∩ ON = ω. If γ is a limit and for all α < γ,

ON ∩L(α) = α, then ON ∩⋃α<γ L(α) = ⋃α<γ α = γ. Thus, consider the successor case. Note that
L(β + 1) ∩ON ⊆ R(β + 1) ∩ON = β + 1 = β ∪ {β}.

Thus, it is su�cient to show that β ∈ L(β + 1). However
β = {a ∈ L(β) ∶ L(β) ⊧ ϕ[a]},

where ϕ is L∈-formula saying that a is an ordinal. Thus β is de�nable over L(β) and so β ∈
L(β + 1). �

Remark 6.3. Note that for each set x, rank(x) = α i� x ∈ R(α + 1)/R(α). We will de�ne an

analogous notion of an L-rank, denoted by ρ.

Definition 6.4. For x ∈ L, the L-rank of x, denoted ρ(x) is the least α such that x ∈ L(α+1).

Remark 6.5. Note that for each α ∈ ON, we have L(α) = {x ∈ L ∶ ρ(x) < α} and

L(α + 1)/L(α) = {x ∈ L ∶ ρ(x) = α}.

Lemma 6.6. For each α ∈ ON, L(α) ∈ L and ρ(L(α)) = ρ(α) = α.

Proof. Note that L(α) = {x ∈ L(α) ∶ (x = x)L(α)}. Thus L(α) ∈ D−(L(α)) ⊆ L(α + 1)(=
D+(L(α))). On the other hand L(α) ∉ L(α), just because L(α) is a set and so ρ(L(α)) = α.

Since L(α) ∩ ON = α, we have α ∉ L(α) (otherwise we would obtain α ∈ α, which is a

contradiction). Also, α + 1 = α ∪ {α} ⊆ L(α + 1) and so α ∈ L(α + 1). That is α ∈ L(α + 1)/L(α)
and so ρ(α) = α. �

Lemma 6.7. Every �nite subset of L(α) is in L(α + 1).

Proof. Let A ∈ [L(α)]<ω. Thus A = {a1,⋯, an} for some n ∈ ω and aj ∈ L(α). Then
A = {x ∈ L(α) ∶ L(α) ⊧ ϕ(x)}

where ϕ(x) is the formula x = a1 ∨⋯ ∨ x = an. �

Lemma 6.8. L(α) = R(α) for all α ≤ ω and L(ω + 1) is a proper subset of R(ω + 1).

Proof. Since every �nite subset of L(n) is in L(n + 1), we obtain that L(n) = R(n) for all

n ∈ ω. But, then
L(ω) = ⋃

n∈ω
L(n) = R(ω) = ⋃

n∈ω
R(n).

Now consider L(ω + 1) and R(ω + 1). While R(ω + 1) = P(R(ω)) is uncountable, the set L(ω + 1)
is countable (because there are only countably many formulas). �

Lemma 6.9. Assume AC. Then ∣D+(A)∣ = ∣A∣ for all in�nite A.

Proof. For all a ∈ A, {a} ∈ D+(A). Indeed, {a} = {x ∈ A ∶ (A, ∈) ⊧ x = a}. Thus ∣A∣ ≤
∣D+(A)∣. On the other hand

∣D+(A)∣ ≤ ∣[A]<ω ∣ ⋅ ℵ0 = ∣A∣,
since there are ∣[A]<ω ∣-many sets of parameters and only ℵ0-many formulas. �
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Lemma 6.10. Assume AC. Then ∣L(α)∣ = ∣α∣ for all α ≥ ω.

Proof. By induction on α. If α = ω, then L(α) = R(α) = HF and so ∣L(ω)∣ = ∣ω∣ = ω.
Suppose ∣L(α)∣ = ∣α∣. Now ∣L(α + 1)∣ = ∣L(α)∣ = ∣α∣ = ∣α + 1∣ because α ≥ ω and there are only

ℵ0-many formulas.

Suppose γ is a limit and ∣L(α)∣ = ∣α∣ for all α < γ. Then, ∣L(γ)∣ = ∣⋃α<γ L(α)∣ ≤ γ. However
γ ⊆ L(γ) and so ∣γ∣ ≤ ∣L(γ)∣. Thus ∣γ∣ = ∣L(γ)∣. �

Remark 6.11. Thus, ∣L(ω1)∣ = ω1, while ∣R(ω1)∣ = ℶω1 . That is L(ω1) is much smaller than

R(ω1).

6.1. ZF holds in L.

Lemma 6.12. Suppose x, y ∈ L. Then:
(1) {x, y} ∈ L, ρ({x, y}) = max(ρ(x), ρ(y)) + 1

(2) ⟨x, y⟩ ∈ L and ρ(⟨x, y⟩) = max(ρ(x), ρ(y)) + 2

(3) ⋃x ∈ L and ρ(⋃ρ) ≤ ρ(x),
(4) x ∪ y ∈ L and ρ(x ∪ y) ≤ max(ρ(x), ρ(y)).

Proof. (1) Let α = max{ρ(x), ρ(y)}. Thus x, y ∈ L(α + 1) and {x, y} /⊆ L(α). Therefore

{x, y} ∉ L(α+1), since L(α+1) is transitive. However {x, y} ∈D+(L(α+1)) and so {x, y} ∈ L(α+2).
Therefore ρ({x, y}) = α + 1.

(2) Since ⟨x, y⟩ = {{x},{x, y}}.
(3) Let x ∈ L and let α ∈ ON such that x ∈ L(α + 1) = D+(L(α)). Thus, there are b1,⋯, bn in

L(α) and a formula ϕ such that

x = {a ∈ L(α) ∶ L(α) ⊧ ϕ[a, b1,⋯, bn]}.
But, then z ∈ ⋃x i� z ∈ L(α) and L(α) ⊧ ∃v(z ∈ v ∧ ϕ[v, b1,⋯, bn]), i.e.

⋃x = {z ∈ L(α) ∶ L(α) ⊧ ∃v(z ∈ v ∧ ϕ[v, b1,⋯, bn])}.
Thus ⋃x ∈D+(L(α)) = L(α + 1).
(4) Straightforward from (3). �

Lemma 6.13. If M be a transitive class such that the Comprehension Axiom holds in M and

moreover for every subset x ⊆M there is a set y ∈M such that x ⊆ y, then then all axioms of ZF

hold in M .

Proof. Recall that we are working in ZFC.

Extensionality and Pairing Since M is a transitive class, the Axiom of Extensionality holds

in M by Lemma 2.3.14. Since M ⊆ WF, the Axiom of Foundation holds in M by Lemma 2.3.15.

Pairing Suppose x, y ∈ M . Then {x, y} ⊆ M , so by assumption there is z ∈ M such that

{x, y} ⊆ z. Since M satis�es every instance of Comprehension, the following set is in also in M :

z′ ∶= {w ∈ z ∶ w = x ∨w = y} = {x, y}
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Thus the pairing axiom holds in M by Lemma 2.3.17.

Union Suppose F ∈M . Since M is transitive, we have ⋃F ⊆M , and so by assumption there

is y ∈M such that ⋃F ⊆ y. Since M satis�es every instance of comprehension, the following set

is also in M :

⋃F = {z ∈ y ∶ ∃A ∈ F(z ∈ A)}.
Thus the union axiom holds in M by Lemma 2.3.18.

In�nity Note that by assumption, M is necessarily nonempty since ∅ ⊆M so there is y ∈M
such that ∅ ⊆ y. By Comprehension, we have ∅ ∈ M . Furthermore, by Comprehension, Union

and Pairing, we can de�ne the successor function on M . Since ∅ ∈M and M is closed under the

successor function, we have ω ⊆ M . By assumption, there is some y ∈ M such that ω ⊆ y. By

applying comprehension to y, we get that ω ∈ M . Finally, by Lemma 2.3.23 it follows that the

axiom of in�nity holds in M .

Power Set Let x ∈ M be arbitrary. Then P(x) ∩M ⊆ M , so by assumption there is y ∈ M
such that P(x) ∩M ⊆ y. By comprehension the following set is also in M :

P(x) ∩M = {z ∈ y ∶ z ⊆ x}
By Lemma 2.3.21 it follows that the Power Set Axiom holds in M .

Replacement We will use the criterion in Lemma 2.3.19. Suppose f is a function, dom(f) ∈M
and ran(f) ⊆ M (note: we are not assuming that f ∈ M or f ⊆ M , although these things will

follow from the other assumptions). By assumption we can take y ∈ M such that ran(f) ⊆ y.
By the other axioms we have already checked for M (including Power Set), it follows that M is

closed under taking Cartesian products of sets. Thus dom(f) × y ∈M and P(dom(f) × y) ∈M .

However, f ∈ P(dom(f) × y), and so f ∈ M since M is transitive. Now since f is in M , we can

recover ran(f) by applying comprehension in M to y:

ran(f) = {x ∈ y ∶ ∃z such that ⟨z, x⟩ ∈ f}
Thus ran(f) ∈M . �

Theorem 6.14. All axioms of ZF hold in L.

Proof. By the above Lemma, since L is transitive, it is su�cient to show that

(1) the Comprehension Axiom holds in L.

(2) for every x ⊆ L, there is y ∈ L such that x ⊆ y.
To see (1) consider an arbitrary formula ϕ such that y ∉ Fr(ϕ). We have to show that:

∀z, v0,⋯, vn−1 ∈ L∃y ∈ L∀x ∈ L(x ∈ y↔ x ∈ z ∧ ϕL(x, z, v̄))
Now, �x z, v0,⋯, vn−1 in L and let y ∶= {x ∈ z ∶ ϕL(x, z, v̄)}. We have to show that y ∈ L. Find α
such that z, v0,⋯, vn−1 are in L(α) and β ≥ α such that L(β) ⪯ϕ L (use Re�ection). Then

y = {x ∈ L(β) ∶ ψL(β)(x, z, v̄)} ∈D+(L(β)) = L(β + 1) ⊆ L,
where ψ(x, z, v̄) is the formula ϕ(x, z, v̄) ∧ x ∈ z. �
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6.2. The Axiom of Constructibility in L. The Axiom of Constructibility is the assertion

V = L, i.e. the assertion that ∀x∃δ(x ∈ L(δ)).

Lemma 6.15. If M is a transitive model of ZF-P −, then the function L(δ) is absolute for M .

That is ∀δ ∈ ON ∩M(L(δ)M = L(δ)).

Proof. By absoluteness of recursively de�ned functions. �

Corollary 6.16. The Axiom of Constructibility holds in L.

Proof. We have to show that (∀x∃δ(x ∈ L(δ))L)L. That is, we have to show that ∀x ∈ L∃δ ∈
ONL(x ∈ L(δ)L), which is true by the de�nition of L. �

Definition 6.17. Let M be a transitive set model. De�ne o(M) =M ∩ON to be the set of

ordinals in M . Thus, since M is transitive, o(M) is the �rst ordinal not in M .

Lemma 6.18. If M is a transitive, set model of Pairing, Union and Comprehension, then

o(M) is a limit ordinal.

Proof. Let α ∈ o(M). Then α + 1 = α ∪ {α} can be de�ned using only Pairing, Union and

Comprehension. Thus, α + 1 ∈ o(M). �

Lemma 6.19. Let M be a transitive set model of ZF-P. Then M is a model of the Axiom of

Constructibility if and only if M = L(o(M)).

Proof. (⇐) If M = L(o(M)), then ∀x ∈M∃δ ∈ ON ∩M(= o(M)), such that x ∈ L(δ). But
x ∈ L(δ) i� (x ∈ L(δ))M and so M ⊧ ∀x∃δ(x ∈ L(δ)), i.e. M ⊧ (V = L).
(⇒) Thus, suppose M ⊧ V = L and M is transitive. Let γ = o(M). Then by absoluteness of L(δ)
for δ < γ, we obtain L(δ) ∈M for each δ < γ. Therefore L(γ) ⊆M . On the other handM ⊧ V = L,
i.e. M ⊧ ∀x∃δ(x ∈ L(δ)), i.e.

∀x ∈M∃δ ∈M(x ∈ L(δ))M

and since L(δ) is absolute, we obtain
∀x ∈M∃δ ∈ o(M)(x ∈ L(δ))

and so M ⊆ L(γ) = ⋃δ<γ L(δ). Thus M = L(γ). �

6.3. Axiom of Choice and GCH in L. We know, that L ⊧ ZF + V = L. Thus, to show

L ⊧ AC +GCH, it is enough to show that ZF + V = L ⊧ AC ∧GCH.

Discussion 6.20. We can assume that for all symbols of L∈, and so all formulas, are here-

diatrily �nite sets. Let E ⊆ ω × ω be de�ned via (m,n) ∈ E i� 2 does not divide ⌞m2−n⌟, where
⌞m2−n⌟ denotes the greatest integer less than or equal to m

2n . Let Γ ∶ R(ω) → ω be de�ned by

Γ(y) ∶= ∑{2Γ(x) ∶ x ∈ y}. Here are some examples:

Γ(∅) = ∑∅ = 0,Γ(1) = Γ({∅}) = 20 = 1,Γ({1}) = 21 = 2, etc.

Then Γ ∶ (R(ω), ∈) ≅ (ω,E) (is an isomorphism) and Γ− = mos(ω,E) is the Mostowski collapsing

function on (ω,E).
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Definition 6.21. Consider the language L∈ of set theory.
(1) List all variables {vi ∶ i ∈ ω} so that ∀i, j(i < j → Γ(vi) < Γ(vj)).
(2) A formula ϕ is said to be good, if there is n ∈ ω such that Fr(ϕ) = {v0,⋯, vn}.
(3) List all good formulas {ϕi ∶ i ∈ ω} so that ∀i, j(i < j → Γ(ϕi) < Γ(ϕj)).
(4) For ϕi a good formula, let ni + 1 denote the number of its free variables.

Definition 6.22.

(1) Let A ≠ ∅, i ∈ ω and b̄ ∈ Ani . De�ne D(A, i, b̄) to be the set de�nable over (A, ∈) from

the formula ϕi with parameter b̄. That is

D(A, i, b̄) = {a ∈ A ∶ A ⊧ ϕi[b0,⋯, bni , a]}.
(2) Note that D+(A) = {D(A, i, b̄) ∶ i ∈ ω, b̄ ∈ Ani}. Then for S ∈ D+(A), de�ne i(S) to be

the least index i such that S is de�nable from ϕi with some parameter b̄ ∈ Ani . That is
i(S) is the least i such that S =D(A, i, b̄) for some b̄ ∈ Ani .

(3) For A ≠ ∅ and R a well-order on A, let R(n) be the induced lexicorgraphic order on An.

That is for b̄1 ≠ b̄2, where b̄1 = (b11,⋯, b1n) and b̄2 = (b11,⋯, b2n), we have that b̄1R(n)b̄2 if

b1jRb
2
j , where j = min{i ∶ b1i ≠ b2i }. Now, for S ∈ D+(A) let p̄(S,R) be the Rni(S)-least

parameter b̄ ∈ Ani(S) such that S =D(A, i(S), b̄).
(4) De�ne a well-order W =W (A,R) on D+(A) as follows: S1WS2 i� either i(S1) < i(S2),

or i(S1) = i(S2) and p̄(S1,R)Rni(S) p̄(S2,R).
(5) Since D+(∅) = {∅} = {∅}, the empty order is the only well-order of ∅ and of {∅}. Thus,

de�ne W (∅,∅) = ∅ and if R is not a well-order of A, then W (A,R) = ∅.

Lemma 6.23. W (A,R) is a well-order of D+(A).

Definition 6.24. By recursion on the ordinals, de�ne a well-order ⊲δ on L(δ) × L(δ) as

follows: x ⊲δ y i� ρ(x) < ρ(y), or ρ(x) = ρ(y) and (x, y) ∈ W (L(ρ),⊲ρ) where ρ = ρ(x) = ρ(y)2.
Extend these relations ⊲δ to a relation <L on all of L as follows:

x <L y i� ρ(x) < ρ(y), or
ρ(x) = ρ(y) and x ⊲ρ+1 y where ρ = ρ(x) = ρ(y).

Theorem 6.25.

(1) <L is a well-order of L.

(2) ⊲δ=<L ∩(L(δ) ×L(δ)).
(3) If V = L, then <L well-orders V and so AC holds.

Proof. Straightforward. �

Lemma 6.26. (AC) If κ is a regular uncountable cardinal, then L(κ) ⊧ ZF-P + V = L.

Proof. Replacement Let M = L(κ) and let A be a set in M such that

∀x ∈M(x ∈ A→ ∃!y ∈MϕM(x, y)).
2
Recall that ρ(x) is the least α such that x ∈ L(α + 1) and so L(α + 1)/L(α) = {x ∈ L ∶ ρ(x) = α}.
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We need to �nd a set B ∈M such that (∀x ∈ A∃y ∈ Bϕ(x, y))M . Since κ is a limit ordinal, we can

�nd α < κ such that A ∈ L(α). Then ∣A∣ ≤ ∣L(α)∣ < κ. De�ne a function f such that dom(f) = A
and for all x ∈ A, f(x) is the unique y ∈ M such that ϕ(x, y). Then ∀x ∈ A, ρ(f(x)) < κ and

thus β = sup{ρ(f(x)) + 1 ∶ x ∈ A} < κ, because κ is regular and ∣A∣ < κ. Take B = L(β). Then

B ∈ L(β + 1) and so B ∈ L(κ).
Comprehension Let ϕ(x, z, v0,⋯, vn−1) be a formula, y ∈ Fr(ϕ). We must verify that:

∀z, v0,⋯, vn−1 ∈ L(κ)∃y ∈ L(κ)∀x ∈ L(κ)(x ∈ y↔ x ∈ z ∧ ϕL(κ)(x, z, v̄)).

Now, �x z, v0,⋯, vn−1 ∈ L(κ). Thus, there is α < κ such that z, v0,⋯, vn−1 ∈ L(α). Then, we

can �nd β > α such that L(β) ⪯ϕ L(κ). Take y = {x ∈ L(β) ∶ ψL(β)(x, z, v̄)} where ψ(x, z, v̄) =
ϕ(x, z, v̄) ∧ x ∈ z. Then y ∈ L(β + 1) ⊆ L(κ).
All other axioms: Use the su�cient conditions, which we obtained earlier.

V=L To verify that L(κ) ⊧ V = L, observe that L(κ) = L(o(L(κ))) and so by an earlier results,

we obtain L(κ) ⊧ (V = L). �

Theorem 6.27. If V = L then for every cardinal κ ≥ ω the following holds:

(∗)κ L(κ) =H(κ).

Therefore, V = L implies GCH.

Proof. We work under the assumption that V = L. Let λ be an arbitrary in�nite cardinal.

Then P(λ) ⊆H(λ+) and so if H(κ) = L(κ) for each cardinal κ ≥ ω, we obtain that

2λ = ∣P(λ)∣ ≤ ∣H(λ+)∣ = ∣L(λ+)∣ = λ+.

However λ+ ≤ 2λ (by de�nition) and so 2λ = λ+.
Thus, it is su�cient to show that for all cardinals κ ≥ ω, L(κ) = H(κ). If κ = ω, then

H(κ) = L(κ) = R(κ) = HF, so in this case we are done. If κ is an uncountable limit ordinal, then

L(κ) = ⋃λ<κL(λ+) and H(κ) = ⋃λ<κH(λ+). Thus, it is su�cient to show that H(κ) = L(κ) for

κ a successor cardinal of the form λ+.

Let κ be an uncountable cardinal and let x ∈ L(κ), κ > ω. Then, by de�nition of L(κ), we can
�nd α such that ω ≤ α < κ and such that x ∈ L(α). But, then trcl(x) = ⋃{⋃n x ∶ n ∈ ω} ⊆ L(α)
and so ∣ trcl(x)∣ ≤ ∣L(α)∣ = ∣α∣ < κ. Therefore x ∈ H(κ). Thus, for all uncountable cardinals κ,

L(κ) ⊆H(κ).
Now, let λ be an in�nite cardinal. We will show that H(λ+) ⊆ L(λ+). Let b ∈ H(λ+) and

let T = trcl({b}). Thus, b ∈ T and ∣T ∣ ≤ λ. Since we work under the assumption that V = L, we
can pick a regular uncountable θ > ρ(T ). Then T ⊆ L(θ) and by one of the previous theorems

L(θ) ⊧ ZF-P + V = L. By the Downward Löwenheim-Skolem theorem we can �nd an elementary

submodel A ⪯ L(θ) such that T ⊆ A, ∣A∣ = ∣T ∣ ≤ λ. Thus, by elementarity A ⊧ ZF-P + V = L.
Let (B, ∈) be the Mostowski Collapse of (A, ∈). Since T ⊆ A is transitive, mosA,∈ ↾ T = id and

so b = mos(A,∈)(b) ∈ B. Since (B, ∈) ≅ (A, ∈) we have that (B, ∈) ⊧ ZF-P + V = L. But then

B = L(o(B)) using the fact that B is transitive. However ∣B∣ = ∣o(B)∣ = ∣A∣ ≤ λ and so o(B) < λ+.
Therefore L(o(B)) ⊆ L(λ+) and so b ∈ L(λ+). Thus H(λ+) ⊆ L(λ+). �
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Consequently, we have the following theorem.

Theorem 6.28.

(1) If Con(ZF ) then Con(ZFC + V = L).
(2) If Con(ZF ) then Con(ZFC +GCH).

Lemma 6.29. (AC) If κ is weakly inaccessible, then in L, κ is strongly inaccessible and

L(κ) ⊧ ZFC + V = L.

Proof. Being a cardinal (∀α < κ∀f ∶ α → κ(f is not onto)) and being weakly inaccessible

(∀λ < κ(λ+ < κ)) are Π1 properties and so they are downwards absolute. Under GCH, being

weakly inaccessible and strongly inaccassible are notions which coincide. Thus, say κ is weakly

inaccessible in V . However, L ⊆ V and by Π1
1-absoluteness, L ⊧ (κ is weakly inaccessible) and

since L ⊧ GCH, we have that (κ is strongly inaccessible)L. However, since AC holds by assump-

tion by one of our earlier theorems today for every uncountable λ, L(λ) ⊧ ZF-P + V = L. Thus,
L(κ) ⊧ ZF-P + V = L. On the other hand working in ZFC−, we proved that if κ is strongly

inaccessible then R(κ) = H(κ) ⊧ ZFC. Now, assuming V = L (or working in L) we obtain

L(κ) = H(κ) = R(κ) ⊧ ZFC + V = L. However ⊧ is recursively de�ned and so absolute, which

implies that in V , L(κ) ⊧ ZFC + V = L as desired. �

Corollary 6.30. (AC) If there is a weakly inaccessible cardinal, then there is a countable

transitive M such that M ⊧ ZFC + V = L.

Proof. Let κ be weakly inaccessible. Then, by the above theorem L(κ) ⊧ ZFC+V = L. Take
a countable elementary submodel M ′ of L(κ) and let M = mos′′(M ′,∈)M

′. �

Lemma 6.31. If M is a transitive model for ZF, then L(o(M)) ⊧ ZFC + V = L.

Proof. Working in ZF, we can prove L ⊧ ZFC+V = L. SinceM ⊧ ZF, we obtainM ⊧ (LM ⊧
ZFC + V = L). However

LM = {x ∈M ∶ ∃δ ∈ ON ∩M(x ∈ L(δ))M}
= {x ∈M ∶ ∃δ ∈ ON ∩M(x ∈ L(δ))}
= L(o(M)).

By absoluteness of ⊧ we obtain L(o(M)) ⊧ ZFC + V = L. �

Lemma 6.32. Let Λ be a �nite set of axioms of ZFC. Then

ZFC ⊧ ∃M(M ⊧ λ + V = L ∧ ∣M ∣ = ℵ0 ∧M is transitive).

Proof. Apply Re�ection to L = ⋃ξ∈ONL(ξ) to get a limit ordinal η such that L(η) ⊧ Λ+V = L.
Take a countable elementary submodel of L(η) and then its transitive closure. �
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7. Appendix

7.1. More on Relative Consistency Proofs.

Definition 7.1. A theory Λ is said to be strictly stronger proof-theoretically than Γ, denoted

Γ ⊲ Λ i� Λ ⊧ Con(Γ).

Example 7.2. To show that Γ ⊲ Λ we will work in Λ to produce a model for Γ. For example,

working in ZFC we can show that HC is a model for ZFC-P. Note that by Gödel's Second

Incompleteness Theorem, ⊲ is not re�exive.

Definition 7.3.

(1) A theory Λ is said to be stronger proof-theoretically than Γ, denoted Γ ≤ Λ i� there is a

�nitistic proof of Con(Λ) → Con(Γ) (such proofs are referred to as relative consistency

proofs).

(2) Theories Γ and Λ are said to be proof- theoretically equivalent , denoted Γ ∼ Λ i� Γ ≤ Λ

and Λ ≤ Γ.

Remark 7.4. Note that ≤ is re�exive and transitive, and ∼ is an equivalence relation.

Lemma 7.5.

(1) If Γ ⊲ Λ then Γ ≤ Λ

(2) Γ ≤ Λ and Λ ⊲ Θ imply Γ ⊲ Θ

(3) The relation ⊲ is transitive.

(4) If Γ ≤ Λ and Λ ⊲ Γ then ¬Con(Γ) and ¬Con(Λ).

Proof.

(1) Suppose Λ ⊢ Con(Γ) and suppose that Con(Λ) → Con(Γ) is not true. Thus we have Con(Λ)
and ¬Con(Γ), i.e. we have a �nitistic proof of ¬Con(Γ). But then, Λ ⊢ ¬Con(Γ), which will

produce a contradiction in Λ.

(2) By hypothesis Θ ⊢ Con(Λ). Since there is a �nitistic proof of Con(Λ) → Con(Γ), we get that
θ ⊢ Con(Γ).
(3) Suppose Γ ⊲ θ and θ ⊲ Λ. Then by (1), Γ ≤ θ. Now by (2) we get Γ ⊲ Λ.

(4) By part (2), we have Γ ⊲ Γ and hence ¬Con(Γ). However Γ ≤ Λ, i.e. Con(Λ) → Con(Γ).
Therefore ¬Con(Λ). �

Remark 7.6.

(1) ZFC− ≤ ZFC. By the theorem of von Neumann, ZFC ≤ ZFC−. Therefore ZFC− ∼ ZFC.

By the same theorem ZF− ∼ ZF. Obtaining the Constructible Universe later, we will also
have ZFC +GCH ≤ ZF and so we have ZF− ∼ ZF ∼ ZFC− ∼ ZFC ∼ ZFC +GCH.

(2) Using the method of forcing, we will see that ZFC is proof-theoretically equivalent to

ZFC plus various additional axioms about Lebesuge measure, category, and others.



CHAPTER 3

In�nitary Combinatorics

1. Martin's axiom

1.1. Maximal Almost Disjoint Families.

Definition 1.1. Let κ be an in�nite cardinal.

(1) Two subsets x, y of κ are said to be almost disjoint if ∣x ∩ y∣ < κ.
(2) A ⊆ [κ]κ is κ-almost disjoint if any two distinct elements of A are κ-almost disjoint.

(3) A family A is maximal κ-almost disjoint if A is κ-almost disjoint and maximal under

inclusion. We say that A is κ-m.a.d.

(4) a(κ) = min{∣A∣ ∶ A is κ-m.a.d., ∣A∣ ≥ κ}.

Remark 1.2. In the special case κ = ω, we simply say that A is almost disjoint and speak

about maximal almost disjoint families. The cardinal a = a(ω) is known as the almost disjointness

number.

Remark 1.3.

(1) Let A ⊆ [ω]ω be almost disjoint. Suppose A is maximal. Then, there is no almost disjoint

family B such that A is properly contained in B. With other words, if X ∈ [ω]ω/A, then
A∪ {X} is not almost disjoint. That is, there is A ∈ A such that ∣X ∩A∣ = ω.

(2) Suppose A ⊆ [ω]ω is a �nite partition of ω. That is, the elements of A have pairwise

empty intersection and ⋃A = ω. Then, A is an almost disjoint family. Is A maximal?

Theorem 1.4. Let κ ≥ ω be a regular cardinal.

(1) If A ⊆ P(κ) is almost disjoint and ∣A∣ = κ, then A is not maximal.

(2) There is a κ-m.a.d. family B ⊆ [κ]κ of cardinality ≥ κ+.

Proof. (1) Let A = {Aξ ∶ ξ < κ} be an almost disjoint family. For each ξ < κ, de�ne

Bξ = Aξ/⋃η<ξ(Aξ ∩ Aη). Since ∣Aξ ∣ = κ and for each η < κ, ∣Aξ ∩ Aη ∣ < κ we have that Bξ ≠ ∅.
Now, for each ξ, pick bξ ∈ Bξ and let Aκ = {bξ ∶ ξ < κ}. Note that Aκ ∩Aη ⊆ {bξ ∶ ξ ≤ η}. Thus Aκ
is a set, which is κ-almost disjoint from every element of A and so A is not κ-maximal.

(2) Take any partition A of κ into κ-many unbounded (in κ) subsets. Then A is κ-almost disjoint.

By item (1) A is not maximal. However, by Zorn's Lemma (and so the Axiom of Choice), there

is a maximal κ-almost disjoint family B extending κ. Then B is κ-m.a.d. of cardinality ≥ κ. �

Exercise 3. Write an explicit proof of the existence of B in item (2) of the above theorem,

using Zorn's Lemma.
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Theorem 1.5. If κ ≥ ω and 2<κ = κ, then there is an almost disjoint family A ⊆ P(κ) of

cardinality 2κ.

Proof. Let I = {x ⊆ κ ∶ sup(x) < κ}. Since 2<κ = κ, ∣I ∣ = κ. Now, for x ⊆ κ de�ne

Ax = {x ∩ α ∶ α < κ}
and so if ∣X ∣ = κ, then ∣Ax∣ = κ.

Claim. If x, y ⊆ κ are distinct, then ∣Ax ∩Ax∣ < κ.

Proof. Let x, y ⊆ κ, x ≠ y. Fix β ∈ x/y (without loss of generality). Then Ax ∩Ay ⊆ {x ∩ α ∶
α ≤ β}. Indeed, if γ ∈ κ/(β + 1), then β ∈ x ∩ γ and for each γ′ ∈ κ we have that β ∉ y ∩ γ′. Thus
∣Ax ∩Ay ∣ ≤ ∣β∣ < κ. �

Then A = {Ax ∶ x ∈ [κ]κ} is a κ-a.d. family of cardinality 2κ. Since ∣I ∣ = κ there is a

bijection f ∶ I → κ. Then for each x ∈ [κ]κ, let A′
x = {f(x ∩ α) ∶ α < κ}. Thus A′

x ∈ [κ]κ and

A′ = {A′
x ∶ x ∈ [κ]κ} is an a.d. family of subsets of κ of cardinality 2κ. �

Remark 1.6. By the above theorem, there is a maximal almost disjoint family of cardinality

2ω(= ∣R∣).

1.2. ∆-system lemma.

Definition 1.7. A family A of sets is a ∆-system, if there is a set r such that the intersection

of any two pairwise distinct elements a, b of A is the set r. The set r is called the root of the

∆-system.

Theorem 1.8. If A is an uncountable family of �nite sets, then there is an uncountable B ⊆ A
such that B forms a ∆-system.

Exercise 4. Prove the above theorem.

We will prove the following more general statement.

Theorem 1.9. Let κ ≥ ω be a cardinal, θ > κ regular such that for all α < θ(∣α<κ∣ < θ). If A is

a set such that ∣A∣ ≥ θ and for all x ∈ A we have that ∣x∣ < κ, then there is B ⊆ A such that ∣B∣ = θ
and B forms a ∆-system.

Proof. Without loss of generality ∣A∣ = θ. By hypothesis, ∀x ∈ A(∣x∣ < κ < θ) and so

∣ ⋃A∣ = θ. Now, for all x ∈ A, let αx = type(x). Note that αx < κ. Thus, A = ⋃α<κAα where

Aα = {x ∈ A ∶ αx = α}.
Since κ < θ and θ is regular, there is α0 < κ such that ∣Aα0 ∣ = θ. So, let A0 = Aα0 . It is su�cient

to �nd the desired family B as a subset of A0.

Claim 1.10. ⋃A0 is unbounded in θ. That is ∀α ∈ θ∃β ∈ ⋃A0 such that α ≤ β.

Proof. Fix α < θ. Since by hypothesis of the theorem ∣α<κ∣ < θ, there are less than θ-many

elements of A0 contained in α. Thus there is x ∈ A0 such that x /⊆ α, i.e. there is β ∈ x such that

β ≥ α. Then, β ∈ ⋃A0. �
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For each x ∈ A0, type(x) = α0. Now, for each ξ < α0, denote by x(ξ), the ξ-th element of x.

Claim 1.11. There is ξ < α0 such that Cξ = {x(ξ) ∶ x ∈ A0} is unbounded in θ.

Proof. Otherwise, for all ξ < α0, there is βξ < θ such that Cξ ⊆ βξ. But, then ⋃A0 ⊆
supξ<α0

βξ and so ∣ ⋃A0∣ ≤ supξ<α0
βξ < θ (by regularity of θ and α0 < κ < θ). �

Let ξ0 = min{ξ ∶ Cξ is unbounded in θ}. By minimality of ξ0, we get

α1 = sup{x(η) + 1 ∶ η < ξ0, x ∈ A0} < θ.
Thus, in particular x(η) < α1 for all x ∈ A0.

Claim 1.12. There is a family A1 ⊆ A0 such that ∣A1∣ = θ and for all x, y ∈ A1 the intersection

x ∩ y ⊆ α1.

Proof. By trans�nite induction, we can construct a sequence

τ = ⟨xµ ∶ µ < θ⟩
of elements in A0 such that for all µ, xµ(ξ0) > max{µ,⋃ν<µ xν}. Take A1 = {xµ ∶ µ < θ}. �

For each y ∈ [α1]<κ, let A1,y = {x ∈ A1 ∶ x∩α1 = y}. Then A1 = ⋃{A1,y ∶ y ∈ [α1]<κ}. However,
by hypothesis ∣α<κ1 ∣ < θ and so ∃y ∈ [α1]<κ such that ∣A1,y ∣ = θ.

Claim 1.13. For all distinct a, b ∈ A1,y we have ∣a ∩ b∣ = y.

Proof. Fix a, b distinct in A1,y. Then a ∩ b ⊆ α1 since a, b ∈ A1. Moreover

a ∩ b = a ∩ b ∩ α1 = a ∩ α1 ∩ b ∩ α1 = y ∩ y = y.
�

Clearly B = A1,y is a ∆-system with root the set y. �

1.3. Martin's axiom.

Discussion 1.14. Suppose CH fails. Then we can ask:

(1) If ω ≤ κ < 2ω, does 2κ = 2ω?

(2) If ω ≤ κ < 2ω, does every a.d. family A ⊆ P(ω) of cardinality κ fail to be maximal?

(3) Is it true that every set A ⊆ R such that ∣A∣ < 2ω = ∣R∣ is of Lebesgue measure zero?

(4) Is it true that every set A ⊆ R such that ∣A∣ < 2ω is meager?

(5) Let S∞ denote the group of all permutations of N. A subgroup G of S∞ is said to be

co�nitary if for every f ∈ G/{id}, the set �x(g) = {n ∈ ω ∶ g(n) = n} is �nite. A co�nitary

group if said to be maximal, abbreviated mcg, if it is not properly contained in another

co�nitary group. Is it true that every co�nitary group G ≤ S∞ of cardinality strictly

smaller than c is not maximal?

Under the assumption of CH the answer to each of the above questions is �yes�. However, if

CH does not hold, each of those answers is independent of ZFC.

Definition 1.15.
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(1) A partial order ⟨P,≤⟩ is a pair such that P ≠ ∅ and ≤ is a relation on P which is

transitive and re�exive.

(2) ⟨P,≤⟩ is a partial order in the strict sense i� in addition for all p, q if p ≤ q and q ≤ p
then p = q.

(3) If p ≤ q we say that p extends q, or p is stronger than q, or q is weaker than p. We

denote p < q the fact that p ≤ q and p ≠ q.

Definition 1.16. Let ⟨P,≤⟩ be a p.o.

(1) A chain in P is a set C ⊆ P such that for all p, q ∈ C(p ≤ q ∨ q ≤ p).
(2) p /⊥ q i� there is r ∈ P such that r ≤ p and r ≤ q. We say that p and q are compatible,

also that they have a common extension.

(3) p ⊥ q i� p and q do not have a common extensions, i.e. there is no r such that r ≤ p and
r ≤ q. We say that p, q are incompatible.

(4) An antichain in P is a subset A of P such that for all p, q ∈ A if p ≠ q then p ⊥ q.

Definition 1.17. A partial order ⟨P,≤⟩ has the countable chain condition i� every non-

empty antichain in P is countable.

Example 1.18.

(1) Let P = ω1 with α < β i� α ∈ β. Every antichain in P has cardinality 1.

(2) Let X ≠ ∅. Consider the power set P(X) of X with extension relation p ≤ q i� p ⊆ q.
Thus p ⊥ q i� p ∩ q = ∅. Thus A ⊆ P(X) is an antichain i� for any two distinct a, b in A
the intersection a ∩ b is empty. Then (P(X),⊆) has the c.c.c. i� ∣X ∣ ≤ ω.

Definition 1.19. Let ⟨P,≤⟩ be a partial order.

(1) A set D ⊆ P is dense i� for all p ∈ P there is q ≤ p such that q ∈D.

(2) A non-empty subset G of P is a �lter i�

● for all p, q in G there is r ∈ G such that r ≤ p and r ≤ q;
● for all p ∈ G and all q ∈ P, if p ≤ q then q ∈ G.

Definition 1.20.

(1) MA(κ) is the statement: Whenever ⟨P,≤⟩ is a non-empty ccc partial order and D is a

family of ≤ κ many dense subsets of P, then there is a �lter G in P such that for all

D ∈ D(G ∩D ≠ ∅).
(2) MA is the statement: ∀κ < 2ω(MA(κ)).

Remark 1.21. Martin's axiom is consistent with R being arbitrarily large. Moreover MA

implies that the answer to each of Questions 1-5 from Discussion 1.14 is yes.

1.4. Cohen Forcing.

Definition 1.22. Let P be the partial order consisting of all subsets p of ω × 2, where ∣p∣ < ω
and p is a function. De�ne p ≤ q i� q ⊆ p.

Discussion 1.23.
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(1) Observe that p /⊥ q i� p ↾ dom(p) ∩ dom(q) = q ↾ dom(p) ∩ dom(q).
(2) If p /⊥ q then p ∪ q ≤ p, q.
(3) Since ∣P∣ = ℵ0, the partial order has the countable chain condition.

(4) If G is a �lter in P, then since for any two elements p, q of G the functions p, q coincide

on their common domain and so

⋃G = ⋃{p ∶ p ∈ G}

is a function, which we denote fG.

(5) Note that it is possible that dom(fG) is �nite, or empty. However if G meets signi�cantly

many dense sets, then f is indeed a function.

(6) For each n, de�ne Dn = {p ∈ P ∶ n ∈ dom(p)}. Note that Dn is dense. Take an arbitrary

q ∈ P. If n ∉ dom(q) then q′ = q ∪ {(n, k)} ≤ q for any k. Therefore if G ∩Dn ≠ ∅, then
dom(fG) = ω.

(7) For each h ∈ ω2 let Eh = {p ∈ P ∶ p ≠ h ↾ dom(p)}. Note that Eh is dense. Indeed,

take any p ∈ P and suppose p = h ↾ dom(p). Let n ∈ ω/dom(p) and k ≠ h(n). Then

p′ = p ∪ {(n, k)} ≤ p and p′ ∈ Eh.
(8) If G is a �lter and G ∩ Eh ≠ ∅ for each h ∈ ω2, then fG ≠ h for each h ∈ ω2. Indeed,

pick such an h. Then there is p ∈ G ∩Eh, so there is n ∈ dom(p) such that p(n) ≠ h(n).
However, since p ∈ G, fG(n) = p(n). Thus, fG(n) ≠ h(n). However fG is a function and

we just claimed that h ∉ ω2, which is a contradiction. The problem is that there is no

�lter G such that G ∩Eh ≠ ∅ for all f ∈ ω2.

Lemma 1.24.

(1) If κ′ < κ then MA(κ′) implies MA(κ).
(2) MA(2ω) is false.
(3) MA(ω) is true.

Proof. Part (1) is clear by de�nition. Part (2) was just shown. To see item (3) consider

any ccc partial order P and let {Dn}n∈ω be a dense subset of P. Recursively, de�ne a sequence

{pn}n∈ω ⊆ P such that p0 ∈D0, pn+1 ∈Dn+1 such that pn+1 ≤ pn. Then G = {q ∈ P ∶ ∃n ∈ N(pn ≤ q)}
is a �lter meeting all Dn's. �

Remark 1.25. The Continuum Hypothesis implies Martin's axiom. Note also, that Martin's

Axiom is consistent with arbitrarily large continuum.

Example 1.26. Consider the partial order P consisting of all �nite functions p such that

p ⊆ ω × ω1

(again, we identify p with its graph). Let G ⊆ P be a �lter meeting every dense set Dn = {p ∈
P ∶ n ∈ dom(p)} for each n ∈ ω. Then fG = ⋃G ∶ ω → ω1. Now, for each α ∈ ω1 consider the set

Dα = {p ∈ P ∶ α ∈ ran(p)} and note that Dα is dense. If G is a �lter and G ∩Dα ≠ ∅ for all α and

G∩Dn ≠ ∅ for all n ∈ ω, then fG is a function from ω onto ω1, which is clearly not possible. Note

that {(0, α) ∶ α < ω1} is an antichain of size ω1 and so the partial order is not c.c.c.



62 3. INFINITARY COMBINATORICS

1.5. MA and the continuum. The following forcing notion is well-known and has broad

applications in the study of the set theoretic properties of the real line.

Definition 1.27. Mathias forcing with respect to a �lter F ⊆ [ω]ω is denoted M(F) and

consists of all pairs (s,A) where s ∈ [ω]<ω, A ∈ F , max s < minA and has extension relation

de�ned as follows: (s1,A1) ≤ (s0,A0) if s0 ⊆ s1, s1/s0 ⊆ A0 and A1 ⊆ A0.

The partial order M(F) has the countable chain condition. In fact is satis�es the following

property:

Definition 1.28. A partial order P is σ-centered if for each n ∈ ω, there is Pn ⊆ P such that

P = ⋃
n∈ω

Pn

and for all p, q ∈ Pn∃r ∈ Pn(r ≤ p, q).

Indeed, M(F) = ⋃s∈[ω]<ω Ps, where Ps = {(s0,A0) ∈M(F) ∶ s0 = s}. Note that:

Claim 1.29. If P is σ-centered, then P is ccc.

Proof. Let P be σ-centered and P = ⋃n∈ω Pn, where for each n ∈ ω, the partial order Pn is

centered. Let A ⊆ P, ∣A∣ = ω1. Then, there is n ∈ ω such that ∣A ∩ Pn∣ > ℵ0, as otherwise

∣P ∩A∣ = ∣ ⋃
n∈ω

Pn ∩A∣ ≤ ⋃
n∈ω

∣Pn ∩A∣ ≤ ℵ0,

which is a contradiction. But then ∣A∩Pn∣ ≥ 2 and so there are p, q ∈ A∩Pn. By hypothesis p /⊥ q
and so A is not an antichain. �

Thus, M(F) is ccc. In fact, M(F) is Knaster, which by de�nition, means that from every

family of ℵ1 conditions of the partial order, one can �nd a subfamily of cardinality ℵ1 in which

any two distinct elements are pairwise compatible.

Lemma 1.30. The following sets are dense in M(F):
(1) For each n ∈ ω, Dn = {(s,A) ∶ ∃m > n(m ∈ s)}.
(2) For each X ∈ F , the set DX = {(s,A) ∶ A ⊆X}.

Proof. To see item (1), �x n ∈ ω and let (s,A) ∈ M(F) be an arbitrary condition. Since A

is in�nite, we can �nd m ∈ A such that m > n and m > max s. Then (s ∪ {m},A/(m + 1)) is an

extension of (s,A) from Dn. To see item (2) �x X ∈ F and consider an arbitrary (s,A) ∈M(A).
Since F is a �lter, Y =X ∩A ∈ F . Then (s, Y ) ∈DX and (s, Y ) ≤ (s,A) as desired. �

Lemma 1.31. Let F ⊆ [ω]ω be a �ler on ω, let G be a �lter of the partial order M(F) and let

σG = ⋃{s ∶ ∃A(s,A) ∈ G}.
(1) If G ∩Dn ≠ ∅ for each n ∈ ω, where Dn is as in Lemma 1.30, then ∣σG∣ = ω.
(2) If G ∩DX ≠ ∅ form some X ∈ F , where DX is de�ned as in Lemma 1.30, then σG ⊆∗ X,

i.e. σG/X is �nite.
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Proof. To see item (1) note that if (s,A) ∈ G then s ⊆ σG. Therefore, if (s,A) ∈ G ∩Dn

then since there is m > n such that m ∈ s, we obtain that there is m > n with m ∈ σG. To see item
(2) note that if (s,A) ∈ G, then σG ⊆ A. Then, if (s,A) ∈ G ∩DX , σG ⊆∗ X. �

Now, we are ready to obtain the following theorem:

Theorem 1.32. Martin's Axiom implies that the almost disjointness number a is equal to 2ω.

Let A be an in�nite almost disjoint family and let ∣A∣ < c. Note that the set I(A) which is

de�ned as the downwards closure (i.e. closures with respect to subsets) of {⋃A0 ∶ A0 ∈ [A]<ω}
is an ideal. Moreover, the set of complements of elements of I(A) is a �lter, referred to as the

dual �lter and will be denoted here as F(A). Note that for every A ∈ A, ω/A ∈ F(A). Now,

suppose G is �ler for the partial order M(F(A)) such that G has a non-empty intersection with

every element of the families {Dn}n∈ω and {DX ∶ ω/X ∈ A}, where Dn and DX are de�ned as

in Lemma 1.30. Then, by the above considerations, σG is an in�nite subset of ω and σG ⊆∗ ω/A
for every A ∈ A. Then σG ∈ [ω]ω and ∣σG ∩A∣ < ω for all A ∈ A. That is A ∪ {σG} is an almost

disjoint family and so A is not maximal.

Definition 1.33. (Almost Disjoint Forcing) Let A ⊆ P(ω). The almost disjoint set partial

order PA consisits of all pairs (s,F ) ∈ [ω]<ω × [A]<ω with extension relation de�ned as follows:

(s′, F ′) ≤ (s,F ) i� s ⊆ s′, F ⊆ F ′,∀x ∈ F (x ∩ s′ ⊆ s).

Remark 1.34. The conditions of the above partial order are intended to describe a set, which

is almost disjoint from the elements of A.

Lemma 1.35. Let (s1, F1) and (s2, F2) be conditions in PA. Then the following are equivalent:
(1) (s1, F1) and (s2, F2) are compatible;

(2) for all x ∈ F1(x ∩ s2 ⊆ s1) and for all x ∈ F2(x ∩ s1 ⊆ s2);
(3) for all x ∈ F1 and all n ∈ x/s1, we have that n ∉ s2 and for all x ∈ F2 and all n ∈ x/s2 we

have that n ∉ s1.

Definition 1.36. Let G be a PA-�lter and let dG = ⋃{s ∶ ∃F (s,F ) ∈ G}.

Lemma 1.37. If G ⊆ PA is a �lter and (s,F ) ∈ G then for all x ∈ F (dG ∩ x ⊆ s).

Proof. Let x ∈ F . To show that dG ∩ x ⊆ s, it su�ces to show that dG/s ∩ x = ∅. So,

let n ∈ dG/s. Then (by de�nition of dG) there is (s′, F ′) ∈ G such that n ∈ s′. Without loss of

generality we can assume that (s′, F ′) ≤ (s,F ). Then n ∈ s′/s. By de�nition of the extension

relation ≤, s′/s ∩ x = ∅ and so n ∉ x. That is dG/s ∩ x = ∅. �

Corollary 1.38. Let x ∈ A. Then Dx = {(s,F ) ∈ PA ∶ x ∈ F} is dense. If G ∩Dx ≠ ∅, then
by the previous Lemma ∣dG ∩ x∣ < ω.

Proof. We only need to show that Dx is dense. So, let p ∈ PA. Then p = (s,F ) ∈ [ω]<ω ×
[A]<ω. If x ∈ F then (s,F ) ∈ Dx. If x ∉ F , then observe that (s,F ∪ {x}) ≤ (s,F ) and clearly

(s,F ∪ {x}) ∈Dx. �
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Lemma 1.39. PA is ccc.

Proof. In fact PA is σ-centered. Indeed, for a ∈ [ω]<ω let

Pa = {(s,F ) ∈ PA ∶ s = a}.
Then Pa is centered and PA = ⋃{Pa ∶ a ∈ [ω]<ω}. �

Lemma 1.40 (Solovay's Lemma). Assume MA(κ). Let A,C ⊆ P(ω) where ∣A∣ ≤ κ, ∣C∣ ≤ κ.
Suppose for all y ∈ C and for all F ∈ [A]<ω we have that ∣y ∖⋃F∣ = ω. Then there is d ∈ [ω]ω such

that

∀x ∈ A(∣x ∩ d∣ < ω) and ∀x ∈ C(∣x ∩ d∣ = ω).

Proof. For y ∈ C, n ∈ ω, let Eyn = {(s,F ) ∈ PA ∶ s ∩ y /⊆ n}.

Claim. Eyn is dense in PA.

Proof. Let (s,F ) ∈ PA. By hypothesis ∣y/⋃F ∣ = ω and so there is m ∈ y/⋃F such that

m > n. Then (s ∪ {m}, F ) is an extension of (s,F ) from Eyn. �

Consider the collection of dense sets {Dx}x∈A ∪ {Eyn}y∈C,n∈ω. Since this is a collection of at

most κ-many dense sets, by MA(κ) there is a �lter G meeting all of them. But then

d = dG = ⋃{s ∶ ∃F (s,F ) ∈ G}
is such that ∀x ∈ A(dG ∩ x is �nite) and ∀y ∈ C(y ∩ dG is in�nite). �

Corollary 1.41. Let A ⊆ [ω]ω be an a.d. family such that ∣A∣ = κ, where ω ≤ κ < 2ω.

Assume MA(κ). Then A is not maximal.

Proof. Since A is in�nite, for each �nite F ⊆ A, the set ω/⋃F is in�nite. Indeed, suppose

there is a �nite subset F of A such that ω/⋃F is �nite. Take any A ∈ A/F . Then, there is

A0 ∈ F such that A∩A0 is in�nite, since otherwise ∣A∣ < ω. However, this is a contradiction to A
being an a.d. family. Therefore, we can apply Solovay's Lemma to A and C = {ω}. Thus, there
is a set d such that ∣d∣ = ω and ∣d ∩ x∣ < ω for each x ∈ A. Thus, A is not maximal. �

Theorem 1.42. Let ω ≤ κ < 2ω and assume MA(κ). Then 2κ = 2ω.

Proof. Fix κ < 2ω. Since there is an a.d. family of cardinality 2ω, there is also an a.d. family

of cardinality κ. Fix such a family B. De�ne Φ ∶ P(ω) → P(B) as follows:
Φ(d) = {x ∈ B ∶ ∣d ∩ x∣ < ω}.

We will show that Φ is an onto mapping.

Note that by Corollary 1.41, the family B is not maximal. Then, there is d ∈ P(ω) such that

for all b ∈ B(∣d∩ b∣ < ω) and so Φ(d) = B. Now, consider any B0 which is a proper subset of B and

let C = B/B0. We can apply Solovay's Lemma to B0 and C. Then, there is d ∈ P(ω) such that for

all x ∈ B0(∣x ∩ d∣ < ω), while for all d ∈ B/B0(∣x ∩ d∣ = ω). That is Φ(d) = B0.

Therefore Φ is indeed onto and so ∣P(B)∣ = 2κ ≤ ∣P(ω)∣ = 2ω. However, by monotonicity of

exponentiation, we have 2ω ≤ 2κ and so 2κ = 2ω. �
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Corollary 1.43. MA implies that 2ω is regular.

Proof. Let ω ≤ κ < 2ω. By König's Lemma cf(2κ) > κ. Since 2κ = 2ω, we obtain that for

each κ such that ω ≤ κ < 2κ,

κ < cf(2κ) = cf(2ω) ≤ 2ω.

Therefore 2ω = cf(2ω), i.e. 2ω is regular. �

2. Applications

2.1. Application to measure. The collection all Lebesgue measure zero sets, forms a σ-

ideal, which we denote N . A countable set is of measure zero, while the real line itself is not of

measure zero. Thus, of interest becomes the following cardinal value:

add(N) = min{∣F∣ ∶ F ⊆ N ,⋃F ∉ N}.

We will show that MA implies that add(N) = 2ℵ0 . More precisely:

Theorem 2.1. Assume MA(κ). Then add(N) > κ.

Proof. In the following µ denotes the Lebesuge measure on the real line R. We have to show

that if {Mα}α<κ ⊆ N , then ⋃α<κMα ∈ N . Fix {Mα}α<κ.

Fact 2. A set M ⊆ R has Lebesgue measure zero, i.e. µ(M) = 0 i� for every ε > 0 there is an

open U ⊆ R such that M ⊆ U and µ(U) < ε.

Fix ε > 0. Let Pε be the partial order of all open U ⊆ R such that µ(U) < ε with extension

relation superset, i.e. p ≤ q i� p ⊇ q.

Claim 2.2. Let p, q ∈ Pε. Then p /⊥ q i� µ(p ∪ q) < ε. In particula, if p /⊥ q then p ∪ q ≤ p, q.

Claim 2.3. Let G ⊆ Pε be a �lter. Then µ(UG) ≤ ε, where UG = ⋃G = ⋃{p ∶ p ∈ G}.

Proof. If p, q ∈ G then since ∃r ∈ G(r ≤ p, q), we must have r ≤ p ∪ q. However, G is closed

with respect to weaker conditions and so p ∪ q ∈ G. Therefore for every natural number n and

every {pj}j∈n ⊆ G, we have ⋃j∈n pj ∈ G. Let B be the base for the topology of R consisting of

open intervals with rational endpoints. If x ∈ ⋃G, then there is p ∈ G such that x ∈ p. Since B is

a base, there is B ∈ B such that x ∈ B ⊆ p. Then in particular

µ(B) ≤ µ(p) < ε.

Furthermore, if {p1,⋯, pn} ⊆ G ∩ B, then ⋃nj=1 pj ∈ G and so µ(⋃nj=1 pj) < ε. The base B is a

countable set and so G ∩ B is also countable. Therefore

µ⋃(G ∩ B) ≤ ∑{µ(p) ∶ p ∈ G ∩ B} ≤ ε,

where we used the fact that all partial sums are strictly smaller than ε. �

Claim 2.4. The partial order Pε has the countable chain condition.



66 3. INFINITARY COMBINATORICS

Proof. Suppose by contradiction, that Pε is not ccc. Let A = {pα}α<ω1 ⊆ Pε be an antichain,

i.e, for all α ≠ β, pα ⊥ pβ . We claim that there is n ∈ ω such that for δ = 1
n we have 0 < δ < ε and

X = {α ∈ ω1 ∶ µ(pα) ≤ ε − 3δ} is uncountable. Well, again, suppose this is not the case. Then, for

every natural number n, the set Xn = {α ∈ ω1 ∶ µ(pα) ≤ ε− 1
n} is countable. However ω1 = ⋃n∈ωXn

and a countable union of countable sets if countable, which is a contradiction. We will make use

of the following fact.

Fact. If V is an open set (or a measurable subset of R) and δ > 0, then there is a �nite family

C of basic open subsets from B such that C △ V = C/V ∪ V /C is of Lebesgue measure ≤ δ.

Then, for each α ∈X there is Cα ∈ C = {⋃B′ ∶ B′ ∈ [B]<ω} such that µ(pα△Cα) ≤ δ. Since for
each distinct α,β from X, the conditions pα and pβ are incompatible, we must have µ(pα∪pβ) ≥ ε.
On the other hand, for all α,β ∈X we have that

µ(pα ∩ pβ) ≤ µ(pα) ≤ ε − 3δ.

Note that pα ∪ pβ = pα△ pβ ∪ pα ∩ pβ . Therefore

ε ≤ µ(pα ∪ pβ) = µ(pα△ pβ) + µ(pα ∩ pβ)

and so we obtain that µ(pα △ pβ) ≥ 3δ. This implies that µ(Cα △ Cβ) ≥ δ and so in particular

Cα ≠ Cβ . Therefore {Cα}α∈X is an uncountable subset of C which is a contradiction, since C is

countable. Therefore Pε is indeed ccc. �

Since Pε is ccc, we can apply MA(κ). Now for each α ∈ κ, consider the set

Dα = {p ∈ Pε ∶Mα ⊆ p}.

Claim 2.5. For all α ∈ κ, Dα is dense.

Proof. Fix α ∈ κ. Let q ∈ P and let εq = µ(q). Then εq < ε. By Fact 2 there is an open set V

such that Mα ⊆ V and µ(V ) < ε − εq. Take p = q ∪ V . Then p is open and

µ(p) ≤ µ(q) + µ(V ) < εq + ε − εq = ε.

Thus p ∈ Pε and p ∈Dα. �

By MA(κ), there is a �lter Gε ⊆ Pε such that Gε ∩Dα ≠ ∅ for all α < κ. This implies that for

all α < κ,
Mα ⊆ ⋃Gε = UGε .

Let U ε = ⋃Gε. Thus, ⋃α<κMα ⊆ U ε. However µ(U ε) ≤ ε and the above can be done for each ε,

we obtain

µ(⋃
α<κ

Mα) = 0.

�
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2.2. Applications to Category. Recall that a setX ⊆ R is said to be meager ifX ⊆ ⋃n∈ω Fn
where for each n, Fn is closed nowhere dense. The collection of all meager subsetsM of all meager

subsets of the real line forms a σ-ideal. Note that every countable set of real numbers is naturally

a meager set, while the real line itself is not. Thus, the following cardinal value becomes of

interest:

add(M) = min{∣F∣ ∶ F ⊆M,⋃F ∉M}.
By the above observation, we have that ℵ0 < add(M) ≤ 2ℵ0 = c. We will show that MA implies

that add(M) = 2ℵ0 . More precisely, we will show the following:

Theorem 2.6. MA(κ) implies that add(M) > κ.

Proof. We have to show, that whenever {Mα}α<κ is a family of meager subsets of R, then
⋃α<κMα is meager. That is, given {Mα}α<κ, we have to show that there is a countable family

{Hn}n∈ω of closed nowhere dense sets, such that

⋃
α<κ

Mα ⊆ ⋃
n∈ω

Hn.

The above is equivalent to ⋂n∈ω R/Hn ⊆ ⋂α<κR/Mα. Note that the complement of a closed,

nowhere dense set is an open dense subset of R. Thus, it is su�cient to show that whenever we

have a family {Uα}α<κ of dense open subsets of R, then there is a countable family {Vn}n∈ω of

dense open subsets of R such that

⋂
n∈ω

Vn ⊆ ⋂
α<κ

Uα.

Fix {Uα}α<κ a family of dense open subsets of R. Let B = {Bi}i∈ω be an enumeration of all

non-empty open intervals with rational end-points, i.e. intervals of the form (p, q) where p, q are
rational numbers. Then B is a base, i.e. for every open W ⊆ R we have W = ⋃{Bi ∶ Bi ⊆ W}.
Now, for each j ∈ ω let

cj = {i ∈ ω ∶ Bi ⊆ Bj}
and let C = {cj ∶ j ∈ ω}. Thus, cj is a subset of ω, while C ⊆ P(ω). For each α < κ, let

aα = {i ∈ ω ∶ Bi /⊆ Uα}

and let A = {aα}α<κ. Thus, aα ⊆ ω and A ⊆ P(ω). Next, we will show that the families A, C
satisfy the conditions of Solovay's Lemma. Indeed, let cj ∈ C and let F ∈ [A]<ω. We need to verify

that ∣cj/⋃F∣ = ω. Say, F = {aα ∶ α ∈ F} for some �nite F ∈ [κ]<κ. Then,

cj/ ⋃
α∈F

aα = {i ∈ ω ∶ Bi ⊆ Bj ,Bi ⊆ ⋂
α∈F

Uα} = {i ∈ ω ∶ Bi ⊆ Bj ∩ ⋂
α∈F

Uα}.

Using the fact that ⋂α∈F Uα is dense open, we can show that ∣cj/⋃α∈F aα∣ = ω.
Therefore, Solovay's Lemma applies and so there is d ⊆ ω such that

∀α ∈ κ(∣d ∩ aα∣ < ω) and ∀j ∈ ω(∣d ∩ cj ∣ = ω).

Now, for each n ∈ ω, de�ne Vn = ⋃{Bi ∶ i ∈ d, i > n}.

Claim 2.7. For each n ∈ ω, the set Vn is dense open.
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Proof. Fix n. Clearly, Vn is an open set. To show that Vn is dense, it is su�cient to show

that Vn ∩ Bj ≠ ∅ for every basic open Bj . So, �x j. Since ∣d ∩ cj ∣ = ω, there is i > n such that

i ∈ d and i ∈ cj . That is, Bi ⊆ Bj . But Bi ⊆ Vn (since i ∈ d, i > n) and so Bi ⊆ Bj ∩ Vn. Thus,

Bj ∩ Vn ≠ ∅. �

It remains to show that ⋂n∈ω Vn ⊆ ⋂α<κUα. Fix α < κ. Since ∣d ∩ aα∣ < ω, there is a natural

number n such that d∩aα ⊆ n. Therefore for every i ∈ ω/(n+1) if i ∈ d then i ∉ aα and so Bi ⊆ Uα.
Thus, in particular, Vn = ⋃{Bi ∶ i ∈ d ∧ i > n} ⊆ Uα. Therefore

⋂
m∈ω

Vm ⊆ Vn ⊆ Uα.

Since α < κ was arbitrary, we obtain ⋂m∈ω Vm ⊆ ⋂α<κUα. �



CHAPTER 4

Forcing

1. Generic Extensions

Discussion 1.1. The method of forcing allows to establish the relative consistency of ¬CH.
More precisely, we will show that if Ω is a �nite subset of ZF, then there is a larger set subset

Λ of ZFC such that every countable transitive model M of Λ has an extension N such that

N ⊧ Ω + ¬CH.
To prove Con(ZFC) → Con(ZFC+¬CH), proceed as follows: If ZFC+¬CH ⊧ ϕ + ¬ϕ for some

sentence ϕ, then there is a �nite Ω ⊆ ZFC such that Ω+¬CH ⊧ ϕ∧¬ϕ. Therefore, in ZFC we can

produce a model N of the inconsistent theory Ω + ¬CH, thus ZFC is inconsistent.

Remark 1.2. Throughout, by �M is a c.t.m. for ZFC” we understand, thatM is a countable

transitive model for a su�ciently large fragment of ZFC.

Notation. Let (P,≤P,1P) be a partial order with designated maximal element 1P such that

∀q ∈ P(q ≤ 1P)

(with other words 1P is largest). We consider P ∈ M for a model M, as an abbreviation to

(P,≤P,1P) ∈ M. We refer to such partial orders, also as forcing notions and to the elements of a

given partial order as conditions. Note that if q ≤ p we say that q is stronger than p, also that p

is weaker than q, and that q is an extension of p. If p, q do not have common extension, we say

that they are incompatible.

Definition 1.3. LetM be a c.t.m. and P ∈ M be a forcing notion. A �lter G ⊆ P is said to

be (M,P)-generic (also P-generic overM) if G ∩D ≠ ∅ for all dense D ⊆ P such that D ∈ M.

Remark 1.4. The model which we want to obtain is of the form M[G]. i.e. we adjoin to the

modelM a �lter G, which is (M,P)-generic.

Lemma 1.5 (Generic Filter Existence Lemma). LetM be a c.t.m. for ZF-P. Let P ∈ M be a

forcing notion and let p ∈ P. Then, there is an (M,P)-generic �lter G such that p ∈ G.

Proof. Let {Dn}n∈ω be an enumeration of all dense subsets of P, which are elements ofM.

Recursively, de�ne a sequence {pn}n∈ω ⊆ P such that p0 ∈ D0 with the property that p0 ≤ p and

for each n, pn+1 ∈Dn+1 is such that pn+1 ≤ pn. Then the upwards closure G of {pn}n∈ω in P is the

desired (M,P)-generic �lter. That is G = {q ∈ P ∶ ∃n(pn ≤ q)}. Note that the given condition p

does not necessarily belong to {pn}n∈ω, but p ∈ G. �
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Definition 1.6. Let P be a partial order. We say that an element r ∈ P is an atom if there

are no incompatible p, q extending r. Moreover P is said to be atomless, if there are no atoms in

P.

Lemma 1.7. Suppose P is an atomless poset and G is an (M,P)-generic �lter. Then G ∉ M.

Proof. Let D = P/G. Let r ∈ P. Then, since P is atomless, there are p, q ≤ r such that p ⊥ q.
But, then at most one of q, p is an element of G, which means that at least one of {q, p} belongs

to D. Therefore D is dense. If G ∈ M, then D ∈ M. However G∩D = ∅, which is a contradiction

to the hypothesis that G is generic overM. Thus G ∉ M. �

Definition 1.8 (P-names). Let P be a partial order.

(1) A relation τ is a P-name i� for every ⟨σ, p⟩ ∈ τ we have that σ is a P-name and p ∈ P.
(2) With V P we denote the collection of all P-names. Note that V P is a proper class.

Definition 1.9 (Generic extension). LetM be a c.t.m. of ZF-P and let P ∈ M. Then

MP = V P ∩M = {τ ∈ M ∶ (τ is a P-name)M}.

Definition 1.10 (Evaluation of P-names). Let τ be a P-name and let G ⊆ P be a �lter. Then,

the evaluation of τ with respect to G, denoted val(τ,G), also τG, is the recursively de�ned set

val(τ,G) = τG = {val(σ,G) ∶ ∃p ∈ G(⟨σ, p⟩ ∈ τ)}.

Definition 1.11 (Generic extension). LetM be a c.t.m. of ZF-P, P ∈ M be a partial order.

Let G be a (M,P)-generic �lter. Then the generic extension ofM via G is the set

M[G] = {τG ∶ τ ∈ MP}.

Remark 1.12. We will prove thatM[G] is a model of a su�ciently large fragment of ZF-P.

Example 1.13.

(1) ∅ is vacuously a P-name and ∅G = ∅.
(2) If σ1, σ2, σ3 are P-names and τ = {⟨σ1,1P⟩, ⟨σ2,1P⟩, ⟨σ3,1P⟩}, then τ is a P-name and

τG = {σ1
G, σ

2
G, σ

3
G}. Note that for each {pi}3

i=1 ⊆ P, the set τ ′ = {⟨σi, pi⟩}3
i=1 is also a

P-name. However, the evaluation τ ′G depends on G ∩ {pi}3
i=1.

Definition 1.14 (Check names). For a forcing notion ⟨P,≤,1P⟩ and a set x, let

x̌ = {⟨y̌,1P⟩ ∶ y ∈ x}.

We refer to the set x̌ as a check name.

Lemma 1.15. If M is a transitive model of ZF-P, P ∈ M and G is a (M,P)-generic �lter,

then:

(1) for all x ∈ M, we have that x̌ ∈ MP and val(x̌,G) = x;
(2) M⊆M[G].
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Proof. To see item (1) note that recursive de�nitions are absolute and so x̌ ∈ M for each

x ∈ M. Then inductively one can show that val(x̌,G) = x. Item (2) follows directly from the

De�nition ofM[G]. �

Definition 1.16 (Canonical name for a �lter). Let P be a forcing notion. Then Γ = {⟨p̌, p⟩ ∶
p ∈ P} is a canonical name for a generic �lter.

Remark 1.17. Indeed. If P ∈ M then Γ ∈ M and if G is (M,P)-generic, then ΓG = G.

Lemma 1.18 (Minimality of Generic Extensions). LetM ⊆ N be transitive models of ZF-P,

P ∈ M a forcing notion and let G be an (M,P)-generic �lter such that G ∈ N . ThenM[G] ⊆ N .

Proof. Recall that M[G] = {τG ∶ τ ∈ MP}. For every τ ∈ MP, clearly τ ∈ N . The set

τG is recursively de�ned from τ and G and so by absoluteness of evaluation of names, we have

val(τ,G) = τG ∈ N . ThusM[G] ⊆ N . �

2. The Forcing Language

Definition 2.1 (The forcing language). Let P be a partial order. Then the forcing language

FLP consists of all �rst order formulas which are obtained from the binary relation symbol ∈ and
all the names in V P, treated as constant symbols.

Remark 2.2. V P is a proper class. For a transitive modelM,M∩FLP is the set of all �rst

order formulas obtained in the usual way from the binary relation ∈ and all the names in MP

used as constant symbols.

Definition 2.3. For a closed formula ψ in FLP∩M de�ne the satisfaction relationM[G] ⊧ ψ
as usual, by interpreting ∈ as membership and each name τ as τG.

Definition 2.4 (The forcing relation). LetM be a c.t.m. for ZF-P, let P ∈ M be a forcing

notion and let ψ be a closed formula in FLP ∩M. Then, we say that p forces ψ over M or just

p forces ψ, denoted

p ⊩P,M ψ,

also denoted simply p ⊩ ψ whenever P,M are clear from the context, if for every (M,P)-generic
�lter G such that p ∈ G, we haveM[G] ⊧ ψ.

Lemma 2.5 (Truth Lemma). Let M be a c.t.m. for ZF-P, P ∈ M a forcing notion, ψ a

sentence of FLP ∩M and let G be an (M,P)-generic �lter. Then
M[G] ⊧ ψ i� ∃p ∈ G(p ⊩ ψ).

Remark 2.6. Note that the implication from right to left in the above theorem follows from

the de�nition of the forcing relation. On the other hand the implication from left to right is

non-trivial. Let P be a forcing notion and let ψ be the formula p̌1 ∈ Γ ∧ p̌2 ∈ Γ. Suppose r ∈ P
and r is a common extension of p1 and p2. Then r ⊩ ψ, since for every (M,P)-generic �lter G
such that r ∈ G we haveM[G] ⊧ ψ. On the other hand if G′ is an (M,P)-generic �lter such that

p1 ∈ G′, but p2 ∉ G′ then clearlyM[G′] /⊧ ψ.
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Lemma 2.7 (The De�nability Lemma). LetM be a ctm for ZF-P, let ϕ(x1,⋯, xn) be a formula
in L∈, with all free variables shown. Then, the set of all �nite tuples (p,P,≤P,1P, ν1,⋯, νn)
where (P,≤,1P) is a forcing notion, p ∈ P, (P,≤P,1P) ∈ M, ν1,⋯, νn are elements of MP and

p ⊩P,M ϕ(ν1,⋯, νn) is de�nable overM without parameters.

Example 2.8. Let τ = {⟨ň, p⟩ ∶ n ∈ ω, p ∈ P, p ⊩ ϕ(ň, σ)} where ϕ(x, y) is a formula and

τ ∈ M. Then

τG = {n ∈ ω ∶ ∃p ∈ G(p ⊩ ϕ(ň, σ))}.
By de�nition of the forcing relation ⊩, we have

τG ⊆ {n ∈ ω ∶ M[G] ⊧ ϕ(n,σG)}.

Denote the latter set S. We will show that S ⊆ τG. Let n ∈ S. ThenM[G] ⊧ ϕ(n,σG). By the

Truth Lemma, applied to the sentence ϕ(ň, σ) ∈ FLP ∩M, there is p ∈ G such that p ⊩ ϕ(ň, σ).
Then ⟨ň, p⟩ ∈ τ and so n ∈ τG.

3. ZFC and generic extensions

Lemma 3.1. LetM be a transitive model for ZF-P, P ∈ M, G a �lter on P. Then:
(1) rank(τG) ≤ rank(τ) for all τ ∈ M.

(2) o(M[G]) = o(M).
(3) ∣M[G]∣ = ∣M∣.

Proof. Exercise. �

We will make use of the following:

Definition 3.2 (Names for unordered and ordered pairs). Let σ and τ are P-names. Then

let

(1) up(σ, τ) = {⟨σ,1P⟩, ⟨τ,1P⟩} and

(2) op(σ, τ) = up(up(σ,σ),up(σ, τ)).

Lemma 3.3. LetM be a ctm for ZF-P, P a forcing notion inM and let G be (M,P)-generic
�lter. ThenM[G] is a transitive model for ZF-P/{Replacement}.

Proof. The fact that M[G] is transitive is straightforward from the de�nition of M[G].
Indeed, suppose x ∈ τG. We have to show that x ∈ M[G]. But by de�nition if x ∈ τG, then
x = σG for some σ ∈ MP and so x = σG ∈ M[G]. Thus M[G] is transitive. Extensionality and

Foundation are also straightforward. Pairing holds, as given σ, τ ∈ MP, we have that

(up(σ, τ))G = {σG, τG} ∈M[G].

To prove the union axiom, we need to show that if a ∈ M[G] then there is b ∈ M[G] such
that ⋃a ⊆ b. Let τ ∈ MP be such that a = τG. Note that ⋃dom(τ) is a name (since every element

of τ is of the form ⟨σ, p⟩ for σ ∈ MP, p ∈ P) and moreover ⋃dom(τ) ∈ M be absoluteness of the

union operation (inM). Thus, take π = ⋃dom(τ). Then π ∈ MP and b = πG ∈ M[G]. We still
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need to show that ⋃a ⊆ b. Let c ∈ a. Then c = σG for some σ ∈ dom(τ), i.e. σ ⊆ π. But, then

σG ⊆ πG and so ⋃a ⊆ b.
To prove the Axiom of Comprehension, consider a formula ϕ in the language of set theory,

ϕ(x, z, v0,⋯, vn−1) with all free variable shown. We will show that

∀z, v0,⋯, vn−1 ∈ M[G]∃y ∈ M[G]∀x ∈ M[G](x ∈ y↔ x ∈ z ∧ ϕM[G](x, z, v0,⋯, vn−1)).

Fix elements πG, σ
0
G,⋯, σn−1

G in M[G] corresponding to the variables z, v0,⋯, vn−1 and names

{π,σi}ni=0 ⊆MP. Let

S = {x ∈ πG ∶ ϕM[G](x,πG, σ0
G,⋯, σn−1

G )}.
It is su�cient to show that S ∈ M[G]. Consider the FLP-formula ϕ(x,π, σ0,⋯, σn−1) = ϕ̃(x) and
note that ϕ̃(x) ∈ MP. Note that

S = {νG ∶ ν ∈ dom(π) ∧M[G] ⊧ νG ∈ πG ∧ ϕ̃(νG)}.

Let τ = {⟨ν, p⟩ ∶ ν ∈ dom(π) ∧ p ∈ P ∧ p ⊩ (ν ∈ π ∧ ϕ̃(ν))}. By the De�nability Lemma τ ∈ MP and

so τG ∈ M[G]. Moreover

τG = {νG ∶ ν ∈ dom(π) ∧ ∃p ∈ G s.t. p ⊩ (µ ∈ π ∧ ϕ̃(ν))}.

Now, by the de�nition of the forcing relation τG ⊆ S. To see that S ⊆ τG, take any νG ∈ S. Thus,
ν ∈ dom(π) andM[G] ⊧ νG ∈ πG ∧ ϕ̃(νG). Then (ν, p) ∈ τ and so νG ∈ τG.

The Axiom of In�nity holds inM[G], since ω ∈ M[G]. �

Theorem 3.4. LetM be a ctm for ZFC, let P ∈ M and let G be (M,P)-generic. ThenM[G]
is a model for ZFC.

Proof. We continue with the Power Set Axioms, Replacement and Choice.

Power set axiom: We have to show that if a ∈ M[G], then there is b ∈ M[G] such that

P(a) ∩ M[G] ⊆ b. Consider a set a ∈ M[G] and �x a name τ ∈ MP such that τG = a. Let

Q = {ν ∈ MP ∶ dom(ν) ⊆ dom(τ)}. By Comprehension Q ∈ M and so π = Q × {1P} ∈ MP. We

claim that b = πG is as desired.

Let c ∈ P(a) ∩M[G] and let χ ∈ MP be such that χG = c. Consider the name

ν = {⟨σ, p⟩ ∶ σ ∈ dom(τ) ∧ p ⊩ σ ∈ χ}.

By the De�nability Lemma ν ∈ MP. Clearly dom(ν) ⊆ dom(τ) and so ν ∈ Q. Thus νG ∈ πG. It

remains to show that νG = c. Note that

νG = {σG ∶ ⟨σ, p⟩ ∈ ν ∧ p ∈ G}.

If σG ∈ νG, then there is p ∈ G such that p ⊩ σG ∈ χG and so M[G] ⊧ σG ∈ c. Therefore νG ⊆ c.
On the other hand, if d ∈ c, then d = σG for some σ ∈ dom(τ). Now σG ∈ c = χG and by the Truth

Lemma there is p ∈ G such that p ⊩ σ ∈ χ. Then, by de�nition of ν, we get ⟨σ, p⟩ ∈ ν. Therefore
σG ∈ νG, as desired.

Replacement Let ϕ̃(x, y) be FLP-formula inM and let a ∈ M[G] so that

M[G] ⊧ ∀x ∈ a∃yϕ̃(x, y).
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To show Replacement, we will �nd b ∈ M[G] so thatM[G] ⊧ ∀x ∈ a∃y ∈ bϕ̃(x, y). Fix a P-name

τ ∈ MP for a, i.e. such that τG = a. Consider the function fτ ∶ dom(τ) × P→MP de�ned by

fτ(σ, p) =
⎧⎪⎪⎨⎪⎪⎩

ν if ∃ν ∈ MP such that p ⊩ ϕ̃(σ, ν)
∅ otherwise

Note that there is α < o(M) such that range(fτ) ⊆ MP ∩ (R(α))M. Take Q = MP ∩ (R(α))M.

Then Q ∈ M and so π = Q × {1P} ∈ MP. It remains to show that b = πG as desired. For this,

consider x ∈ a. Thus x = σG for some σ ∈ dom(τ) and by hypothesisM[G] ⊧ ∃yϕ̃(x, y). By the

Truth Lemma, we can �nd p ∈ G and ν ∈ MP such that p ⊩ ϕ̃(σ, ν). But then f(σ, p) is de�ned

and f(σ, p) = ν′ for some ν′ ∈ MP such that p ⊩ ϕ̃(σ, ν′). By de�nition of Q, ν′ ∈ Q and we can

take y′ ∶= ν′G. ThenM[G] ⊧ y′ ∈ b ∧ ϕ̃(x, y′).
Axiom of Choice It is su�cient to show that every set inM[G] can be well-ordered inM[G].

Fix a = τG ∈ M[G] and using the Axiom of Choice inM to well-order dom(τ) in order type α,

i.e. dom(τ) = {σξ ∶ ξ < α}. Let

ḟ = {⟨op(ξ̌, σξ),1P⟩ ∶ ξ < α}.

In M[G], take f = ḟG. Then ḟG = {⟨ξ, (σξ)G⟩ ∶ ξ < α} and so in M[G], dom(f) = α and

a ⊆ ran(f). For x, y(x ≠ y) elements of a de�ne

x◁ y i� min{ξ ∶ f(ξ) = x} < min{ξ ∶ f(ξ) = y}.

Then ◁ is a well-order on a (inM[G]). �

4. Some Properties of the Forcing Relation

Example 4.1.

(1) If p ≤ q then p ⊩ q̌ ∈ Ġ, by upwards closure of G. Here Ġ = Γ is the canonical name for

the generic �lter.

(2) 1P ⊩ ψ i�M[G] ⊧ ψ for all (M,P)-generic �lters G.
(3) If p ⊩ ϕ and q ≤ p then q ⊩ ϕ. Indeed, let G be an (M,P)-generic �lter such that q ∈ G.

Then, by the upwards closure of G, p ∈ G. But, then by de�nitionM[G] ⊧ ϕ. Therefore
applying the de�nition once again, we obtain q ⊩ ϕ.

Lemma 4.2. Let G be a P-generic �lter overM. Assume D ⊆ P, D ∈ M and D is dense below

p ∈ P. If p ∈ G, then G ∩D ≠ ∅.

Proof. Let D+ = D ∪ {q ∈ P ∶ p ⊥ q}. Then D+ is dense. Not that {q ∈ P ∶ p ⊥ q} = {q ∈ P ∶
¬(∃r ≤ q s.t. r ∈ D)} is de�nable from P and D, and so is in M, which implies that D+ ∈ M.

Therefore, G ∩D ≠ ∅, because p ∈ G and G is a �lter. �

Lemma 4.3. For any forcing notion P ∈ M and sentences ϕ,ψ in FLP∩M the following hold:

(1) No p can force both ϕ and ¬ϕ.
(2) If ϕ, ψ are logically equivalent, then p ⊩ ϕ i� p ⊩ ψ.
(3) If p ⊩ ϕ and q ≤ p, then q ⊩ ϕ.
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(4) p ⊩ ϕ ∧ ψ i� p ⊩ ϕ and p ⊩ ψ.
(5) p ⊩ ¬ϕ i� ¬∃q ≤ p(q ⊩ ϕ); and p ⊩ ϕ i� ¬∃q ≤ p(q ⊩ ¬ϕ).
(6) p ⊩ ϕ→ ψ i� ¬∃q ≤ p(q ⊩ ϕ ∧ q ⊩ ¬ψ).
(7) p ⊩ ϕ ∨ ψ i� {q ≤ p ∶ q ⊩ ϕ ∨ q ⊩ ψ} is dense below p.

(8) p ⊩ ϕ↔ ψ i� ¬∃q ≤ p(q ⊩ ϕ ∧ q ⊩ ¬ψ) and ¬∃q ≤ p(q ⊩ ψ ∧ q ⊩ ¬ϕ).

Proof. Items (1) − (4) are direct corollaries to the de�nition of forcing.

(5) From left to right follows from (3)&(1). To prove the implication from right to left,

suppose p /⊩ ¬ϕ. Then, there is a generic �lter G such that p ∈ G and M[G] /⊧ ¬ϕ. That is

M[G] ⊧ ϕ. But, then by the Truth Lemma there is q′ ∈ G such that q′ ⊩ ϕ. Since p, q′ ∈ G there

is q ∈ G(q ≤ p, q′). So, q ⊩ ϕ. That is a contradiction to the assumption that ¬∃q ≤ p(q ⊩ ϕ).
Therefore p ⊩ ¬ϕ.

To see item (6), note that
p ⊩ ϕ→ ψ i� ¬∃q ≤ p(q ⊩ ¬(ϕ→ ψ)) by item (5)

i� ¬∃q ≤ p(q ⊩ ϕ ∧ ¬ψ) by item (2)
i� ¬∃q ≤ p(q ⊩ ϕ ∧ q ⊩ ¬ψ) by item (4).

To see item (7), observe
p ⊩ ϕ ∨ ψ i� p ⊩ ¬ϕ→ ψ by item (2)

i� ¬∃r ≤ p((r ⊩ ¬ϕ) ∧ (r ⊩ ¬ψ)) by item (6)
i� ¬∃r ≤ p∀q ≤ r((q /⊩ ϕ) ∧ (q /⊩ ψ)) by item (5).

So, p ⊩ ϕ ∨ ψ i� ∀r ≤ p∃q ≤ r(q ⊩ ϕ ∨ q ⊩ ψ).

(8) Follows from (6)&(2) since ϕ↔ ψ is logically equivalent to (ϕ→ ψ) ∧ (ψ → ϕ). �

Remark 4.4. Note that if G is (M,P)-generic, M[G] ⊧ ϕ and p ∈ G, then by the Truth

Lemma there is q ∈ G such that q ⊩ ϕ. But any two conditions in G are compatible and so there

is r ∈ G such that r ≤ p, q. Thus, r ⊩ ϕ. In particular, we proved that ∃r ≤ p(r ⊩ ϕ).

Lemma 4.5. For any forcing poset P ∈ M and formula ϕ(x) ∈ FLP ∩M with all free variable

shown:

(1) p ⊩ ∀xϕ(x) i� p ⊩ ϕ(τ) for all τ ∈ MP.

(2) p ⊩ ∃xϕ(x) i� {q ≤ p ∶ ∃τ ∈ MP(q ⊩ ϕ(τ))} is dense below p.

Proof. To see item (1) note that p ⊩ ∀xϕ(x) i� for every (M,P)-generic �lter G such that

p ∈ G, we have thatM[G] ⊧ ∀xϕ(x). However, the latter is equivalent to the statement that for

all (M,P)-generic �lters G such that p ∈ G and every τ ∈ MP we have thatM[G] ⊧ ϕ(τG), which
itself is equivalent to the statement that for every τ ∈ MP, p ⊩ ϕ(τ).

To see item (2), note that ∃xϕ(x) is equivlaent to ¬∀x¬ϕ(x). Now, p ⊩ ¬∀x¬ϕ(x) i�

∀r ≤ pr /⊩ ∀x¬ϕ(x). However by (1), r /⊩ ∀x¬ϕ(x) i� ∃τ ∈ MP such that r /⊩ ¬ϕ(τ). But

r /⊩ ¬ϕ(τ) i� ∃r′ ≤ r(r′ ⊩ ϕ(τ)). So r /⊩ ∀x¬ϕ(x) i� ∃τ ∈ MP∃r′ ≤ r(r′ ⊩ ϕ(τ)). Thus,

p ⊩ ¬∀x¬ϕ(x) i� ∀r ≤ p∃τ ∈ MP∃r′ ≤ r(r′ ⊩ ϕ(τ)). �
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5. Cardinal evaluation in generic extensions

Example 5.1. Let M be a ctm and let I, J ∈ M be in�nite sets. Let P = Fn(I, J) be the

partial order of all �nite partial functions from I to J with extension relation superset. Suppose

G is (M,P)-generic and let f = ⋃G.
Consider, the special case that I = ω and J = ωM5 . By absoluteness ω = ωM, however ωM5

is just a countable ordinal (in V ), while according to M it is the �fth uncountable cardinal. In

M[G] however f is an onto mapping from ω onto ωM5 and so

M[G] ⊧ (ω5 is countable).

Definition 5.2. Let M be a ctm and let P ∈ M. Then we say that the forcing notion P
preserves:

(1) cardinals, if for all generic �lters G and all β < o(M):
(β is a cardinal)M i� (βis a cardinal)M[G].

(2) co�nalities if for all generic �lters G and all limit γ < o(M) we have that
cfM(γ) = cfM[G](γ) for all γ < o(M).

Remark 5.3.

(1) Suppose β is a cardinal inM[G]. Then
∀α < β∀f¬(f is an onto function from α onto β),

which is Π1 in absolute notions. However Π1 properties are downwards absolute and so

β is a cardinal inM.

(2) Regarding the notion of co�nality, note that cfM(γ) ≥ cfM[G](γ). If γ = ωM1 and γM[G]

is countable, then γ = cfM(γ) > ω = cfM[G](γ).

Lemma 5.4. Let P be a forcing notion inM. Then

(1) P preserves co�nalities i� for every (M,P)-generic �lter G and all limit β such that

ω < β < o(M):
(∗) if (β is regular)M then (β is regular )M[G].

(2) If P preserves co�nalities then P preserves cardinals.

Proof. To see item (1) note that if P preserves co�nalities, then the statement (∗) holds by
de�nition. Now, suppose (∗) holds for all γ such that ω < γ < o(M). Let β = cfM(γ). We need

to show that cfM[G](γ) = β. InM let X be a subset of γ such that X is unbounded in γ and the

order type of X is β. Then in particular (β is regular)M and so by property (∗) we have that

(β is regular)M[G]. Therefore

(cf(γ))M[G] = (cf(β))M[G] = β.
To see item (2) note that by item (1) the forcing notion P preserves regular cardinals and so

M and M[G] have the same regular cardinals. However,every limit cardinal is a supremum of

regular, successor cardinals and so P does preserve all cardinals. �
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Example 5.5. There are partial orders which preserve cardinals, but not co�nalities, however

we will not be working with such.

Lemma 5.6 (Approximation Lemma). Let P ∈ M, (P is ccc)M and A,B ∈ M. Let G be

(M,P)-generic and inM[G] let f ∶ A → B. Then, there is F ∶ A → P(B) inM such that for all

a ∈ A, f(a) ∈ F (a) and (∣F (a)∣ ≤ ℵ0)M.

Proof. Thus M[G] ⊧ f ∶ A → B. By the Truth Lemma there are a P-name ḟ in M and

p ∈ G such that ḟG = f and p ⊩ ḟ ∶ Ǎ→ B̌. Now, de�ne the function F ∶ A→ P(B) by

F (a) = {b ∈ B ∶ ∃q ≤ p(q ⊩ ḟ(ǎ) = b̌)}.

Note that by the De�nability Lemma F ∈ M. Suppose M[G] ⊧ f(a) = b. Then by the Truth

Lemma, there is q ≤ p such that q ⊩ f(a) = b. Then clearly, b ∈ F (a) and soM[G] ⊧ f(a) ∈ F (a).
It remains to verify that (∣F (a)∣ ≤ ℵ0)M for all a ∈ A. For this we will use the countable

chain condition of P. Indeed, for each b ∈ F (a) we can chose qb ≤ p such that qb ⊩ ḟ(ǎ) = b̌.
Since forcing is inherited by stronger conditions, if c ≠ b then qc and qb must be incompatible.

However (P is ccc)M and so there are only countable many incompatible conditions below p, i.e.

∣F (a)∣ ≤ ℵ0. �

Theorem 5.7. If P ∈ M and (P is ccc)M, then P preserves co�nalities and hence preserves

cardinals.

Proof. Let β ∈ o(M), (β regular)M. Suppose (β is not regular )M[G]. Thus, there is X ⊆ β
such that X ∈ M[G] such that sup(X) = β and type(X) = α < β. Then, inM[G] let f ∶ α → X

be the unique order preserving bijection. In particular f ∶ α → β and by the Approximation

Lemma, there is F ∈ M such that F ∶ α → P(β), such that ∀ξ ∈ α(∣F (ξ)∣ ≤ ℵ0) and M[G] ⊧
∀ξ ∈ α(f(ξ) ∈ F (ξ)). Now, in M consider the set Y = ⋃ξ<α F (ξ). Then, Y ⊆ β and supY = β.
However ∣Y ∣ ≤ ℵ0 ⋅ α = α and so

M⊧ ∣Y ∣ < β ∧ sup(Y ) = β,

i.e. (β is not regular)M, which is a contradiction. Therefore (β is regular)M[G]. �

Theorem 5.8 (A model of ¬CH). Fix α < o(M) and let κ = (ℵα)M. Let P = Fn(κ×ω,2) and
let G be a P-generic �lter overM. Then (2ℵ0 ≥ ℵα)M[G].

Proof. By the ∆-system Lemma (P is ccc)M. Thus, P preserves co�nalities and hence

cardinals. Therefore κ = (ℵα)M = (ℵα)M[G]. For each β < κ de�ne

hβ = ⋃{p(β,n) ∶ p ∈ G,n ∈ ω s.t. (β,n) ∈ dom(p)}.

Then hβ ∶ ω → 2 for each β < κ and furthermore if β1 ≠ β2 then hβ1 ≠ hβ2 . Therefore

M[G] ⊧ (2ℵ0 ≥ κ = ℵα).

�

Remark 5.9. Our next goal is to show that in (2ℵ0 = ℵα)M[G].
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Definition 5.10. For τ ∈ V P, a nice name for a subset of τ is a name of the form

⋃{{σ} ×Aσ ∶ σ ∈ dom(τ)}

where for all σ ∈ dom(τ), the set Aσ is an antichain.

Lemma 5.11 (Counting nice names). Let τ ∈ V P, κ = ∣P∣, λ = ∣dom(τ)∣. Assume P is ccc, κ, λ

are in�nite. Then, there are no more than κλ nice names for subsets of κ.

Proof. Note that ∣[P]ℵ0 ∣ ≤ κℵ0 and so the number of antichains does not exceed κℵ0 . Each

nice name for a subset of τ is determined by λ-many antichains and so there are no more than

(κℵ0)λ = κℵ0⋅λ = κλ

nice names. �

Lemma 5.12 (Every subset of a given set has a nice name). Let P ∈ M, τ , µ be elements of

MP. Then, there is a nice name ν ∈ MP for a subset of τ such that

1P ⊩ (if µ ⊆ τ then µ = ν).

Proof. Consider τ and dom(τ). For each σ ∈ dom(τ) if there is p ∈ P such that p ⊩ σ ∈ µ,
�x a maximal antichain of such conditions. Otherwise, take Aσ = ∅. Let

ν = {{σ} ×Aσ ∶ σ ∈ dom(τ)}.

Fix an (M,P)-generic �lter and supposeM[G] ⊧ µG ⊆ τG. We will show thatM[G] ⊧ µG = νG.
First, we show that νG ⊆ µG: Let a ∈ νG. Then, a = σG, where ⟨σ, p⟩ ∈ ν and p ∈ G. However,

p ⊩ σ ∈ µ (by de�nition of Aσ) and so a ∈ µG.
Second, we show that µG ⊆ νG: Suppose a ∈ µG/νG. Then, a ∈ µG ⊆ τG and so a = σG for some

σ ∈ dom(τ). Furthermore, by hypothesis

M[G] ⊧ σ ∈ µ ∧ σ ∉ ν.

Then, by the Truth Lemma, there is q ∈ G such that

q ⊩ (σ ∈ µ ∧ σ ∉ ν).

Thus, q ⊩ σ ∈ µ and since q ⊩ σ ∉ ν, we must have that q is incomaptible with every p ∈ Aσ
(otherwise, for r ≤ q, p, we get r ⊩ σ ∈ ν which is a contradiction). Thus, we reached a contradiction
to the hypothesis that Aσ is maximal. �

Lemma 5.13 (Upper bound). Fix P ∈ M and assume that inM the forcing notion P is ccc,

κ, λ and δ are in�nite cardinals, κ = ∣P∣, δ = κλ. Let G be (M,P)-generic. Then

(2λ ≤ δ)M[G].

Proof. The name λ̌ = {⟨ξ̌,1P⟩ ∶ ξ ∈ λ}, ∣λ̌∣ = λ. By the previous Lemma, there are no more

than κλ many nice names for subsets of λ and so we can list them as ⟨νζ ∶ ζ < δ⟩. Let ḟ be the

following name:

ḟ = {⟨op(ζ̌, νζ),1P⟩ ∶ ζ < δ},
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where op(ζ̌, νζ) = up(up(ζ̌, ζ̌),up(ζ̌, νζ)). InM[G], dom(ḟG) = δ and ḟG(ζ) = (νζ)G. IfM[G] ⊧
s ⊆ λ, then s = µG for some µ and so there is ζ < δ such that

1P ⊩ (µ ⊆ λ̌→ µ = νζ).
ThereforeM[G] ⊧ ḟG(ζ) = s and soM[G] ⊧ P(λ) ⊆ ran(ḟG). ThereforeM[G] ⊧ 2λ ≤ δ. Since P
is ccc, P preserves cardinals ans so (δ is a cardinal)M[G]. �

Theorem 5.14. Let α < o(M) and let (κ = ℵα)M. Let P = Fn(κ×ω,2) and let G be P-generic
overM. Then (2ℵ0 = ℵα = κ)M[G].

Proof. By a previous result (2ℵ0 ≥ ℵα = κ)M[G] and by the previous Lemma, (2ℵ0 ≤ κ)M[G].

�

6. The Forcing Star Relation: Truth and De�nability

Our goal in this section is to prove the Truth and De�nability Lemmas. To do this, we will

introduce a relation between the elements of a given partial order P and the formulas in FLP
which will be de�nable and is in a very strong sense equivalent to the forcing relation. We will

refer to this de�nable relation as the forcing star relation and will denote it ⊩∗. First we will

introduce the forcing star relation between the elements of P and the atomic formulas of FLP
by recursion on a well-founded and set-like relation R on the class P × FLP. After we establish

some basic properties of the so de�ned (fragment of the ) forcing star relation, we will extend its

de�nition to all formulas of the forcing language, by induction on complexity of the formulas.

We start with paying a special attention to the atomic formulas of FLP.

Definition 6.1. Let ALP denote the class of all atomic sentences in FLP. That is, ALP
consists of all formulas of the form τ = ν and π ∈ τ for τ, π, ν in V P.

Now, we give the de�nition of the forcing star relation for atomic formulas.

Definition 6.2. For a partial order P and τ, ν, π in V P de�ne:

(1) p ⊩∗ τ = ν i� for all σ ∈ dom(τ) ∪ dom(ν) and all q ≤ p we have
q ⊩∗ σ ∈ τ i� q ⊩∗ σ ∈ ν.

(2) p ⊩∗ π ∈ ν i� the set

{q ≤ p ∶ ∃⟨σ, r⟩ ∈ ν(q ≤ r and q ⊩∗ π = σ)}
is dense below p.

To justify that the above notion is well-de�ned, we will make use of the following relations R.

Remark 6.3. The de�nition of the forcing star relation above is done by recursion on R,
where R is a relation on P × ALP de�ned as follows. Fix σ1, τ1, σ2, τ2 in V P and p1, p2 in P and

de�ne:

(1) (p1, σ1 ∈ τ1)R(p2, σ2 = τ2) i� (σ1 ∈ trcl(σ2) or σ1 ∈ trcl(τ2)) and (τ1 = σ2 or τ1 = τ2).
(2) (p1, σ1 = τ1)R(p2, σ2 ∈ τ2) i� σ1 = σ2 and τ1 ∈ trcl(τ2).
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(3) Neither (p1, σ1 ∈ τ1)R(p2, σ2 ∈ τ2), nor (p1, σ1 = τ1)R(p2, σ2 = τ2).
Note that R is set-like, because P is a set. Moreover, we will show that R is well-founded. Proceed

as follows. De�ne

ρ(p, σ = τ) = ρ(p, σ ∈ τ) = max{rank(σ), rank(τ)}
and observe that if (p1, ϕ1)R(p2, ϕ2) then ρ(p1, ϕ1) ≤ ρ(p2, ϕ2). Furthermore, let

χ ∶ P ×ALP → {0,1,2}
be de�ned via

χ(p,ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if ϕ is of the form σ = τ
0 if ϕ is of the form σ ∈ τ and rank(σ) < rank(τ)
2 if ϕ is of the form σ ∈ τ and rank(σ) ≥ rank(τ).

Now, de�ne Φ ∶ P ×ALP → ON as follows:

Φ(p,ϕ) = 3 ⋅ ρ(p,ϕ) + χ(p,ϕ).
It remains to observe that if (p1, ϕ1)R(p2, ϕ2) then Φ(p1, ϕ1) < Φ(p2, ϕ2). Thus, by an earlier

Lemma, the relation R is indeed well-founded.

We continue by establishing some basic properties of ⊩∗.

Lemma 6.4 (Properties of ⊩∗ for Atomic Sentences). For ϕ ∈ ALP:
(1) If p ⊩∗ ϕ and p1 ≤ p, then p1 ⊩∗ ϕ.
(2) p ⊩∗ ϕ i� {p1 ≤ p ∶ p1 ⊩∗ ϕ} is dense below p.

Proof. Note that item (1) holds by de�nition. The direction (⇒) of item (2) holds by (1),
since {p1 ≤ p ∶ p1 ⊩∗ ϕ} = {p1 ∈ P ∶ p1 ≤ p}.

To see (⇐) of item (2), consider an arbitrary formula ϕ of the form π ∈ τ . Let
∆(t, π ∈ τ) = {t′ ≤ t ∶ ∃⟨σ, t′′⟩ ∈ τ(t′ ≤ t′′ ∧ t′ ⊩∗ π = σ)}.

Then, by de�nition p ⊩∗ π ∈ τ i� ∆(p, π ∈ τ) is dense below p. Suppose

{p1 ≤ p ∶ ∆(p1, π ∈ τ) is dense below p1}
is dense below p. That is, for every q ≤ p there is q′ ≤ q such that ∆(q′, π ∈ τ) is dense below q′.

Therefore ∆(p, π ∈ τ) is dense below p and so p ⊩∗ π ∈ τ . �

Next, we extend the de�nition of the forcing star relation to the class of all negations of atomic

formulas, and so we obtain the relation for all basic formulas of the language.

Definition 6.5 (Forcing Star for all Basic Formulas). For ϕ ∈ ALP, p ∈ P de�ne

p ⊩∗ ¬ϕ i� ¬∃q ≤ p(q ⊩∗ ϕ).

As an immediate corollary of Lemma 6.4 and the above de�nition we obtain:

Corollary 6.6. For ϕ ∈ ALP, p ∈ P we have

p ⊩∗ ϕ i� ¬∃q ≤ p(q ⊩∗ ¬ϕ).
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Proof. (⇒) Take p such that p ⊩∗ ϕ. Suppose q ≤ p and q ⊩∗ ¬ϕ. Then, by de�nition

¬∃q′ ≤ q(q′ ⊩∗ ϕ).

However for every extension q′′ of q we have q′′ ≤ p and so by by Lemma 6.4.(1), q′′ ⊩∗ ϕ, which
is a contradiction.

(⇐) By de�nition of p ⊩∗ ¬¬ϕ, since ¬¬ϕ is equivalent to ϕ (indeed, by de�nition p ⊩∗ ¬¬ϕ
i� ¬∃q ≤ p(q ⊩∗ ¬ϕ)). �

Lemma 6.7 (Forcing Star Lemma for Atomic Sentences). Let M be a ctm of ZF-P, P ∈ M.

Let ϕ ∈ ALP ∩M and let G be (M,P)-generic �lter. Then:
(1) If p ∈ G and (p ⊩∗ ϕ)M thenM[G] ⊧ ϕ.
(2) IfM[G] ⊧ ϕ then there is p ∈ G such that (p ⊩∗ ϕ)M.

Proof. We proceed by induction on rankR,P×ALP .

(1) Let p ∈ G. We have two cases to consider: ϕ is π ∈ τ and ϕ is τ = ν.
Suppose ϕ is π ∈ τ . That is p ⊩∗ π ∈ τ . Consider the set

∆(p, π ∈ τ) = {q ≤ p ∶ ∃⟨σ, r⟩ ∈ τ(q ≤ r ∧ q ⊩∗ π = σ)}.

Then ∆(p, π ∈ τ) ∈ M and ∆(p, π ∈ τ) is dense below p by de�nition of ⊩∗. Since G is (M,P)-
generic, we can �x q ∈ G ∩∆(p, π ∈ τ). So, there is ⟨σ, r⟩ ∈ τ such that q ≤ r and q ⊩∗ π = σ. Note
that (q, π = σ)R(p, π ∈ τ) and so we can apply the Inductive Hypothesis to q ⊩∗ π = σ. Thus,

M[G] ⊧ π = σ and so πG = σG. On the other hand r ∈ G (as G is upwards closed) and so by

de�nition of evaluation of names σG ∈ τG. Therefore πG ∈ τG, i.e. M[G] ⊧ π ∈ τ , as we wanted.
Suppose ϕ is τ = ν and p ⊩∗ τ = ν. We will prove that M[G] ⊧ (τG ⊆ νG and νG ⊆ τG).

We will show that τG ⊆ νG. Take any σG ∈ τG. Thus, there is r ∈ G such that ⟨σ, r⟩ ∈ τ . Let

q ∈ G(q ≤ p, r). Then since q ≤ r, we obtain that ∆(q, σ ∈ τ) is dense below q and so by de�nition

q ⊩∗ σ ∈ τ . Moreover, by Lemma 6.4.(1) we have that q ⊩∗ τ = ν. Again by de�nition of ⊩∗ we

obtain q ⊩∗ σ ∈ ν. Since (q, σ ∈ µ)R(p, τ = ν), we can apply the inductive hypothesis and obtain

M[G] ⊧ σ ∈ ν. Therefore σG ∈ νG. The proof of νG ⊆ τG is similar.

(2) SupposeM[G] ⊧ πG ∈ τG. We need to �nd p ∈ G such that

∆(p, π ∈ τ) = {q ≤ p ∶ ∃⟨σ, r⟩ ∈ τ(q ≤ r ∧ q ⊩∗ π = σ)}

is dense below p. By de�nition of the evaluation of names, we can �nd r ∈ G and ⟨σ, r⟩ ∈ τ such

that πG = σG. By the inductive hypothesis there is p ∈ G such that p ⊩∗ π = σ. Without loss of

generality p ≤ r. But then for every q ≤ p we have that the pair ⟨σ, r⟩ is a witness to q ∈ ∆(p, π ∈ τ)
and so ∆(p, π ∈ τ) is dense below p. Thus p ⊩∗ π ∈ τ .

SupposeM[G] ⊧ τG = νG. Recall that p ⊩∗ τ = ν i� for every σ ∈ dom(τ) ∪ dom(ν) and for

every q ≤ p (q ⊩∗ σ ∈ τ i� q ⊩∗ σ ∈ ν). Consider, the set D ⊆ P of all p ∈ P such that

● either p ⊩∗ τ = ν,
● or there is σ ∈ dom(τ) ∪ dom(ν) such that p ⊩∗ σ ∈ τ and p ⊩∗ σ ∉ ν,
● or there is σ ∈ dom(τ) ∪ dom(ν) such that p ⊩∗ σ ∉ τ and p ⊩∗ σ ∈ ν.
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Then D ∈ M and D is dense. Let p ∈ G ∩ D. If p ⊩∗ τ = ν, we are done. Suppose there is

σ ∈ dom(τ) ∪ dom(ν) such that p ⊩∗ σ ∈ τ and p ⊩∗ σ ∉ ν. By Part (1),M[G] ⊧ σ ∈ τ and so by

de�nition of evaluation of names σG ∈ τG and since τG = νG we also get σG ∈ νG. By the Inductive

Hypothesis of item (2), there is q ∈ G such that q ⊩∗ σ ∈ ν. Since q, p ∈ G there is r ∈ G such

that r ≤ p, q. But, then r ⊩∗ σ ∈ ν, contradicting that p ⊩∗ ¬(σ ∈ ν), which by Corollary 6.6 is

equivalent to ¬∃q′ ≤ p(q′ ⊩∗ σ ∈ ν). �

Lemma 6.8 (Equivalence of ⊩ and ⊩∗ for Atomic Sentences). LetM be a ctm for ZF-P with

P ∈ M. For p ∈ M, ϕ ∈ ALP ∩M,

p ⊩ ϕ i� (p ⊩∗ ϕ)M.

Proof. (⇐) If (p ⊩∗ ϕ)M. Then by Lemma 6.7 for every (M,P)-generic �lter G such that

p ∈ G, we haveM[G] ⊧ ϕ. However, by de�nition this is exactly p ⊩ ϕ.
(⇒) Suppose by way of contradiction that p ⊩ ϕ and (p /⊩∗ ϕ)M. Then by Corollary 6.6 there

is q ≤ p such that q ⊩∗ ¬ϕ and so by de�nition of ⊩∗, ¬∃r ≤ q(r ⊩∗ ϕ). Take an (M,P)-generic
�lter G such that q ∈ G. Then p ∈ G and soM[G] ⊧ ϕ. By the previous Lemma, there is s ∈ G
such that (s ⊩∗ ϕ)M. Since q, s ∈ G there is r ∈ G such that r ≤ q and r ≤ s. However ⊩∗ is

inherited by stronger conditions and so (r ⊩∗ ϕ)M. Since ϕ is atomic, we have (r ⊩∗ ϕ)M i�

r ⊩∗ ϕ and so r ⊩∗ ϕ. Thus, since r ≤ q, we reached a contradiction. �

Next, we extend the forcing star relation to the class of all formulas of the forcing language.

Definition 6.9. Let P be a forcing notion, ϕ ∈ FLP. Then
(1) p ⊩∗ ¬ϕ i� ¬∃q ≤ p(q ⊩∗ ϕ).
(2) p ⊩∗ ϕ ∧ ψ i� p ⊩∗ ϕ and p ⊩∗ ψ.
(3) p ⊩∗ ϕ→ ψ i� ¬∃q ≤ p(q ⊩∗ ϕ and q ⊩∗ ¬ψ).
(4) p ⊩∗ ϕ ∨ ψ i� {q ∈ P ∶ (q ⊩∗ ϕ) or (q ⊩∗ ψ)} is dense below p.

(5) p ⊩∗ ϕ↔ ψ i� ¬∃q ≤ p(q ⊩∗ ϕ and q ⊩∗ ¬ψ), and ¬∃q ≤ p(q ⊩∗ ψ and q ⊩∗ ¬ϕ).
(6) p ⊩∗ ∀xϕ(x) i� p ⊩∗ ϕ(x) for all τ ∈ V P.

(7) p ⊩∗ ∃xϕ(x) i� {q ∶ ∃τ ∈ V P(q ⊩∗ ϕ(τ))} is dense below p.

We extend the properties we observed in Lemma 6.4 and Corollary 6.6 to all of FLP.

Lemma 6.10. (Properties of ⊩∗) For ϕ ∈ FLP:
(1) If p ⊩∗ ϕ and p1 ≤ p, then p1 ⊩∗ ϕ.
(2) p ⊩∗ ϕ i� {p1 ≤ p ∶ p1 ⊩∗ ϕ} is dense below p.

(3) p ⊩∗ ϕ i� ¬∃q ≤ p(q ⊩∗ ¬ϕ).

Proof. By induction on the formulas. �

Lemma 6.11 (Forcing Star Lemma). LetM be a ctm for ZF-P, P ∈ M, ϕ ∈ FLP ∩M and let

G be (M,P)-generic �lter. Then:
(a) If p ∈ G and (p ⊩∗ ϕ)M thenM[G] ⊧ ϕ.
(b) IfM[G] ⊧ ϕ then there is p ∈ G such that (p ⊩∗ ϕ)M.
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Proof. By induction on the formula ϕ, we will prove the statement L(ϕ) = (a)ϕ ∧ (b)ϕ,
where

(a)ϕ If p ∈ G and (p ⊩∗ ϕ)M thenM[G] ⊧ ϕ.
(b)ϕ IfM[G] ⊧ ϕ then there is p ∈ G such that (p ⊩∗ ϕ)M.

Suppose L(ϕ) holds. We will show L(¬ϕ). To show (a)¬ϕ, take any p ∈ G such that (p ⊩∗
¬ϕ)M and suppose by way of contradiction thatM[G] ⊧ ϕ. Then by (b)ϕ, we have that there is
r ∈ G such that (r ⊩∗ ϕ)M. Since p, r ∈ G there is q ∈ G such that q ≤ p, r. Then q ⊩∗ ϕ (since

q ≤ r). Since q ≤ p, we get a contradiction to (p ⊩∗ ¬ϕ)M. Next we will show (b)¬ϕ. Since ⊩∗ is

a de�nable relation, the set

D = {p ∈ P ∶ (p ⊩∗ ϕ)M of (p ⊩∗ ¬ϕ)M} ∈M.

By de�nition of ⊩∗ ¬ϕ, D is dense. Now, supposeM[G] ⊧ ¬ϕ, and let p ∈ G∩D. If (p ⊩∗ ¬ϕ)M,

we are done. Otherwise, (p ⊩∗ ϕ)M and so by (a)ϕ,M[G] ⊧ ϕ, which is a contradiction to the

hypothesisM[G] ⊧ ¬ϕ.
Suppose, we have show ∀τ ∈ MP(L(ϕ(τ))). We will prove L(∃xϕ(x)). To see (a)∃xϕ(x),

suppose p ∈ G and (p ⊩∗ ∃xϕ(x))M. Then, by de�nition

D = {q ∶ ∃τ ∈ MP(q ⊩∗ ϕ(τ))M}

is dense below p. Thus G ∩D ≠ ∅ and so ∃q ∈ G ∩D such that q ⊩∗ ϕ(τ))M for some τ ∈ MP.

By hypothesis, M[G] ⊧ ϕ(τ) and so M[G] ⊧ ∃xϕ(x). To see (b)∃xϕ(x), note that if M[G] ⊧
∃xϕ(x), then there is τ ∈ MP such that M[G] ⊧ ϕ(τ). By part (b) for ϕ(τ) in the inductive

hypothesis, there is p ∈ G such that (p ⊩∗ ϕ(τ))M. Then (p ⊩∗ ∃xϕ(x))M, because for all q ≤ p,
q ⊩∗ ϕ(τ). �

Lemma 6.12 (Equivalence of ⊩ and ⊩∗). Let M be a ctm of ZF-P, P ∈ M, P ∈ M, p ∈ P,
ϕ ∈ FLP ∩M. Then

p ⊩ ϕ i� (p ⊩∗ ϕ)M.

Proof. Analogously to the case for atomic formulas. �

On the basis of Lemma 6.11 and Lemma 6.12, we can complete the proofs of the Truth and

De�nability Lemmas.

Lemma (Truth Lemma). LetM be a c.t.m. for ZF-P, P ∈ M a forcing notion, ψ a sentence

of FLP ∩M and let G be an (M,P)-generic �lter. Then

M[G] ⊧ ψ i� ∃p ∈ G(p ⊩ ψ).

Proof. By Lemma 6.11,M[G] ⊧ ψ i� there is p ∈ G such that p ⊩∗ ψ. By Lemma 6.12,

p ⊩∗ ψ i� p ⊩ ψ

and soM[G] ⊧ ψ i� ∃p ∈ G(p ⊩ ψ). �
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Lemma (The De�nability Lemma). LetM be a ctm for ZF-P, let ϕ(x1,⋯, xn) be a formula

in L∈, with all free variables shown. Then, the set of all �nite tuples (p,P,≤P,1P, ν1,⋯, νn)
where (P,≤,1P) is a forcing notion, p ∈ P, (P,≤P,1P) ∈ M, ν1,⋯, νn are elements of MP and

p ⊩P,M ϕ(ν1,⋯, νn) is de�nable overM without parameters.

Proof. By Lemma 6.12,

p ⊩P,M ϕ(ν1,⋯, νn) i� (p ⊩∗ ϕ(ν1,⋯, νn))M.
However (p ⊩∗ ϕ(ν1,⋯, νn))M is de�nable overM. �

As a corollary, we obtain:

Corollary 6.13. For any forcing notion P ∈ M, names τ, ν, π ∈ MP:

(1) p ⊩ τ = ν i� ∀σ ∈ dom(τ) ∪ dom(ν)∀q ≤ p(q ⊩ σ ∈ τ i� q ⊩ σ ∈ µ).
(2) p ⊩ π ∈ τ i� {q ≤ p ∶ ∃⟨σ, r⟩ ∈ τ(q ≤ r and q ⊩ π = σ)} is dense below p.

Proof. By equivalence of the relations, ⊩ and ⊩∗. �

7. Complete and Dense Embeddings

Definition 7.1 (Complete Embedding). Let (Q,≤Q,1Q) and (P,≤P,1P) be forcing posets

and i ∶ Q→ P. Then i is a complete embedding i�

(1) i(1Q) = 1P
(2) for all q1, q2 in Q, we have that if q1 ≤Q q2 then i(q1) ≤P i(q2).
(3) for all q1, q2 we have that (q1 ⊥Q q2 i� i(q1) ⊥P i(q2)).
(4) If A ⊆ Q is a maximal antichain in Q, then the image of A under i, i.e. the set {i(a) ∶

a ∈ A} is a maximal antichain in P.

Definition 7.2 (Dense Embedding). We say that i is a dense embedding, if items (1) − (3)
above hold and i(Q) is a dense subset of P.

Definition 7.3. The partial order Q is a complete suborder of P, denoted Q t P, if
(1) for all n ∈ ω and all q1,⋯, qn in Q if there is p ∈ P such that p ≤ qi for all i, then there is

q ∈ Q such that q ≤ qi for all i.
(2) if A ⊆ Q is a maximal antichain in Q, then A is a maximal antichain in P.

Definition 7.4. Let P, Q, i satisfy items (1)−(3) from De�nition 7.1. Let p ∈ P. A condition

p∗ ∈ Q is said to be a reduction of p to Q if for all q ∈ Q we have that

if i(q) ⊥P p then q ⊥Q p∗.

Remark 7.5. We will use the following notation. Let P be a partial order and let A ⊆ P,
A ≠ ∅. Then p ⊥ A i� for all a ∈ A we have that p ⊥ a.

Lemma 7.6 (Characterization of Complete Embeddings). If Q, P, i satisfy items (1) − (3) of
De�nition 7.1, then i is a complete embedding i� for all p ∈ P there is p∗ ∈ Q which is a reduction

of p to Q.
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Proof. (⇐) Suppose for all p ∈ P there is p∗ ∈ Q which is a reduction of p to Q. We will

show that whenever A is a maximal antichain in Q then {i(a) ∶ a ∈ A} is a maximal antichain

in P. Suppose by way of contradiction that there is a maximal antichain A in Q such that the

image of A under i is not a maximal antichain in P. Then there is p ∈ P such that p ⊥ i(a) for all
a ∈ A. Let p∗ ∈ Q be a reduction of p. Since A is a maximal antichain in Q, there is a ∈ A such

that p∗ /⊥ a. However, by hypothesis i(a) ⊥ p and since p∗ is a reduction of p, we must have that

a ⊥ p∗, which is a contradiction.

(⇒) Suppose i ∶ Q→ P is a complete embedding and let p ∈ P. We will �nd a reduction p∗ of

p. Consider the collection P of all A ⊆ Q such that A is an antichain and i′′A ⊥ p. Then ∅ ∈ P
and by Zorn's Lemma, there is A ∈ P which is maximal under inclusion. Then i′′A ⊥ p and since

i is a complete embedding, A is not a maximal antichain in Q (otherwise, we get a contradiction

to property (4)). So, let p∗ ∈ Q be such that p∗ ⊥ A.
We claim that p∗ is a reduction of p. Let q ∈ Q and suppose i(q) ⊥ p, but q /⊥ p∗. Let q1 ≤ q, p∗.

Then q1 ≤ p∗ and since p∗ ⊥ A, we must have that q1 ⊥ A. That is A ∪ {q1} is an antichain. On

the other hand i(q1) ≤ i(q) and since i(q) ⊥ p, we must have i(q1) ⊥ p. Therefore A ∪ {q1} ∈ P,
which is a contradiction to the maximality of A in P. Thus, for all q ∈ Q if i(q) ⊥ p then q ⊥ p∗
and so p∗ is a reduction of p to Q. �

Lemma 7.7. LetM be a transitive model of ZFC, Q, P forcing posets, elements ofM. Let

i ∶ Q→ P be a complete embedding, let i ∈ M and let G be (M,P)-generic �lter. Then i−1(G) is
(M,Q)-generic.

Proof. Let D ⊆ Q be a dense subset of Q, D ∈ M. Fix a maximal antichain A ⊆D such that

A ∈ M. Then i′′A ⊆ P is a maximal antichain of P and since i is a complete embedding, we have

that

Di(A) = {d ∈ P ∶ ∃a′ ∈ i(A)(d ≤ a′)}
is dense in P. Then G ∩Di(A) ≠ ∅ and so there is a′ ∈ i(A) and there is d ∈ G such that d ≤ a′.
However G is upwards closed and so a′ ∈ G. Then, since a′ = i(a) for some a ∈ A, we get

a ∈ i−1(G) ∩A and so i−1(G) ∩D ≠ ∅. Thus, i−1(G) is (M,Q)-generic. �

Lemma 7.8. If G1, G2 are both (M,P)-generic and G1 ⊆ G2 then G1 = G2.

Proof. Fix p ∈ G2 and let D = {r ∈ P ∶ r ≤ p ∨ r ⊥ p}. The set D is dense and D ∈ M. Since

G1 is (M,P)-generic, there is r ∈ G1 ∩D. If r ⊥ p, we get a contradiction to the elements of G

being pairwise compatible. Then r ≤ p. Then p ∈ G1 and so G1 ⊆ G2 ⊆ G1. �

Remark 7.9.

(1) Recall that ifM is a ctm of ZF-P, P ∈ M and G is a �lter on P, thenM⊆M[G] and if

N is a transitive ZF-P model withM⊆N , G ∈ N , thenM[G] ⊆ N .

(2) Now, suppose i is as in Lemma 7.7 and let H = i−1(G), N =M[G]. Then i,G ∈ N and

so i−1(G) =H ∈ N . ThereforeM[H] ⊆ N =M[G].

Furthermore, there is a natural inclusion induced by the following correspondence of names.
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Definition 7.10. Let P, Q be forcing posets, i ∶ Q→ P. De�ne i∗ ∶ V Q → V P by

i∗(τ) = {⟨i∗(σ), i(q)⟩ ∶ ⟨σ, q⟩ ∈ τ}.

Remark 7.11. Note that i∗ is absolute for transitive models.

Lemma 7.12. LetM be a transitive model of ZFC, with P, Q forcing notions inM. Assume

i ∶ Q→ P is a complete embedding, i ∈ M. Let G be (M,P)-generic and let H = i−1(G). Then
(1) For each τ ∈ MQ, i∗(τ) ∈ MP and i∗(τ)G = τH .
(2) M[H] ⊆M[G].

Proof. Straightforward. �

Definition 7.13. If i ∶ Q→ P and H ⊆ Q, let

ĩ(H) = {p ∈ P ∶ ∃q ∈Hi(q) ≤ p}.

That is, ĩ(H) is the upwards closure of the pointwise image of H under i.

Lemma 7.14 (Characterisation of Dense Embeddings). LetM be a transitive model of ZFC,

Q, P, i inM. Assume i ∶ Q→ P is a dense embedding. Then:

(1) If H ⊆ Q is (M,Q)-generic and G = ĩ(H), then G is P-generic overM and H = i−1(G).
(2) If G ⊆ P is (M,P)-generic and H = i−1(G), then H is (M,Q)-generic and G = ĩ(H).
(3) If items (1) and (2) hold, thenM[H] =M[G].
(4) q ⊩Q ϕ(τ1,⋯, τn) i� i(q) ⊩P ϕ(i∗(τ1),⋯, i∗(τn)), where ϕ(x1,⋯, xn) is a formula of L∈,

q ∈ Q and τ1,⋯, τn are inMQ.

Proof. (1) It is easy to see that G is a �lter.

Claim 7.15. G is (M,P)-generic.

Proof. Let D be a dense subset of P, D ∈ M and let D̃ = {q ∈ P ∶ ∃d ∈ D(q ≤ d)}. That is,
D̃ is the closure of D with respect to stronger conditions (we say that D̃ is dense open). Then

D̃ ∈ M. Now, note that i−1(D̃) is dense in Q and so there is q ∈H ∩ i−1(D̃), where H is (M,Q)-
generic. Then i(q) ∈ i(H) ∩ D̃. But, then there is d ∈ D such that i(q) ≤ d and since ĩ(H) is the

upwards closure of i(H) we have that d ∈ ĩ(H) ∩D. Therefore G = ĩ(H) is (M,P)-generic. �

Claim 7.16. H = i−1(G).

Proof. Now H ⊆ i−1(G) and since i−1(G) is also (M,Q)-generic, we must have H = i−1(G).
�

(2) H = i−1(G) is (M,Q)-generic. Then by item (1), ĩ(H) is (M,P)-generic. However G ⊆ ĩ(H)
(indeed G = i(i−1(G)) = i(H) ⊆ ĩ(H)) and so G = ĩ(H).

(3) Since i is a complete embedding, by part (2),M[H] ⊆ M[G]. Since H, i are inM[H], we
have thatG = ĩ(H) ∈ M[H]. Therefore by the minimality of the forcing extensionM[G] ⊆M[H].
Thus,M[H] =M[G].
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(4) Let H,G be as in (1) and (2). That is G = ĩ(H) and H = i−1(G). Then, we have that q ∈ H
if and only if i(q) ∈ G. For eachMQ-name τ , we have (τ)H = (i∗(τ))G and soM[H] = M[G] ⊧
ϕ[(τ1)H ,⋯, (τn)H] if and only ifM[H] =M[G] ⊧ ϕ[i∗(τ1)G,⋯, i∗(τN)G]. Therefore

q ⊩Q ϕ(τ1,⋯, τn) i� i(q) ⊩P ϕ(i∗(τ1),⋯, i∗(τn)).

�

8. Maximality Principle

Lemma 8.1. InM let A ⊆ P be an antichain such that for every q ∈ A there is a P-name σq.

Then there is a P-name τ such that for all q ∈ A, q ⊩ τ = σq.

Proof. Let q ↓= {p ∈ P ∶ p ≤ q}. InM de�ne

τ = ⋃
q∈A

{⟨π, r⟩ ∈ dom(σq) × q ↓∶ r ⊩ π ∈ σq}.

Let q ∈ A and let G be (M,P)-generic such that q ∈ G. Let

τG = {πG ∶ π ∈ dom(σG) ∧ ∃r ∈ G ∩ q ↓ s.t. r ⊩ π ∈ σq}.

Clearly τG ⊆ (σq)G. Indeed: If πG ∈ τG then there is r ∈ G such that r ⊩ π ∈ σq and so πG ∈ (σq)G.
Thus, τG ⊆ (σq)G. To verify (σq)G ⊆ τG consider any πG ∈ (σq)G, where π ∈ dom(σq). Then by

the Truth Lemma there is r ∈ G such that r ⊩ π ∈ σq and without loss of generality r ≤ q (since
q ∈ G). Then ⟨π, r⟩ ∈ τ and so πG ∈ τG. Thus (σq)G ⊆ τG. �

Remark 8.2. Recall that p ⊩ ∃xϕ(x) i� {q ≤ p ∶ ∃τ ∈ MP(q ⊩ ϕ(τ))} is dense below p.

Theorem 8.3 (Maximality Principle). Let M be a ctm and let P ∈ M be a forcing notion,

ϕ(x) ∈ FLP ∩M with a single free variable x. Then

p ⊩ ∃xϕ(x) i� ∃τ ∈ MPp ⊩ ϕ(τ).

Proof. Note that (⇐) is clear from the de�nition of the forcing relation. To show (⇒)
assume p ⊩ ∃xϕ(x). By the above Remark 8.2, we can �nd an antichain A which is maximal

below p such that

∀q ∈ A∃σ ∈ MP(q ⊩ ϕ(σ)).

Now, for all q ∈ A pick σq ∈ MP such that q ⊩ ϕ(σq) and using the above Lemma �nd τ ∈ MP

such that for all q ∈ A, q ⊩ τ = σq. Then, in particular, for all q ∈ A, q ⊩ ϕ(τ).
We claim that p ⊩ ϕ(τ). Suppose, this is not the case. Then there is r ≤ p such that r ⊩ ¬ϕ(τ).

On the other hand p ⊩ ∃xϕ(x) and since r ≤ p we must have r ⊩ ∃xϕ(x). By Remark 8.2, there

is s ≤ r and there is σ ∈ MP such that s ⊩ ϕ(σ). Again, since s ≤ r, s ⊩ ¬ϕ(τ) and so s ⊥ A.
Then A ∪ {s} contradicts the maximality of A. �



88 4. FORCING

9. Models where GCH fails �rst above ℵ0

Definition 9.1. Let I, J be sets, λ a cardinal. Let Fnλ(I, J) be the partial order of all

p ∈ [I × J]<λ such htat p is a graph of a function with extesnion relation q ≤ p i� q ⊇ p and 1 = ∅.

Example 9.2.

● Fn(I, J) = Fnω(I, J) is the poset of �nite partial functions from I to J .

● Fnℵ1(I, J) is the poset of countable partial functions from I to J .

Remark 9.3. For λ > ω, the partial order Fnλ(I, J) is not absolute: take I, J in M and

(Fnλ(I, J))M.

Definition 9.4 (θ-cc). Let θ be a cardinal. The p.o. P is said to have the θ-chain condition

(shortly θ-cc) if in P every antichain A ⊆ P is of cardinality strictly smaller than θ.

Remark 9.5. Thus, in particular, ccc is ℵ1-cc.

Lemma 9.6. Let λ ≥ ω. Then Fnλ(I, J) has the (∣J ∣<λ)∗-cc. Thus, whenever ∣J ∣ ≤ 2<λ,

Fnλ(I, J) has the (2<λ)+-cc.

Proof. Let κ = (∣J ∣<λ)+. Without loss of generality ∣J ∣ ≥ 2 and so κ is regular, κ > λ. Let

W ⊆ Fnλ(I, J) be an antichain, ∣W ∣ = κ. We have to reach a contradiction.

Note that, we can assume that λ is regular. Indeed, if not, then for all γ ∈ W , ∣p∣ < λ and

since κ is regular, there is σ < λ such that W ′ = {p ∈W ∶ ∣p∣ ≤ σ} is of cardinality κ. Then, taking

λ = σ+ and W =W ′, it is su�cient to reach a contradiction from the assumption that λ is regular.

Enumerate W as {pα ∶ α < κ} and let Sα = dom(pα). Then, we can apply the ∆-system

Lemma to {Sα ∶ α < κ} to �nd B ⊆ κ, ∣B∣ = κ such that for all α,β in B, Sα ∩ Sβ = R for some

R ⊆ I, ∣R∣ < λ. However ∣JR∣ < κ and so there are α ≠ β in B such that pα ↾ R = pβ ↾ R. Then

pα ∪ pβ ≤ pα, pβ , which is a contradiction to pα ⊥ pβ . �

Definition 9.7. Let P ∈ M,M be a ctm, (θ is a cardinal)M. We say that:

(1) P preserves cardinals ≥ θ i� whenever θ ≤ β < o(M):
(β is a cardinal)M i� (β is a cardinal)M[G].

(2) P preserves co�nalities ≥ θ i� for all limit γ < o(M) such that cfM(γ) ≥ θ:
cfM(γ) = cfM[G](γ).

Remark 9.8. We saw the above for θ = (ω1)M. Note also that cfM(γ) ≥ cfM[G](γ).

Lemma 9.9. Let P ∈ M be a forcing notion, (θ is a regular cardinal)M.

(1) P preserves co�nalities ≥ θ if and only if

(∗) for all limit β with θ ≤ β < o(M), if (β is regular)M then (β is regular )M[G].

(2) If P preserves co�nalities ≥ θ, then P preserves cardinals ≥ θ.

Remark 9.10. The proof is very similar to the case θ = (ω1)M. To conclude (2) from (1)
observe that if β > θ is singular, then β = sup{rγ ∶ γ < λ}, where rγ ≥ θ is regular for all γ.
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Lemma 9.11. Let P ∈ M, (θ an uncountable cardinal)M, (P is θ-cc)M. Fix A,B ∈ M and let

G be (M,P)-generic. Let f ∈ M[G], f ∶ A → B. Then, there is F ∶ A → P(B) with F ∈ M such

that for all a ∈ A, f(a) ∈ F (a) and (∣F (a)∣ < θ)M.

Using the above Lemma and arguing similarly to the case θ = (ω1)M one can show:

Theorem 9.12. If P ∈ M and (θ is regular)M, (P is θ-cc)M, then P preserves co�nalities ≥ θ
and hence preserves cardinals ≥ θ.

Definition 9.13. A forcing notion P is λ-closed i� whenever δ < λ and ⟨pξ ∶ ξ < δ⟩ is a

sequence in P such that for all ξ1 < ξ2 < δ, pξ2 ≤ pξ1 , then there is q ∈ P such that for all ξ < δ,
q ≤ pξ. We say that P is countably closed, if it is ω1-closed.

Lemma 9.14. If λ is regular, then Fnλ(I, J) is λ-closed.

Proof. Let ⟨pξ ∶ ξ < δ⟩, δ < λ be as in the above de�nition. Then q = ⋃pξ is a common

extension. �

Theorem 9.15. LetM be a ctm, A,B ∈ M, (P is λ-closed)M, (∣A∣ < λ)M. Let G be (M,P)-
generic, f ∈ M[G], f ∶ A→ B. Then f ∈ M.

Proof. It is su�cient to show that f ∈ M when A = α < λ. In the general case, �x j ∈ M such

that j ∶ α → A is a bijection and apply the particular case of A being an ordinal to f ○ j ∶ α → B

to show that f ○ j ∈ M and so f ∈ M.

So, without loss of generality A = α < λ. Let K ∶= (αB)M = αB ∩M and f ∈ αB ∩M[G]. We

want to show that f ∈ K. Suppose not. Then there is τ ∈ MP such that f = τG and p ∈ G such

that

p ⊩ τ ∶ α̌ → B̌ ∧ τ ∉ Ǩ.
Recursively (inM) de�ne sequences {pη ∶ η ≤ α} ⊆ P, {zη ∶ η < α} ⊆ B such that: p0 = p, pη ≤ pξ
for all ξ ≤ η and

pη+1 ⊩ τ(η̌) = žη.
Successor steps Suppose pη has been de�ned. Then pη ≤ p and so pη ⊩ τ ∶ α̌ → B̌. Then, in

particular pη ⊩ ∃x ∈ B̌(τ(η̌) = x). Then there is zη ∈ B and pη+1 ≤ pη such that pη+1 ⊩ τ(η̌) = žη.
Limit steps For η limit, use the fact that P is λ-closed, to �nd pη ≤ pξ for all ξ < η. Let

g = ⟨zη ∶ η < α⟩, i.e. g ∶ α → B, g(η) = zη. Note that g ∈ M and so g ∈ K. Now, let H

be (M,P)-generic such that pα ∈ H. Then p ∈ H. However M[H] ⊧ τ = ǧ ∈ Ǩ, which is a

contradiction. �

Theorem 9.16. In M, let P = Fnλ(I, J) where λ ≥ ℵ0 is regular, 2<λ = λ, ∣J ∣ ≤ λ. Then P
preserves co�nalities and (hence) cardinals.

Proof. Su�cient to show that if (β is regular)M then (β is regular )M[G] for all limit β

such that ω < β < o(M).
If δ ≤ λ, then δλ ∩M = δλ ∩M[G] for all δ < λ and so cfM(γ) = cfM[G](γ) for all limit γ ≤ λ.

If δ > λ, then P is λ+-cc and so P preserves all cardinals and co�nalities ≥ λ+. �
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Theorem 9.17. InM, assume P = Fnλ(κ×λ,2) where κ, λ are cardinals such that κ > λ ≥ ℵ0,

λ is regular, κλ = κ, 2<λ = λ. Then P preserves co�nalities and so cardinals, and M[G] ⊧ 2λ = κ
where G is (M,P)-generic.

Proof. By the previous theorem, co�nalities and cardinalities are preserved. Let G be

(M,P)-generic. Then ⋃G ∶ κ × λ → 2 encodes a κ-sequence of pairwise distinct functions in
λ2. ThereforeM[G] ⊧ 2λ ≥ κ. On the other hand, if A ⊆ P is an antichain, then ∣A∣ ≤ λ and since

∣P∣ = κ≤λ = κ, there are no more than ∣[P]≤λ∣ = κλ = κ many antichains in P and so no more than

κλ = κ many nice names for subsets of λ. Since every subset of λ inM[G] has a nice name, we

obtainM[G] ⊧ 2λ ≤ κ. Thus,M[G] ⊧ 2λ = κ.
To see that (2λ ≤ κ)M[G] we proceed by counting names. If A ⊆ P is an antichain, then ∣A∣ ≤ λ

and ∣P∣ = κ<λ = κ. Therefore, there are no more than ∣[P]≤λ∣ = κλ = κ antichains. Therefore there

are no more than κλ = κ many nice names for subsets of λ. �

Corollary 9.18 (Top Down Approach). Assume there is a countable transitive model for

ZFC. Then, there is a ZFC model such that CH holds, 2ℵ1 = ℵ5, 2ℵ2 = ℵω+1 and for all θ ≥ ℵ2,

2θ = max{θ+,ℵω+1}.

Proof. (Outline) Assume M ⊧ GCH. Let P = Fnω2(ωω+1 × ω2,2)M and let G be (M,P)-
generic. Consider N = M[G]. Then in N , CH holds and 2ℵ1 = ℵ2 by the ω2-closure of P.
Furthermore 2ℵ2 = ℵω+1 (the same analysis as in the general case) and counting names ∀θ ≥
ℵ2(2θ = max{θ+,ℵω+1}). Let Q = (Fnω1(ω5×ω1,2))N and let H be (M[G],Q)-generic. Note that
Q preserves co�nalities and cardinalities, and (2ℵ1 = ℵ5)N[H]. Moreover since Q is ω1-closed in N ,

(ω2)N[H] = (ω2)N and so N[H] ⊧ CH; Since N ⊧ 2ℵ2 = ℵω+1 and N ⊆ N[H], and cardinals are

preserved, we must have N[H] ⊧ 2ℵ2 ≥ ℵω+1; To show that N[H] ⊧ ∀θ ≥ ℵ2(2θ = max{θ+,ℵω+1})
count nice names in N . �



CHAPTER 5

Forcing combinatorics

1. Cohen Forcing

In the following we will consider some properties of Cohen forcing.

Definition 1.1 (Cohen Forcing). Let C be the partial order consisting of all �nite partial

functions p ∶ ω → ω with extension relation q ≤ p superset. That is q is an extension of p if q ⊇ p.

Since C is a countable partial order, it trivially has the countable chain condition.

1.1. The Cohen generic real in unbounded.

Definition 1.2.

(1) Let ωω be the set of all functions from ω to ω. For f, g in ωω de�ne f ≤∗ g if there is

a natural number n such that for all m ≥ n, f(m) ≤ g(m). We say that g eventually

dominates f .

(2) A family F ⊆ ωω is said to be dominating if ∀g ∈ ωω∃f ∈ G such that g ≤∗ f .
(3) We let d = min{∣D∣ ∶ D ⊆ ωω,D is dominating} and refer to this cardinal value as the

dominating number .

Lemma 1.3. ℵ0 < d ≤ c.

Proof. Easy diagonalization. �

Lemma 1.4. Assume MA. Let D ⊆ ωω be such that ∣D∣ < c. Then D is not dominating.

Proof. Consider the partial order C. If G ⊆ C is a �lter, then fG = ⋃G = ⋃{p ∶ p ∈ G} is a

partial functions, since the elements of a �lter are pairwise compatible. Note that to guarantee

that fG has a full domain, i.e. is a function from ω to ω is is su�cient to guarantee that for each

n ∈ ω there is p ∈ G such that n ∈ dom(p). Moreover, we have the following:

Claim. For each n ∈ ω the set Dn = {p ∈ C ∶ n ∈ dom(p)} is dense.

Proof. Take any p ∈ C. If n ∈ dom(p) then p ∈Dn. Otherwise, take q = p∪{(n,m)} is in Dn

and extends p, where m ∈ ω was arbitrary. �

Now, given an arbitrary function f ∈ ωω in order to guarantee that fG /≤∗ f it is su�cient to

provide that there are in�nitely many m ∈ ω such that f(m) < fG(m).
91
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Claim. Let f ∈ ωω. Then the set

Df,n = {p ∈ C ∶ ∃m > n(p(m) > f(m))}

is dense.

Proof. Take any p ∈ C and let m be a natural number such that m > n and m ∉ dom(p).
Then q = p ∪ {(m,f(m) + 1)} ∈Df,n and q ≤ p. �

Consider, the family of ∆ = {Df,n ∶ f ∈ D, n ∈ ω} ∪ {Dn ∶ n ∈ ω}. Then ∣∆∣ < c and so by MA

there is a �lter G ⊆ C which meets every element of ∆ on a non-empty set. Thus, fG = ⋃G is

function with domain ω which is not dominated by any element of D. �

Corollary 1.5. MA implies that d = c.

Lemma 1.6. LetM be a ctm, C ∈ M and let G be a C-generic �lter overM. Let fG = ⋃G.
Then for every f ∈ ωω ∩M we have

M[G] ⊧ fG /≤∗ f.

With other words for each f ∈ M∩ ωω, 1C ⊩ ḟG /≤∗ f̌ , where ḟG is a C-name for fG and ḟG /≤∗ f̌ is

an abbreviation for a formula of the forcing language. We say that the Cohen real is unbounded.

Proof. Since for each n ∈ ω and each f ∈ ωω∩M, the sets Dn and Df,n from Lemma 1.4 are

not only dense in C but also elements of M, by genericity of G we have that G has a non-empty

intersection with each of those sets. But, then just as in Lemma 1.4 it is straightforward to

show that inM[G], the function fG is not eventually dominated by any ground model function

f ∈ M∩ ωω. �

1.2. The Cohen generic real is splitting. Consider the partial order Fn(ω,2) consisting
of all �nite partial functions from ω to 2 = {0,1} with extension relation superset. That is q ≤ p i�
q ⊇ p. If G is a �lter in Fn(ω,2) then fG ∶ ω → 2 is a (possibly partial) function. If dom(fG) = ω,
then we fG is in particular the characteristic function of aG = f−1

G (1).

Definition 1.7.

(1) Let a, b ∈ [ω]ω. We say that a splits b if both b ∩ a and b/a are in�nite.

(2) We say that a set a ⊆ ω is in�nite, co-in�nite if both a and its complement ω/a are

in�nite. Note that if b splits a, then a is in�nite co-in�nite.

(3) A family A ⊆ [ω]ω is said to be un-split, if no in�nite subset of ω simultaneously splits

every element of A.
(4) The least cardinality of an un-split family is denoted r and is called the shattering number .

Lemma 1.8. Assume MA. Let D ⊆ [ω]ω be a family of cardinality strictly smaller than c.

Then D is not un-split.

Proof. Consider Fn(ω,2). Let b ∈ [ω]ω and n ∈ ω. We will show that the set

Db,n = {p ∈ Fn(ω,2) ∶ ∃m1 > n(m1 ∈ b ∩ p−1(1)) and ∃m2 > n(m2 ∈ b ∩ p−1(0))}
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is dense. Fix any p ∈ Fn(ω,2). Since dom(p) is �nite and b is in�nite, there are m1 ≠ m2 such

that m1,m2 are not in dom(p), they are both greater than n and they both belong to b. Take

q = p ∪ {(m1,1)} ∪ {(m2,0)}. Then m1 ∈ q−1(1) ∩ b and m2 ∈ q−1(0) ∩ b.
Suppose G ⊆ Fn(ω,2) is a �lter such that G ∩ Dn ≠ ∅ for each n ∈ ω, where Dn = {p ∈

Fn(ω,2) ∶ n ∈ dom(p)}. Thus, fG ∶ ω → {0,1} is a function with dom(fG) = ω. Now, suppose in
addition that G ∩Db,n ≠ ∅ for all n ∈ ω. Then in particular, for each n ∈ ω there are m1,m2 > n
such that m1 ∈ f−1

G (1) ∩ b and m2 ∈ f−1
G (0) ∩ b. Thus each of f−1

G (1) ∩ b and f−1
G (0) ∩ b contains

arbitrarily large natural numbers, which means that they are both in�nite. Take aG = f−1
G (1).

Then ω/aG = f−1
G (0) and so we showed that aG splits b.

To complete the proof of the Lemma, consider the family of dense sets

∆ = {Db,n ∶ b ∈ D, n ∈ ω} ∪ {Dn ∶ n ∈ ω}.

Since ∣∆∣ < c, by MA there is a �lter G having a non-empty intersection with each element of ∆.

But then aG = f−1
G (1) splits every element of D and so D is not un-split. �

Corollary 1.9. MA implies that r = c.

Lemma 1.10. Let M be a ctm and let G be Fn(ω,2)-generic over M. Then for every b ∈
[ω]ω ∩M we have that

M[G] ⊧ ∣b ∩ aG∣ = ∣b ∩ (ω/aG)∣ = ω,
where aG = f−1

G (1) for fG = ⋃G. With other words for each b ∈ M ∩ [ω]ω, we have 1Fn(ω,2) ⊩
ȧG splits b̌, where ȧG is a Fn(ω,2)-name for aG and ∣̌b ∩ ȧG∣ = ∣̌b ∩ (ω/ȧG)∣ = ω abbreviates a

formula of the forcing language. We say that the Cohen real adds a splitting real.

Proof. Take any b ∈ [ω]ω ∩M. Then, for every natural number m, the set Db,n is not only

dense in Fn(ω,2), but also belongs toM since it is de�nable from parameters inM. Since G is

generic overM, G ∩Db,n ≠ ∅ for all n ∈ ω. �

2. Hechler Forcing for Adding a Dominating Real

Definition 2.1.

(1) Let ωω be the set of all functions from ω to ω. We say that g eventually dominates f ,

denoted f ≤∗ g, if there is n ∈ ω such that for all m ≥ n, f(m) ≤ g(m).
(2) A family F ⊆ ωω is said to be unbounded if it is not the case that there is g ∈ ωω such

that ∀f ∈ F(f ≤∗ g). With other words, F is unbounded, if for all g ∈ ωω∃f ∈ F(f /≤∗ g).
(3) Let b = min{∣B∣ ∶ B is unbounded}. We say that b is the bounding number .

Definition 2.2 (Hechler Forcing for adding a dominating real). Hechler forcing (known also

as Hechler forcing for adding a dominating real) is the partial order consisting of all pairs (s,F )
where s ∈ ω<ω = ⋃n∈ω nω and F ∈ [ωω]<ω with extension relation (t,H) ≤ (s,F ) de�ned as follows:

● t end-extends s (that is if dom(t) =m and dom(s) = n then n ≤m and t ↾ n = s),
● H ⊇ F ,
● for all k ∈ dom(t)/dom(s)∀f ∈ F (t(k) > f(k)),
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In our application below we will consider a special variant of Hechler forcing, known as the

relativization of Hechler forcing to a family of reals, or as restricted Hechler forcing.

Lemma 2.3. MA implies that b = 2ℵ0 .

Proof. Consider a set F ⊆ ωω such that ∣F∣ < c. We aim to show that under MA, F is not

unbounded. Let H(F) be the restriction of 2.2 to the �lter the family F , that is H(F) consisting
of all pairs (s,F ) ∈ H for which F ∈ [F]<ω with extension relation just as in De�nition 2.2. Note

that if (s,F ) and (t,H) are conditions in H(F) and s = t, then (s,F ∪ H) is their common

extension. This implies that H(F) is σ-centered and so in particular ccc (also in fact, Knaster).

For a �lter G consider the set

fG = ⋃{s ∶ ∃F (s,F ) ∈ G}.
Now, if G∩Dn ≠ ∅ for each n ∈ ω, where Dn = {(s,F ) ∈ H(F) ∶ n ∈ dom(s)} then fG is a function

with domain ω.

Fix an f ∈ F and note that Df = {(s,F ) ∶ f ∈ F} is dense. Indeed, if (t,H) ∈ H(F) and

f ∉H then (t,H ∪ {f}) is an extension of (t,H) from Df . Now, suppose (s,F ) ∈ G ∩Df and fG
has a full domain. Take any m ∈ ω such that m > max dom(s). Then m ∈ dom(fG) and so by

de�nition of fG there is some (t,H) ∈ G such that m ∈ dom(t). However (t,H) and (s,F ) are

compatible, as they belong to a �lter. Take (r,E) ∈ G which is their common extension. Note

that (r,E) ⊆ (s ∪ t,H ∪ F ) and that s ∪ t is in fact just the set t. Since G is upwards closed

(t,H ∪ F ) ∈ G. But then fG(m) = t(m) > f(m) by de�nition of the extension relation and the

fact that (t,H ∪ F ) ≤ (s,F ).
Now, it remains to �nd a �lter G ⊆ H(F) which meets all sets {Df}f∈F and {Dn}n∈ω. Since

∣F∣ < c and H(F) is ccc the existence of this �lter is guaranteed by Martin Axiom. �

Corollary 2.4. Let M be a ctm and let M[G] be a H generic extension of M. Then for

every f ∈ ωω ∩M, we have

M[G] ⊧ f̌ ≤∗ ḟG
where ḟG is a H-name for fG from the above Lemma and f̌ ≤∗ ḟG is in fact an abbreviation for a

formula in the forcing language. With other words, for each f ∈ M∩ ωω

1H ⊩ f̌ ≤∗ ḟG.

Thus in the Hechler generic extension the ground model reals are dominated. We also say that

Hechler forcing adds a dominating real.

Proof. Note that, the �rst paragraph in the above proof shows that 1H ⊩ dom(ḟG) = ω,
while the second paragraph shows that for each f ∈ M∩ ωω, for each (s,F ) ∈ H with f ∈ F and

each m > max dom(s), we have (s,F ) ⊩ f̌(m) < ḟG and so

(s,F ) ⊩ f̌ ≤∗ ḟG.

It remains to observe that for f ∈ M, the set Df = {(s,F ) ∈ H ∶ f ∈ F} is not only dense, but also

an element ofM. �
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3. Mathias Forcing Relativized to a Filter

Definition 3.1.

(1) A family E ⊆ [ω]ω has the Strong Finite Intersection Property (abbreviated SFIP) if for

every �nite F ∈ [E]<ω the set ⋂F is in�nite.

(2) Let A,B be in [ω]ω. We say that A is almost contained in B, denoted A ⊆∗ B, if A/B
is �nite. A set K ∈ [ω]ω is a pseudo-intersection of a family E ⊆ [ω]ω if for all Z ∈ E , we
have K ⊆∗ Z.

(3) The pseudo-intersection number p is de�ned as the minimal cardinality of a family E
which has SFIP but no pseudo-intersection.

Remark 3.2. If F has SFIP then F generates a �lter F̂ de�ned as the least subset of

[ω]ω containing F which is closed with respect to �nite intersections and with respect to

supersets. That is, the �lter generated by F is the least family F̂ ⊆ [ω]ω such that

● F ⊆ F̂ ,
● for all �nite H ⊆ F̂ the intersection ⋂H ∈ F̂ ,
● for all A,B ∈ [ω]ω if A ∈ F̂ and A ⊆ B then B ∈ F̂ .

Definition 3.3 (Mathias Forcing). Let F ⊆ [ω]ω be a �lter and let M(F) be the partial order
of all pairs (s,F ) where s ∈ [ω]<ω, F ∈ F and max s < minF with extension relation (t,H) ≤ (s,F )
de�ned as follows:

● t end-extends s (i.e. s is an initial segment of t) and t/s ⊆ F ,
● H ⊆ F .

Lemma 3.4. MA implies that p = 2ℵ0 .

Proof. Consider a set F0 ⊆ [ω]ω such that ∣F0∣ < c, F0 has SFIP and let F be the �lter

generated by F0. We aim to show that MA implies that F has a pseudo-intersection and so in

particular F0 has a pseudo-intersection. Consider the forcing notion M(F). Note that if (s,F )
and (t,H) are elements of M(F) and s = t, then (s,F ∩ H) is their common extension since

F ∩H ∈ F . This implies that M(F) is σ-centered and so in particular ccc. Take any F ∈ F0. We

will show that the set DF = {(s,E) ∈ M(F) ∶ E ⊆ F} is dense. Well, take any (t,A) ∈ M(F).
Then A ∩ F ∈ F and so (t,A ∩ F ) is an extension of (t,A) from DF .

Let G ⊆ M(F) be a �lter and let aG = ⋃{s ∶ ∃E(s,E) ∈ G}. Then for each n ∈ ω, the set

Dn = {(t,A) ∈ M(F) ∶ ∃m > n(m ∈ t)} is dense and so if G ∩Dn ≠ ∅ for all n ∈ ω, then aG is an

in�nite subset of ω.

Consider and F ∈ F0 and suppose (s,A) ∈ DF ∩G. Take any m ∈ aG and m > maxs. Then,
by de�nition of aG there is (t,E) ∈ G such that m ∈ t. But (s,A) and (t,E) being elements of a

�lter are compatible and so there is (r,H) ∈ G which is their common extension. Then s ∪ t ⊆ r
and (r,H) ≤ (s,A). Thus m ∈ r/s and so by de�nition of the extension relation m ∈ A. But A ⊆ F
and so m ∈ F . Therefore aG/(max s + 1) ⊆ F and so aG ⊆∗ F .

Thus, to obtain a pseudo-intersection of the family F0 it is su�cient to �nd a �lter G ⊆M(F)
which meets every dense set Dn for n ∈ ω and every DF for F ∈ F0. Since ∣F0∣ < c, the existence

of such a �lter is guaranteed by MA. �
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Remark 3.5. One can ask: For which �lters F does M(F) add a dominating real? This

is a very interesting and deep question, which is in the hart of on-going research in set theory.

Filters for which M(F) does not add a dominating real are known as Canjar �lter and are subject

of continuing research in combinatorial set theory. For a recent survey on the subject, see the

Master thesis of my student Lukas Schembecker available at <www.logic.univie.ac.at/∼v�scher>.

Remark 3.6. It is natural to ask: What if we drop the relativization to F? Indeed, let M
be the partial order of all pairs (s,F ) ∈ [ω]<ω × [ω]ω such that max s < minF and extension

relation as in De�nition 3.3. Then M is a forcing notion, known as Mathias forcing, which

has broad applications. However the partial order is not ccc and will be discussed only next

semester. Nevertheless, what we can state is the following: If G is M-generic over M and

aG = ⋃{s ∶ ∃A(s,A) ∈ G}, then for every a ∈ M∩ [ω]ω

M[G] ⊧ aG ⊆∗ a or a ⊆∗ ω/aG.
With other words, for every A ∈ M∩ [ω]ω,

1M ⊩ ȧG ⊆∗ A or ȧG ⊆∗ ω/A
and we say that Mathias forcing adds an unsplit real . Can you express the latter property in

terms of dense sets? If (s,A) is arbitrary and B ∈ [ω]ω then either A∩B or A∩(ω/B) is in�nite.
Thus, either (s,A ∩ B) or (s,A ∩ ω/B) is an extension of (s,A). This implies that for every

B ∈ [ω]ω, the set DB = {(s,A) ∶ A ⊆ B or A ⊆ ω/B} is dense, which completes the proof of the

above claim.

Lemma 3.7. Let G be M-generic over M. Then in M[G] there is a real which eventually

dominates every ground model real.

Proof. Let f ∈ M ∩ ωω. Without loss of generality f is strictly increasing. For an in�nite

subset x of ω, we identify x with its enumerating function, i.e. the function such that x(0) = minx

and for each n ≥ 1, x(n + 1) = min{m ∈ x ∶ x(n) < m}. Note that the set Df = {(t,E) ∈ M ∶ ∀n ≥
∣t∣, n ∈ ω(f(n) < E(n))} is dense in M. Indeed. Consider an arbitrary (s,A) ∈ M. Since A is

in�nite, we can �nd Af ⊆ A such that for each n ≥ ∣s∣, n ∈ ω, Af(n) > f(n). Then (s,Af) ∈ Df

and (s,Af) ≤ (s,A).
Let G be M-generic and let aG = ⋃{s ∶ ∃A(s,A) ∈ G}. We identify aG with its enumerating

function. Consider any f ∈ M∩ ωω. Then, there is (s,A) ∈Df ∩G and so aG/s ⊆ A. But then for

each n ≥ ∣s∣, aG(n) ≥ A(n) > f(n). Thus f ≤∗ aG. �


