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Abstract. We introduce a forcing technique to construct three-dimensional arrays of
generic extensions through FS (finite support) iterations of ccc posets, which we refer
to as 3D-coherent systems. We use them to produce models of new constellations in
Cichoń’s diagram, in particular, a model where the diagram can be separated into 7
different values. Furthermore, we show that this constellation of 7 values is consistent
with the existence of a ∆1

3 well-order of the reals.

1. Introduction

In this paper, we provide a generalization of the method of matrix iteration, to which we
refer as 3D-coherent systems of iterations and which can be considered a natural extension
of the matrix method to include a third dimension. That is, if a matrix iteration can be
considered as a system of partial orders 〈Pα,β : α ≤ γ, β ≤ δ〉 such that whenever α ≤ α′

and β ≤ β′ then Pα,β is a complete suborder of Pα′,β′ , then our 3D-coherent systems are
systems of posets 〈Pα,β,ξ : α ≤ γ, β ≤ δ, ξ ≤ π〉 such that whenever α ≤ α′, β ≤ β′,
ξ ≤ ξ′ then Pα,β,ξ is a complete suborder of Pα′,β′,ξ′ . As an application of this method, we
construct models where Cichoń’s diagram is separated into different values, one of them
with 7 different values. Moreover, these models determine the value of a, which is actually
the same as the value of b, and we further show that such models can be produced so
that they satisfy, additionally, the existence of a ∆1

3-well order of the reals.
The method of matrix iterations, or 2D-coherent systems of iterations in our terminol-

ogy, has already a long history. It was introduced by Blass and Shelah in [BS89], to show
that consistently u < d, where u is the ultrafilter number and d is the dominating number.
The method was further developed in [BF11], where the terminology matrix iteration ap-
peared for the first time, to show that if κ < λ are arbitrary regular uncountable cardinals
then there is a generic extension in which a = b = κ < s = λ. Here a, b and s denote the
almost disjointness, bounding and splitting numbers respectively. In [BF11], the authors
also introduce a new method for the preservation of a mad (maximal almost disjoint)
family along a matrix iteration, specifically a mad family added by Hκ (Hechler’s poset
for adding a mad family, see Definition 4.1), a method which is of particular importance
for our current work. Later, classical preservation properties for matrix iterations were
improved by Mej́ıa [Mej13a] to provide several examples of models where the cardinals
in Cichoń’s diagram assume many different values, in particular, a model with 6 different
values. Since then, the question of how many distinct values there can be simultaneously
in Cichoń’s diagram has been of interest for many authors, see for example [FGKS] (a
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model of 5 values concentrated on the right) and [GMS16] (another model of 6 different
values), and lies behind the development of many interesting forcing techniques. Very
recently, the method of matrix iterations was used by Dow and Shelah [DS] to solve
a long-standing open question in the area of cardinal characteristics of the continuum,
namely, to show that it is consistent that the splitting number is singular.

Further motivation for this project was to determine the value of a in classical FS
(finite support) iterations of ccc posets models where no dominating reals are added.
To recall some examples, a classical result of Kunen [Kun80] states that, under CH,
any Cohen poset preserves a mad family of the ground model, which was improved by
Steprans [Ste93] as he showed that, after adding ω1-many Cohen reals, there is a mad
family which is preserved by any further Cohen poset; Zhang [Zha99] proved that, under
CH, any finite support iteration of E (the standard poset adding an eventually different
real, see Definition 1.1) preserves a mad family from the ground model. As the family
preserved in Steprans’ result is added by Cω1 = Hω1 , we considered the preservation
theory of Brendle and the first author [BF11] to see in which cases a mad family added by
Hκ (for an uncountable regular κ) can be preserved through FS iterations of ccc posets. If
such an FS iteration can be redefined as a matrix iteration where Hκ is used to add a mad
family as in [BF11] and the preservation theory applies, then the mad family added by
Hκ is preserved through the iteration. Thanks to this and to the fact that random forcing
and E fit into the preservation framework (Lemmas 4.10 and 4.8), we generalize both
Steprans and Zhang results by providing a general result about FS iterations preserving
the mad family added by Hκ (Theorem 4.17).

In view of the previous result, it is worth asking whether such a result can be extended
to matrix iterations like those in [Mej13a]. By analogy, if it is possible to add an addi-
tional coordinate for Hκ to a matrix iteration and produce a 3D iteration (3D-coherent
system in our notation) where the preservation theory from [BF11] applies, then the mad
family added by Hκ is preserved. Even more, the third dimension allows us to separate b
from other cardinals in Cichoń’s diagram (which was not possible in [Mej13a]) and get a
further division in Cichoń’s diagram. In particular, the 3D-version of the matrix iteration
from [Mej13a] for the consistency of 6 different values yields a model of 7 different values
in Cichoń’s diagram.

In addition, we show that these new constellations of Cichoń’s diagram are consistent
with the existence of a ∆1

3 well-order of the reals. The study of those combinatorial prop-
erties of the real line (which can be expressed in terms of its cardinal characteristics) as
well as the study of the existence of nicely definable combinatorial objects (like maxi-
mal almost disjoint families) in the presence of a projective well-order on the reals has
been investigated intensively in the recent years. In [FF10] it is shown for example that
various constellations involving a, b and s are consistent with the existence of a ∆1

3 well-
order, while in [FFK14] it is shown that every admissible assignment of ℵ1 and ℵ2 to the
characteristics in Cichoń’s diagram is consistent with the existence of such projective well-
order. There is one main distinction between the various known methods for generically
adjoining projective well-orders: methods relying on countable support S-proper itera-
tions like in [FF10, FFK14], and methods using finite support iterations of ccc posets,
e.g. [FFZ11, FFT12, FFZ13]. In order to show that our new consistent constellations of
Cichoń’s diagram admit the existence of a ∆1

3 well-order of the reals, we further develop
the method of almost disjoint coding which was introduced in [FFZ11] and in particular
answer one of the open questions stated in [FFK14].
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The paper is organized as follows. In Section 2 we present some well known preser-
vation theorems. In Section 3 we introduce the notion of 3D-iterations and review the
preservation properties for matrix iterations from [BF11, Mej13a] which can be applied
quite directly to 3D-coherent systems (even to arbitrary coherent systems). In Section
4 we review the method of preservation of a mad family along a matrix iteration as in-
troduced in [BF11] and obtain similar results regarding E and the random algebra. As
a consequence, we prove in Theorem 4.17 our generalization of Steprans’ result discussed
above, which is one of the main results of this paper. Recall:

Definition 1.1 (Standard forcing that adds an eventually different real). Define the
forcing notion E with conditions of the form (s, ϕ) where s ∈ ω<ω and ϕ : ω → [ω]<ℵ0 such
that ∃n < ω∀i < ω(|ϕ(i)| ≤ n). Denote the minimal such n by width(ϕ). The order in E
is defined as (t, ψ) ≤ (s, φ) iff s ⊆ t, ∀i < ω(ϕ(i) ⊆ ψ(i)) and ∀i ∈ |t|r |s|(t(i) /∈ ϕ(i)).

Clearly E is σ-centered and adds a real which is eventually different from the reals in
the ground model. We will use also the following notation. If Ω is a non-empty countable
set, BΩ is the cBa (complete Boolean algebra) 2Ω×ω/N (2Ω×ω). Here, N (2Ω×ω) denotes
the σ-ideal of null subsets of 2Ω×ω with respect to the standard product measure. Note
that BΩ ' B := Bω. In general, for any set Γ, BΓ := limdir{BΩ : Ω ⊆ Γ countable}.
Denote by R the class of all random algebras, that is, R := {BΓ : Γ 6= ∅}. Recall Cohen
forcing CΓ := Fn(Γ × ω, 2) which is the poset of finite partial functions from Γ × ω to 2
ordered by reverse inclusion. Put C = Cω. Another well-known poset which we will make
use of is the localization poset (see for example [BJ95]). For convenience, we repeat its
definition:

Definition 1.2. LOC is the poset of all ϕ ∈ ([ω]<ℵ0)ω such that

(i) for all n ∈ ω, |ϕ(n)| ≤ n, and
(ii) there is a k ∈ ω such that for all but finitely many n, |ϕ(n)| ≤ k.

The extension relation is defined as follows: ϕ′ ≤ ϕ if and only if ϕ(n) ⊆ ϕ′(n) for all
n < ω.

Section 5 contains our main results about Cichoń’s diagram. We evaluate the almost
disjointness number in various constellations in which the value of a was previously not
known, and obtain a model in which there are 7 distinct values in Cichoń’s diagram. Let
θ0 ≤ θ1 ≤ κ ≤ µ ≤ ν be regular uncountable cardinals, and let λ ≥ ν.

Theorem. Assume λ<θ1 = λ. Then, there is a ccc poset forcing add(N ) = θ0, cov(N ) =
θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Elaborating on the method of almost disjoint coding as developed in [FFZ11], we show
in Section 6 that the constellations of Section 5 are consistent with the existence of a
projective wellorder of the reals whenever the associated cardinal values do not exceed ℵω
(even though we conjecture that the result remains true with arbitrarily large cardinal
values). In particular, we outline the proof of the following:

Theorem. In L, let θ0 < θ1 < κ < µ < ν < λ be uncountable regular cardinals and,
in addition, λ < ℵω. Then, there is a cardinal preserving forcing extension of L in
which there is a ∆1

3 well-order of the reals and, in addition, add(N ) = θ0, cov(N ) = θ1,
b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Section 7 contains some further discussion and open questions.
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2. Preservation properties for FS iterations

We review the theory of preservation properties for FS iterations developed by Judah
and Shelah [JS90] and Brendle [Bre91]. A similar presentation also appears in [GMS16,
Sect. 3].

Definition 2.1. R := 〈X, Y,@〉 is a Polish relational system if the following is satisfied:

(i) X is an uncountable Polish space,
(ii) Y is a non-empty analytic subspace of some Polish space and
(iii) @=

⋃
n<ω @n for some increasing sequence 〈@n〉n<ω of closed subsets of X × Y such

that (@n)y = {x ∈ X : x @n y} is nwd (nowhere dense) for all y ∈ Y .

For x ∈ X and y ∈ Y , x @ y is often read y @-dominates x. A family F ⊆ X is
R-unbounded if there is no real in Y that @-dominates every member of F . Dually,
D ⊆ Y is a R-dominating family if every member of X is @-dominated by some member
of D. b(R) denotes the least size of a R-unbounded family and d(R) is the least size of
a R-dominating family.

Say that x ∈ X is R-unbounded over a model M if x 6@ y for all y ∈ Y ∩M . Given a
cardinal λ say that F ⊆ X is λ-R-unbounded if, for any Z ⊆ Y of size < λ, there is an
x ∈ F which is R-unbounded over Z.

By (iii), 〈X,M(X),∈〉 is Tukey-Galois below R where M(X) denotes the σ-ideal of
meager subsets of X. Therefore, b(R) ≤ non(M) and cov(M) ≤ d(R). Fix, for this
section, a Polish relational system R = 〈X, Y,@〉 and an uncountable regular cardinal θ.

Remark 2.2. Without loss of generality, Y = ωω can be assumed. The reason is that,
by the existence of a continuous surjection f : ωω → Y , the Polish relational system
R′ := 〈X,ωω,@′〉, where x @′n z iff x @n f(z), behaves much like R in practice. Namely,
R is Tukey-Galois equivalent to R′ and moreover, the notions λ-R-unbounded and λ-R′-
unbounded are equivalent. Also, for posets, the notions of θ-R-good and θ-R′-good (see
the definition below) are equivalent.

Definition 2.3 (Judah and Shelah [JS90]). A poset P is θ-R-good if, for any P-name ḣ

for a real in Y , there is a non-empty H ⊆ Y of size < θ such that 
 x 6@ ḣ for any x ∈ X
that is R-unbounded over H.

Say that P is R-good when it is ℵ1-R-good.

Definition 2.3 describes a property, respected by FS iterations, to preserve specific types
of R-unbounded families. Concretely,

(a) any θ-R-good poset preserves every θ-R-unbounded family from the ground model
and

(b) FS iterations of θ-cc θ-R-good posets produce θ-R-good posets.

Posets that are θ-R-good work to preserve b(R) small and d(R) large since, whenever F
is a θ-R-unbounded family, b(R) ≤ |F | and θ ≤ d(R).

Clearly, θ-R-good implies θ′-R-good whenever θ ≤ θ′ and any poset completely embed-
ded into a θ-R-good poset is also θ-R-good.

Consider the following particular cases of interest for our main results.

Lemma 2.4 ([Mej13a, Lemma 4]). Any poset of size < θ is θ-R-good. In particular,
Cohen forcing is R-good.

Example 2.5. (1) Preserving non-meager sets: Consider the Polish relational system
Ed := 〈ωω, ωω, 6=∗〉 where x 6=∗ y iff x and y are eventually different, that is, x(i) 6= y(i)
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for all but finitely many i < ω. By [BJ95, Thm. 2.4.1 and 2.4.7], b(Ed) = non(M)
and d(Ed) = cov(M).

(2) Preserving unbounded families: Let D := 〈ωω, ωω,≤∗〉 be the Polish relational system
where x ≤∗ y iff x(i) ≤ y(i) for all but finitely many i < ω. Clearly, b(D) = b and
d(D) = d.

Miller [Mil81] proved that E is D-good. Besides, ωω-bounding posets are D-good,
like the random algebras.

(3) Preserving null-covering families: Let b : ω → ωr{0} such that
∑

i<ω
1
b(i)

< +∞ and

let Edb := 〈Rb,Rb, 6=∗〉 be the Polish relational system where Rb :=
∏

i<ω b(i). Since
Edb is Tukey-Galois below 〈N (Rb),Rb, 63〉 (for x ∈ Rb the set {y ∈ Rb : ¬(x 6=∗ y)} has
measure zero with respect to the standard Lebesgue measure on Rb), cov(N ) ≤ b(Edb)
and d(Edb) ≤ non(N ).

By a similar argument as in [Bre91, Lemma 1∗], any ν-centered poset is θ-Edb-good
for any ν < θ infinite. In particular, σ-centered posets are Edb-good.

(4) Preserving “union of null sets is not null”: For each k < ω let idk : ω → ω such that
idk(i) = ik for all i < ω and put H := {idk+1 : k < ω}. Let Lc := 〈ωω,S(ω,H),∈∗〉
be the Polish relational system where

S(ω,H) := {ϕ : ω → [ω]<ℵ0 : ∃h ∈ H∀i < ω(|ϕ(i)| ≤ h(i))},
and x ∈∗ ϕ iff ∃n < ω∀i ≥ n(x(i) ∈ ϕ(i)), which is read x is localized by ϕ. As
a consequence of Bartoszyński characterization (see [BJ95, Thm. 2.3.9]), b(Lc) =
add(N ) and d(Lc) = cof(N ).

Any ν-centered poset is θ-Lc-good for any ν < θ infinite (see [JS90]) so, in particu-
lar, σ-centered posets are Lc-good. Moreover, subalgebras (not necessarily complete)
of random forcing are Lc-good as a consequence of a result of Kamburelis [Kam89].

The following are the main general results concerning the preservation theory presented
so far.

Lemma 2.6. Let 〈Pα〉α<θ be a l-increasing sequence of ccc posets and Pθ = limdirα<θPα.
If Pα+1 adds a Cohen real ċα over V Pα for any α < θ, then Pθ forces that {ċα : α < θ} is
a θ-R-unbounded family of size θ.

Theorem 2.7. Let δ ≥ θ be an ordinal and 〈Pα, Q̇α〉α<δ a FS iteration of non-trivial
θ-R-good ccc posets. Then, Pδ forces b(R) ≤ θ and d(R) ≥ |δ|.
Proof. See [GMS16, Cor. 3.6]. �

3. Coherent systems of FS iterations

Definition 3.1 (Relative embeddability). Let M be a transitive model of ZFC (or a finite
large fragment of it), P ∈M and Q posets (the latter not necessarily in M). Say that P
is a complete subposet of Q with respect to M , denoted by PlM Q, if P is a suborder of
Q and every maximal antichain in P that belongs to M is also a maximal antichain in Q.

Recall that in this case, if N ⊇M is another transitive model of ZFC with Q ∈ N and
G is Q-generic over N then G∩P is P-generic over M and M [G∩P] ⊆ N [G]. Moreover,
if Ṗ′ ∈ M is a P-name of a poset, Q̇′ ∈ N is a Q-name of a poset and 
Q,N Ṗ′ lMP Q̇′,

then P ∗ Ṗ′ lM Q ∗ Q̇′. In particular, if M = N = V (the universe), then P ∗ Ṗ′ lQ ∗ Q̇′
whenever PlQ and 
Q Ṗ′ lV P Q̇

′.
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Definition 3.2 (Coherent system of FS iterations). A coherent system (of FS iterations)
s is composed by the following objects:

(I) a partial ordered set Is and an ordinal πs,
(II) a system of posets 〈Ps

i,ξ : i ∈ Is, ξ ≤ πs〉 such that
(i) Ps

i,0 l Ps
j,0 whenever i ≤ j in Is, and

(ii) Ps
i,η is the direct limit of 〈Ps

i,ξ : ξ < η〉 for each limit η ≤ πs,

(III) a sequence 〈Q̇s
i,ξ : i ∈ Is, ξ < πs〉 where each Q̇s

i,ξ is a Ps
i,ξ-name for a poset,

Ps
i,ξ+1 = Ps

i,ξ∗Q̇s
i,ξ and Ps

j,ξ forces Q̇s
i,ξlV

Ps
i,ξ
Q̇s
j,ξ whenever i ≤ j in Is and Ps

i,ξlPs
j,ξ.

Note that, for a fixed i ∈ Is, the posets 〈Ps
i,ξ : ξ ≤ πs〉 are generated by a FS iteration

〈P′i,ξ, Q̇′i,ξ : ξ < 1 + πs〉 where Q̇′i,0 = Ps
i,0 and Q̇′i,1+ξ = Q̇s

i,ξ for all ξ < 1 + πs. Therefore
(by induction) P′i,1+ξ = Pi,ξ for all ξ ≤ πs and, thus, Ps

i,ξ l Ps
i,η whenever ξ ≤ η ≤ πs.

On the other hand, by Lemma 3.6, Ps
i,ξ l Ps

j,ξ whenever i ≤ j in Is and ξ ≤ πs.
For j ∈ Is and η ≤ πs we write V s

j,η for the Ps
j,η-generic extensions. Concretely, if G

is Ps
j,η-generic over V , V s

j,η := V [G] and V s
i,ξ := V [Ps

i,ξ ∩ G] for all i ≤ j in Is and ξ ≤ η.
Note that V s

i,ξ ⊆ V s
j,η.

We say that the coherent system s is ccc if, additionally, Ps
i,0 has ccc and Ps

i,ξ forces

that Q̇s
i,ξ has ccc for each i ∈ Is and ξ < πs. This implies that Ps

i,ξ has ccc for all i ∈ Is
and ξ ≤ πs.

We consider the following particular cases.

(1) When Is is a well-ordered set, we say that s is a 2D-coherent system (of FS iterations).
(2) If Is is of the form {i0, i1} ordered as i0 < i1, we say that s is a coherent pair (of FS

iterations).
(3) If Is = γs × δs where γs and δs are ordinals and the order of Is is defined as (α, β) ≤

(α′, β′) iff α ≤ α′ and β ≤ β′, we say that s is a 3D-coherent system (of FS iterations).

For a coherent system s and a set J ⊆ Is, s|J denotes the coherent system with Is|J = J ,
πs|J = πs and the posets and names corresponding to (II) and (III) defined as for s. On
the other hand, if η ≤ πs, s�η denotes the coherent system with Is�η = Is, πs�η = η and
the posets for (II) and (III) defined as for s. Note that, if i0 < i1 in Is, then s|{i0, i1} is
a coherent pair and s|{i0} corresponds just to the FS iteration 〈P′i0,ξ, Q̇′i0,ξ : ξ < 1 + πs〉
(see the comment after (III)).

If t is a 3D-coherent system, for α < γt, tα := t|{(α, β) : β < δt} is a 2D-coherent
system where Itα has order type δt. For β < δt, tβ := t|{(α, β) : α < δt} is a 2D-coherent

system where It
β

has order type γt.
In particular, the super indexes s are omitted when there is no place for ambiguity.

Concerning consistency results about cardinal characteristics of the real line, Blass and
Shelah [BS89] produced the first 2D-coherent system to obtain that u < d is consistent
with large continuum. This was followed by new consistency results from Brendle and
Fischer [BF11] and Mej́ıa [Mej13a] where Blass and Shelah’s construction (which consists,
basically, on 2D-coherent systems as formalized in Definition 3.2(1)) is theorized and
improved. For their results, the main features of the produced matrix of generic extensions
〈Vα,ξ : α ≤ γ, ξ ≤ π〉 from a 2D-coherent system m, as illustrated in Figure 1, are:

(F1) For α < γ, there is a real cα ∈ Vα+1,0 which “diagonalizes” Vα,0 (e.g., R-unbounded
over Vα,0 for a fixed Polish relational system R, or diagonalizes it in the sense of
Definition 4.2) and, through the coherent pair m|{α, α+ 1}, cα also diagonalizes all
the models in the α-th row, that is, Vα,ξ for all ξ ≤ π (Lemmas 3.6 and 4.13).
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b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

V0,0

V1,0

Vα,0

Vα+1,0

Vγ,0

V0,ξ

V1,ξ

Vα,ξ

Vα+1,ξ

Vγ,ξ

V0,ξ+1

V1,ξ+1

Vα,ξ+1

Vα+1,ξ+1

Vγ,ξ+1

Q̇0,ξ

Q̇1,ξ

Q̇α,ξ

Q̇α+1,ξ

Q̇γ,ξ

V0,π

V1,π

Vα,π

Vα+1,π

Vγ,π

Figure 1. Matrix of generic extensions (2D-coherent system).

(F2) Provided that γ (the top level of the matrix) has uncountable cofinality. Given any
column of the matrix, any real in the model of the top is actually in some of the
models below, that is, R ∩ Vγ,ξ =

⋃
α<γ R ∩ Vα,ξ for every ξ ≤ π (Lemma 3.7 and

Corollary 3.9).

To prove the main results of this paper, we extend this approach to 3D rectangles of
generic extensions which help us separate more cardinal invariants at the same time. In a
similar fashion as a matrix above, such a construction starts with a matrix of posets and
“coherent” FS iterations are shot from each poset, which is formalized in Definition 3.2(3)
as 3D-coherent systems. Figure 2 illustrates this idea. More generally, Definition 3.2 can
be used to define multidimensional rectangles of generic extensions, though applications
are unknown from 4 dimensions.

The feature (F1) can also be applied in general to coherent systems of FS iterations since
any such system is composed by several coherent pairs of FS iterations. For coherent pairs,
(F1) for “R-unbounded over a model” had been quite understood in [BS89, BF11, Mej13a]
whose results we review below. For the remaining of this section, fix M ⊆ N transitive
models of ZFC and a Polish relational system R = 〈X, Y,@〉 coded in M (in the sense
that all its components are coded in M).

Recall that S is a Suslin ccc poset if it is a Σ1
1 subset of ωω (or another uncountable

Polish space in general) and both its order and incompatibility relations are Σ1
1. Note

that, if S is coded in M , then SM lM S
N .

Lemma 3.3 ([Mej13a, Thm. 7]). Let S be a Suslin ccc poset coded in M . If M |= “S is
R-good” then, in N , SN forces that every real in X ∩N which is R-unbounded over M is
R-unbounded over MSM .

Corollary 3.4. Let Γ ∈ M be a non-empty set. If M |= “BΓ is R-good” then BNΓ , in
N , forces that every real in X ∩ N which is R-unbounded over M is R-unbounded over
MBMΓ .
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b

b

b

b

b

b b b

b b b

b b b

b b b

b b b

V0,0,0

V0,δ,0

Vα,β,0

Vγ,0,0

Vγ,δ,0

V0,0,ξ V0,0,ξ+1
V0,0,π

V0,δ,ξ V0,δ,ξ+1 V0,δ,π

Vα,β,ξ Vα,β,ξ+1 Vα,β,π

Vγ,0,ξ Vγ,0,ξ+1 Vγ,0,π

Vγ,δ,ξ Vγ,δ,ξ+1

Vγ,δ,π

Q̇0,0,ξ

Q̇0,δ,ξ

Q̇α,β,ξ

Q̇γ,0,ξ

Q̇γ,δ,ξ

Figure 2. 3D rectangle of generic extensions (3D-coherent system).

Lemma 3.5 ([BF11, Lemma 11], see also [Mej15, Lemma 5.13]). Assume P ∈ M is a
poset. Then, in N , P forces that every real in X ∩ N which is R-unbounded over M is
R-unbounded over MP.

Lemma 3.6 (Blass and Shelah [BS89], [BF11, Lemmas 10, 12 and 13]). Let s be a coherent
pair of FS iterations as in Definition 3.2(2). Then, Pi0,ξ l Pi1,ξ for all ξ ≤ π.

Even more, if ċ is a Pi1,0-name of a real in X, π is limit and Pi1,ξ forces that ċ is
R-unbounded over Vi0,ξ for all ξ < π, then Pi1,π forces that ċ is R-unbounded over Vi0,π.

Note that if c is a Cohen real over M then c is R-unbounded over M by Definition
2.1(iii). In fact, all the unbounded reals used in our applications are actually Cohen.

Now we turn to discuss feature (F2). We aim to have such property for 3D-coherent sys-
tems but, as they are composed by several 2D-coherent systems, it is enough to understand
(F2) for 2D-coherent systems. This was already understood in [BS89] and formalized in
[BF11, Lemma 15] (see Corollary 3.9), which we generalize as follows.

Lemma 3.7. Let m be a ccc 2D-coherent system with Im = γ+1 an ordinal and πm = π.
Assume that

(i) γ has uncountable cofinality,
(ii) Pγ,0 is the direct limit of 〈Pα,0 : α < γ〉, and

(iii) for any ξ < π, Pγ,ξ forces “Q̇γ,ξ =
⋃
α<γ Q̇α,ξ” whenever Pγ,ξ is the direct limit of

〈Pα,ξ : α < γ〉.
Then, for any ξ ≤ π, Pγ,ξ is the direct limit of 〈Pα,ξ : α < γ〉.
Proof. We proceed by induction on ξ. The case when ξ is not successor is clear, so we
just need to deal with the successor step. Assume that the conclusion holds for ξ. If
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p ∈ Pγ,ξ+1 then p = (r, q̇) where r ∈ Pγ,ξ and q̇ is a Pγ,ξ-name of a member of Q̇γ,ξ. By

(iii), there is a maximal antichain {pn : n < ω} in Pγ,ξ such that pn decides q̇ = q̇n ∈ Q̇αn,ξ

for some αn < γ and some Pαn,ξ-name q̇n.1 By (i), (ii) and the induction hypothesis, there
is an α < γ above all αn such that {pn : n < ω} ⊆ Pα,ξ and r ∈ Pα,ξ. Therefore, q̇ is a

Pα,ξ-name of a member of Q̇α,ξ and p ∈ Pα,ξ+1. �

The 2D and 3D-coherent systems constructed to prove our main results can be classified
in terms of the following notion.

Definition 3.8 (Standard coherent system of FS iterations). A ccc coherent system of
FS iterations s is standard if

(I) it consists, additionally, of:
(i) a partition 〈Ss, Cs〉 of πs,
(ii) a function ∆s : Cs → Is so that ∆s(i) is not maximal in Is for all i ∈ Cs,

(iii) a sequence 〈Ssξ : ξ ∈ Ss〉 where each Ssξ is either a Suslin ccc poset or a random
algebra, and

(iv) a sequence 〈Q̇s
ξ : ξ ∈ Cs〉 such that each Q̇s

ξ is a Ps
∆s(ξ),ξ-name of a poset which

is forced to be ccc by Ps
i,ξ for all i ≥ ∆s(ξ) in Is, and

(II) it is satisfied, for any i ∈ Is and ξ < πs, that

Q̇s
i,ξ =


(Ssξ)

V s
i,ξ if ξ ∈ Ss

Q̇s
ξ if ξ ∈ Cs and i ≥ ∆s(ξ),

1 otherwise.

As in Definition 3.2, the super index s may be omitted when it is clear from the context.

All the standard coherent systems in this paper are constructed by recursion on ξ < π.
To be more precise, we start with some partial order of ccc posets 〈Pi,0 : i ∈ I〉 as
in Definition 3.2(II)(i), fix the partition in (I)(i) and, by recursion, the posets Pi,ξ and

names Q̇i,ξ for all i ∈ I, along with the function ∆ and the sequence of Suslin ccc posets
in (I)(iii) (though in some cases ∆ and the sequence of Suslin ccc posets are fixed before
the recursion), are defined as follows: when Pi,ξ has been constructed for all i ∈ I, we
look at the case whether ξ ∈ S or ξ ∈ C. In the first case, Sξ is chosen; in the second,

we choose ∆(ξ) and then we define the (P∆(ξ),ξ-name of a) poset Q̇ξ as in (I)(iv). After

this, the iterations continue with Pi,ξ+1 = Pi,ξ ∗ Q̇i,ξ as indicated in (II). It is clear that
the requirements in Definition 3.2 for a ccc coherent system are satisfied.

In practice, a standard coherent system as above is constructed by using posets adding
generic reals and the cases whether ξ ∈ S or ξ ∈ C indicate how generic is the real.
Namely, when ξ ∈ S, Sξ adds a real that is generic over Vi,ξ for all i ∈ I, which means
that we add a full generic real at stage ξ; on the other hand, when ξ ∈ C we just add
a restricted generic in the sense that Q̇ξ adds a real which is generic over V∆(ξ),ξ but

not necessarily over Vi,ξ when i 6≤ ∆(ξ), for instance, if Q̇ξ is a name for DV∆(ξ),ξ , at the
ξ-step the Hechler real added is generic only over V∆(ξ),ξ. This approach of adding full
and restricted generic reals is useful for controlling many cardinal invariants at the same
time like in [BS89, BF11, Mej13a] and this work.

It is clear that any standard 2D-coherent system satisfies the hypothesis (iii) of Lemma
3.7 whenever (i) and (ii) are satisfied. Therefore,

1It is implicit in this proof that the names considered for the members of Q̇α,γ are canonical in the
sense described by the mentioned maximal antichains.
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Corollary 3.9 ([BF11, Lemma 15]). If m is a standard 2D-coherent system with Im =
γ + 1 and ordinal and πm = π satisfying (i) and (ii) of Lemma 3.7 then, for any ξ ≤ π,
Pγ,ξ is the direct limit of 〈Pα,ξ : α < γ〉.

The elements of this section can be summarized in the following result.

Theorem 3.10 ([Mej13a, Thm. 10 & Cor. 1]). Let m be a standard 2D-coherent system
with Im = γ+1 (an ordinal), πm = π and R = 〈X, Y,@〉 a Polish relational system coded
in V . Assume that

(i) for any ξ ∈ S and α ≤ γ, Pα,ξ forces that Q̇α,ξ = S
Vα,ξ
ξ is R-good and

(ii) for any α < γ there is a Pα+1,0-name ċα of a R-unbounded member of X over Vα,0.

Then, for any ξ ≤ π and α < γ, Pα+1,ξ forces that ċα is R-unbounded over Vα,ξ. In
addition, if m satisfies (i) and (ii) of Lemma 3.7 then Pγ,π forces b(R) ≤ cf(γ) ≤ d(R).

Proof. The first statement is a direct consequence of Lemmas 3.3, 3.5 and 3.6. For the
second statement, note that Corollary 3.9 implies that, in Vγ,π, {cαη : η < cf(γ)} is a
cf(γ)-R-unbounded family where 〈αη : η < cf(γ)〉 ∈ V is an increasing cofinal sequence of
γ, so b(R) ≤ cf(γ) ≤ d(R) follows. �

4. Preservation of Hechler mad families

We review from [BF11] the theory of preserving, through coherent pairs of FS iterations,
a mad family added by Hechler’s poset for adding an a.d. family (see Definition 4.1). This
theory is quite similar to the approach in Section 3. Additionally, we show in Lemmas
4.8 and 4.10 that random forcing B and the eventually different forcing E fit well in this
framework.

Definition 4.1 (Hechler [Hec72]). For a set Ω define the poset HΩ := {p : Fp × np → 2 :
Fp ∈ [Ω]<ℵ0 and np < ω}. The order is given by q ≤ p iff p ⊆ q and, for any i ∈ nq r np,
there is at most one z ∈ Fp such that q(z, i) = 1.

If G is HΩ-generic over V then A = AG := {az : z ∈ Ω} is an a.d. family where az ⊆ ω
is defined as i ∈ az iff p(z, i) = 1 for some p ∈ G. Moreover, V [G] = V [A] and, when Ω is
uncountable, A is mad in V [G].

If Ω ⊆ Ω′ it is clear that HΩ l HΩ′ and even the (HΩ-name of the) quotient HΩ′/HΩ

is nicely expressed (see, e.g., [BF11, §2]). On the other hand, if C is a ⊆-chain of sets
then H⋃

C = limdirΩ∈CHΩ. Therefore, if γ is an ordinal, Hγ can be obtained by a FS
iteration of length γ where Hα is the poset obtained in the α-th stage of the iteration
and Hα+1/Hα, which is σ-centered, is the α-th iterand. Since HΩ only depends on the
size of Ω then HΩ has precaliber ω1 (though this can be proved directly by a ∆-system
argument). Moreover, if Ω is non-empty and countable then HΩ ' C and, if |Ω| = ℵ1,
then HΩ ' Cω1 .

From now on, fix M ⊆ N transitive models of ZFC. We define below a diagonalization
property to preserve mad families like the one added by Hechler’s poset.

Definition 4.2 ([BF11, Def. 2]). Let A = 〈az〉z∈Ω ∈M be a family of infinite subsets of
ω and a∗ ∈ [ω]ℵ0 (not necessarily in M). Say that a∗ diagonalizes M outside A if, for all
h ∈M , h : ω× [Ω]<ℵ0 → ω and for any m < ω, there are i ≥ m and F ∈ [Ω]<ℵ0 such that
[i, h(i, F )) r

⋃
z∈F az ⊆ a∗.

Given A a collection of subsets of ω, the ideal generated by A is defined as



COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS 11

I(A) := {x ⊆ ω : x ⊆∗
⋃
a∈F

a for some finite F ⊆ A}.

Lemma 4.3 ([BF11, Lemma 3]). If a∗ diagonalizes M outside A then |a∗ ∩ x| = ℵ0 for
any x ∈M r I(A).

Lemma 4.4 ([BF11, Lemma 4]). Let Ω be a set, z∗ ∈ Ω and A := {az : z ∈ Ω} the a.d.
family added by HΩ. Then, HΩ forces that az∗ diagonalizes V HΩr{z∗} outside A�(Ωr{z∗})
Corollary 4.5. Let γ be an ordinal of uncountable cofinality and let 〈Mα〉α≤γ be an
increasing sequence of transitive ZFC models such that [ω]ℵ0 ∩Mγ =

⋃
α<γ[ω]ℵ0 ∩Mα.

Assume that A = {aα : α < γ} ∈ Mγ is a family of infinite subsets of ω such that, for
any α < γ, A�α ∈ Mα and aα ∈ Mα+1 diagonalizes Mα outside A�α. Then, for any
x ∈ [ω]ℵ0 ∩Mγ, there exists an α < γ such that |x∩aα| = ℵ0. If, additionally, A is almost
disjoint, then A is mad in Mγ.

The previous corollary implies that the a.d. family added by HΩ for Ω uncountable is
actually mad (since HΩ

∼= Hγ for some ordinal γ of uncountable cofinality).
The main idea for mad preservation in [BF11] is that, when ccc 2D-coherent systems

are constructed, the first column, along with a mad family A = {aα : α < γ}, satisfies
the hypothesis of Corollary 4.5 (e.g. Pα,0 = Hα for all α ≤ γ) and each aα is preserved to
diagonalize the models in the α-th row outside A�α (that is, the second case of (F1) at
the beginning of Section 3). For this purpose, we present the following results related to
the preservation of the property in Definition 4.2 through coherent pairs of iterations.

Lemma 4.6 ([BF11, Lemma 11]). Let P ∈ M be a poset. If N |= “a∗ diagonalizes M
outside A” then

NP |= “a∗ diagonalizes MP outside A”.

Corollary 4.7. If N |= “a∗ diagonalizes M outside A” then

NCN |= “a∗ diagonalizes MCM outside A”.

Lemma 4.8. If N |= “a∗ diagonalizes M outside A” then

NEN |= “a∗ diagonalizes MEM outside A”.

Proof. Let ḣ ∈ M be an E-name for a function from ω × [Ω]<ℵ0 into ω. Work within
M and fix a non-principal ultrafilter D on ω (in M). For s ∈ ω<ω and n < ω define
hs,n : ω × [Ω]<ℵ0 → ω + 1 as

hs,n(i, F ) = min{j < ω : (∀ϕ, width(ϕ) ≤ n)((s, ϕ) 1 ḣ(i, F ) > j)}.
Claim 4.9. hs,n(i, F ) ∈ ω for all i < ω and F ∈ [Ω]<ℵ0.

Proof. Assume not, so there is a sequence of slaloms 〈ϕj〉j<ω of width ≤ n such that

(s, ϕj) 
 ḣ(i, F ) > j. Define the slalom ϕ∗ as

ϕ∗(i) = {m < ω : {j < ω : m ∈ ϕj(i)} ∈ D}.
By a compactness argument, width(ϕ∗) ≤ n, so (s, ϕ∗) ∈ E. Now, there are (t, ψ) ≤ (s, ϕ∗)

and j0 < ω such that (t, ψ) 
 ḣ(i, F ) = j0. By the definition of ϕ∗,

{j < ω : ∀i ∈ |t|r |s|(t(i) /∈ ϕj(i))} ∈ D
so that set is infinite. For any j > j0 in that set, (t, ψ) is compatible with (s, ϕj) and,

therefore, any common stronger condition forces j0 = ḣ(i, F ) > j, a contradiction. �
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Now, in N , fix m < ω and p = (s, ϕ) ∈ EN with n := width(ϕ). As a∗ diagonalizes M
outside A, there are i ≥ m and F ∈ [Ω]<ℵ0 such that [i, hs,n(i, F )) r

⋃
z∈F az ⊆ a∗. By

definition of hs,n, (∀ϕ, width(ϕ) ≤ n)((s, ϕ) 1 ḣ(i, F ) > hs,n(i, F )) is a true Π1
1-statement

in M so, by absoluteness, it is also true in N . Therefore, there is a q ∈ EN stronger than p
that forces ḣ(i, F ) ≤ hs,n(i, F ) and then we conclude that q forces [i, ḣ(i, F ))r

⋃
z∈F az ⊆

a∗. �

Lemma 4.10. If N |= “a∗ diagonalizes M outside A” then

NBN |= “a∗ diagonalizes MBM outside A”.

Proof. In the standard proof that B is ωω-bounding (see for example [BJ95]) it is shown
that, for any p ∈ B, ε ∈ (0, 1) and ẋ a B-name for a real in ωω, there are q ≤ p and
g ∈ ωω such that q 
 ẋ ≤ g and λ(pr q) ≤ ελ(p) where λ is the Lebesgue measure. We
are going to use this fact to prove the lemma.

Fix ḣ ∈ M a B-name for a function from ω × [Ω]<ℵ0 to ω, p ∈ BN and m < ω. By
the Lebesgue density Theorem there is a clopen non-empty set C such that λ(C r p) <
1
4
λ(C). Now, in M , find g : ω × [Ω]<ℵ0 → ω such that, for any F ∈ [Ω]<ℵ0 , there is a

qF ≤ C in B with λ(C r qF ) ≤ 1
4
λ(C) that forces ∀i < ω(ḣ(i, F ) ≤ g(i, F )). Then, in

N , there are i ≥ m and F ∈ [Ω]<ℵ0 such that [i, g(i, F )) r
⋃
z∈F az ⊆ a∗, so qF forces

[i, ḣ(i, F )) r
⋃
z∈F az ⊆ a∗. As λ(p ∩ qF ) > 1

2
µ(C), p ∩ qF ∈ BN is stronger than p and

forces [i, ḣ(i, F )) r
⋃
z∈F az ⊆ a∗. �

Corollary 4.11. Let Γ ∈M be a non-empty set. If N |= “a∗ diagonalizes M outside A”
then

NBNΓ |= “a∗ diagonalizes MBMΓ outside A”.

Proofs of both Lemmas 4.8 and 4.10 use a similar argument to that of the proof that
the respective posets are D-good (the compactness argument for E and ωω-bounding for
B).

Question 4.12. Assume S is a Suslin ccc poset coded in M such that M |=“S is D-good”
and N |= “a∗ diagonalizes M outside A”. Does

NSN |= “a∗ diagonalizes MSM outside A”?

Lemma 4.13 ([BF11, Lemma 12]). Let s be a coherent pair of FS iterations, A ∈ V a
family of infinite subsets of ω and ȧ∗ a Pi1,0-name for an infinite subset of ω such that


Pi1,ξ “ȧ∗ diagonalizes Vi0,ξ outside A”

for all ξ < π. Then, Pi0,π l Pi1,π and 
Pi1,π “ȧ∗ diagonalizes Vi0,π outside A”.

The results above are summarized as follows when considering standard 2D-coherent
systems.

Theorem 4.14. Let m be a standard 2D-coherent system with Im = γ + 1 an ordinal
and πm = π satisfying (i) and (ii) of Lemma 3.7 and, for each α < γ, let ȧα be a Pα+1,0-
name of an infinite subset of ω such that Pα+1 forces that ȧα diagonalizes Vα,0 outside

{ȧε : ε < α} and Pγ,0 forces Ȧ = {ȧα : α < γ} to be an a.d. family. If Sξ ∈ {C,E} ∪R

for all ξ ∈ S then Pγ,π forces that Ȧ is mad and a ≤ cf(γ).

Proof. Lemmas 3.9, 4.6, 4.8, 4.10 and 4.13 imply that 〈Vα,π : α ≤ γ〉 and A satisfy
the hypothesis of Corollary 4.5, so A and {aαη : η < cf(γ)} are mad in Vγ,π where
〈αη : η < cf(γ)〉 ∈ V is an increasing cofinal sequence of γ. �
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Remark 4.15. A version of the previous theorem was originally proved by Brendle and
Fischer [BF11] for a special case where Mathias-Prikry posets with ultrafilters are con-
sidered, though the ultrafilters are built very carefully. Concretely, when 〈Mα : α ≤ γ〉
and an a.d. family A are as in Corollary 4.5 and M0 |=“U0 is an ultrafilter on ω”, they
elaborated a method to construct an increasing chain of filters 〈Uα : α ≤ γ〉 ∈ Mγ such
that, for all β ≤ γ,

(a) 〈Uα : α ≤ β〉 ∈Mβ and Uβ is an ultrafilter in Mβ,
(b) M(Uα) lMα M(Uβ) for all α < β and

(c) if β = α + 1 then M(Uβ) forces that aα diagonalizes M
M(Uα)
α outside A�α.

The idea of this construction is originated from a similar method of Blass and Shelah
[BS89] to preserve unbounded reals. Instead of an a.d. family A, they consider a sequence
of reals 〈cα : α < γ〉 ∈ Mγ such that each cα ∈ Mα+1 is unbounded (i.e., D-unbounded)
over Mα and the ultrafilters are constructed such that (a) and (b) above are satisfied and

M(Uα+1) forces that cα is unbounded over M
M(Uα)
α for all α < γ.

This form of extending a 2D-coherent iteration can be incorporated in standard 2D-
iterations as in Definition 3.8, so π is partitioned into three sets S, C and F where, in
addition, the previous constructions are considered for ξ ∈ F . This was done in [Mej13b]
to obtain consistency results about the cardinal invariants p, s, r and u in relation with
those in Cichoń’s diagram. But thanks to Lemmas 4.8 and 4.10, some of the constructions
there can be modified to obtain, additionally, b = a (like in Theorem 5.8).

Remark 4.16. (1) Other mad families can be considered in this theory of preservation,
for instance, the mad family added by a FS iteration of Mathias-Prikry posets. Given
A ⊆ [ω]ℵ0 , the Mathias-Prikry poset M(I(A)∗) (for an ideal I, I∗ denotes its dual
filter) adds a real a∗ ∈ [ω]ℵ0 which is almost disjoint from all the members of A.
Moreover, M(I(A)∗) forces that a∗ diagonalizes V outside A. Thus, for an ordinal
γ with uncountable cofinality, the FS iteration 〈Pα, Q̇α〉α<γ with Q̇α = M(I(A�α)∗)
adds an a.d. family A = {aα : α < γ} where each aα is the Mathias real added by
Q̇α. By Corollary 4.5, Pγ forces that A is mad.

(2) Any FS iteration of length ω1 of non-trivial ccc posets adds a mad family of size ℵ1

(so it forces a = ℵ1), actually, the mad family is formed by the Cohen reals added at
limit stages. To understand this, it is enough to note that, if A ∈ V is a countable
subset of [ω]ℵ0 and c ∈ [ω]ℵ0 is Cohen over V , then c diagonalizes V outside A and c
is almost disjoint from all the members of A (because C 'M(I(A)∗)).

The following is a generalization of a result of Steprans [Ste93] which shows that the
maximal almost disjoint family added by the forcing Hκ is indestructible after forcing
with some particular posets. Steprans’ result can be then deduced when κ = ω1 (so
Hω1 = Cω1) and Q̇ξ = C for all ξ < π.

Theorem 4.17. Let κ be an uncountable regular cardinal. After forcing with Hκ, any FS
iteration 〈Pξ, Q̇ξ〉ξ<π where each iterand is either

(i) in {C,E} ∪R or
(ii) a ccc poset of size < κ

preserves the mad family added by Hκ.

Proof. We reconstruct the iteration Hκ followed by 〈Pξ, Q̇ξ〉ξ<π as a standard 2D-coherent
system m so that Pm

κ,ξ = Hκ ∗ Pξ for all ξ ≤ π. The construction goes as follows (see
Definition 3.8):
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(1) Im = κ+ 1 and πm = π.
(2) For each α ≤ κ, Pm

α,0 = Hα.
(3) The partition 〈Sm, Cm〉 of πm corresponds to the set of ordinals in the iteration

where a poset coming from (i) or (ii) is used. In other words, ξ ∈ Sm if (i) holds
for Q̇ξ, and ξ ∈ Cm otherwise.

(4) The functions ∆m : Cm → κ and the sequences 〈Smξ : ξ ∈ Sm〉 and 〈Q̇m
ξ : ξ ∈ Cm〉

are constructed by recursion on ξ < π along with the FS iterations of the 2D-
coherent system. We split into the following cases:
• If ξ ∈ Sm define Smξ to be one of the posets in the set {C,E} ∪R depending

on what Pξ forces Q̇ξ to be.

• If ξ ∈ Cm we define both ∆m(ξ) and Q̇m
ξ , the latter as a Pm

∆m(ξ),0-name. Since

ξ ∈ Cm we have that Q̇ξ is a Pm
κ,ξ-name for a ccc poset of size < κ, hence

without loss of generality we can assume that the domain of Q̇ξ is an ordinal

γξ < κ (not just a name). By Lemma 3.7, Q̇ξ is (forced by Pm
κ,ξ to be equal

to) a Pm
α,ξ-name Q̇m

ξ for some α < κ. So put ∆m(ξ) = α + 1.

Notice that m satisfies the assumptions of Theorem 4.14 for the mad family A added by
Hκ, so A is still mad in V m

κ,π.
�

Remark 4.18. When κ = ω1 in Theorem 4.17, by Remark 4.16(2) the result still holds
whenHω1 is replaced by any FS iteration of length with cofinality ω1. This is an alternative
(and also a generalization) of Zhang’s result [Zha99] which states that, under CH, there
is a mad family in the ground model which stays mad after a FS iteration of E.

5. Consistency results on Cichoń’s diagram

In this section, we prove the consistency of certain constellations in Cichoń’s diagram
where, additionally, the almost disjointness number can be decided (equal to b). For all
the results, we fix uncountable regular cardinals θ0 ≤ θ1 ≤ κ ≤ µ ≤ ν and a cardinal
λ ≥ ν. We denote the ordinal product between cardinals by, e.g., λ · µ.

The following summarizes the results in [Mej13a, Sect. 3] but in addition we get that
b = a can be forced.

Theorem 5.1. Assume λ = λ<κ and λ′ ≥ λ with (λ′)ℵ0 = λ′. For each of the items
below, there is a ccc poset forcing the corresponding statement.

(a) add(N ) = θ0, cov(N ) = θ1, b = a = non(M) = κ and cov(M) = c = λ.
(b) add(N ) = θ0, cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ and d = non(N ) =

c = λ.
(c) add(N ) = θ0, b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N} and d = c = λ.
(d) non(N ) = ℵ1, b = a = κ, d = λ and cov(N ) = c = λ′.

Proof. The proofs are basically the same as in [Mej13a] combined with the methods of
preservation of mad families developed in Section 4 which we include in this paper for
completeness. For all the items, start adding a mad family with Hκ.

(a) Construct an iteration as in the last part of [Mej13a, Thm. 2]. To be more precise,
perform a FS iteration 〈Pα, Q̇α〉α<λ where each Q̇α is either

(i) a σ-linked subposet of LOC of size < θ0,
(ii) a subalgebra of B of size < θ1 or

(iii) a σ-centered subposet of D of size < κ.



COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS 15

To be more specific, in (i) Q̇α is of the form LOCṄα where Ṅα is a Pα-name of a
transitive model of size < θ0 of a finite large enough fragment of ZFC, so that the
slalom added by Q̇α is generic over Ṅα. This similarly applies to (ii) and (iii). By a
book-keeping device, the iteration satisfies for every α < λ:

(i’) if K̇ is a Pα-name of a subset of ωω of size < θ0, then there is an α′ ∈ [α, λ)
such that Q̇α′ is as in (i) and the slalom it adds localizes all the reals in K̇,

(ii’) if Ḃ is a Pα-name of a family of size < θ1 of Borel-null sets (coded in V Hκ∗Pα)
then there is an α′ ∈ [α, λ) such that Q̇α′ is as in (ii) and the random real it
adds is outside the Borel sets in Ḃ and

(iii’) if Ḟ is a Pα-name of a subset of ωω of size < κ, then there is an α′ ∈ [α, λ) such
that Q̇α′ is as in (iii) and the generic real it adds dominates the reals in Ḟ .

For instance, in (i’), considering Q̇α′ = LOCṄα′ as explained above, α′ is found such
that K̇ ⊆ Ṅα′ , so the generic slalom localizes the reals in K̇. This similarly applies to
(ii’) and (iii’).

In order to finish the proof we present the arguments that show why each cardinal
characteristic takes the desired value in the generic extension given by Pλ.

add(N ) = θ0. The inequality add(N ) ≤ θ0 follows from both the fact that

add(N ) = b(Lc) (see Example 2.5(4)) and that all the posets we are using in the
iteration are θ0-Lc-good, so Theorem 2.7 applies and we get b(Lc) ≤ θ0. On the
other hand, (i’) implies add(N ) ≥ θ0.

cov(N ) = θ1. For cov(N ) ≤ θ1 note that cov(N ) ≤ b(Edb) (see Example 2.5,(3)).
Thus, since the posets in the iteration are θ1-Edb-good, Theorem 2.7 applies to obtain
b(Edb) ≤ θ1. Conversely, The inequality cov(N ) ≥ θ1 follows from (ii’).

b = a = non(M) = κ. It is enough to show κ ≤ b, non(M) ≤ κ and a ≤ κ. For
the latter note that the mad family added at the beginning by the forcing Hκ will
stay mad after the iteration thanks to Theorem 4.17. Item (iii’) implies b ≥ κ and
non(M) ≤ κ follows from both non(M) = b(Ed) and the fact that the posets in the
iteration are κ-Ed-good.

cov(M) = c = λ. The inequality cov(M) ≥ λ is a simple consequence from the

equality cov(M) = d(Ed) together with Theorem 2.7; on the other hand, c ≤ λ
because, in the ground model, |Hκ ∗ Pλ| ≤ λ.

(b) Like in (a), perform a FS iteration 〈Pα, Q̇α〉α<λ·µ as in [Mej13a, Thm. 3] where each

Q̇α is either
(i) a σ-linked subposet of LOC of size < θ0,

(ii) a subalgebra of B of size < θ1,
(iii) a σ-centered subposet of D of size < κ or
(iv) E.

By counting arguments, the FS iteration is constructed such that, for any α < µ,
(i’) if K̇ is a Pλ·α-name of a subset of ωω of size < θ0, then there is a ξ < λ such

that Q̇λ·α+ξ is as in (i) and the slalom it adds localizes all the reals in K̇,

(ii’) if Ḃ is a Pλ·α-name of a family of size < θ1 of Borel-null sets (coded in V Hκ∗Pλ·α)
then there is a ξ < λ such that Q̇λ·α+ξ is as in (ii) and the random real it adds

is outside the Borel sets in Ḃ and
(iii’) if Ḟ is a Pλ·α-name of a subset of ωω of size < κ, then there is a ξ < λ such that

Q̇λ·α+ξ is as in (iii) and the generic real it adds dominates the reals in Ḟ .
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The arguments for add(N ) = θ0, cov(N ) = θ1 and b = a = κ are similar to the
ones in (a). We present here the remaining ones.

non(M) = cov(M) = µ. Both inequalities cov(M) ≤ µ and non(M) ≥ µ are

witnessed by the cofinal µ-many eventually different reals added by E (note that the
cofinality of the iteration is µ). On the other hand, non(M) ≤ µ ≤ cov(M) follows
by the cofinal µ-many Cohen reals added at limit stages.

d = non(N ) = c = λ. Follows from Theorem 2.7, just recall that non(N ) ≥ d(Edb).

(c) Perform a FS iteration 〈Pα, Q̇α〉α<λ·µ as in [Mej13a, Thm. 3]. In this case, each Q̇α

is either:
(i) a σ-linked subposet of LOC of size < θ0,

(ii) a σ-centered subposet of D of size < κ or
(iii) B.

As in (b), the iteration is build up (using counting arguments) so that (i’) and (iii’)
from the previous proof hold.

(d) After the iteration in (a) force with Bλ′ .

�

Now we turn to prove some consistency results with standard 3D-coherent systems
(recall Definitions 3.2(3) and 3.8). Recall that, if t is such a system with It = (γ + 1)×
(δ + 1), it can be extracted standard 2D-coherent systems tα for each α ≤ γ and tβ for
each β ≤ δ. When referring to Figure 2, we call the vertical axis the α-axis, the axis
pointing “perpendicular to the sheet of paper” is the β-axis and the horizontal axis is the
ξ-axis. To get a picture of these 2D-systems, in Figure 2, tα is the 2D-system obtained
by restricting the 3D rectangle to the horizontal plane on α (i.e., fixing α on the α-axis),
while tβ is the restriction to the vertical plane on β (i.e., fixing β on the β-axis). These
2D-coherent systems allow us to directly apply the results in the previous sections to
3D-coherent systems. In consequence, we have the following general result for standard
3D-coherent systems.

Theorem 5.2. Let t be a standard 3D-coherent system with It = (γ+1)×(δ+1) and m a
standard 2D-coherent system with Im = γ+1 and πm = δ such that Pα,β,0 = Pt

α,β,0 = Pm
α,β

for all α ≤ γ and β ≤ δ. Let R = 〈X, Y,@〉 be a Polish relational system coded in V .
Assume

(I) m satisfies the hypotheses of either
(i) Lemma 3.7(i) and (ii) and Theorem 3.10 with 〈ċα : α < γ〉 and R, or

(ii) Theorem 4.14 with Ȧ = {ȧα : α < γ}
(note that, in either case, γ has uncountable cofinality),

(II) all the posets that conform m are non-trivial (see Definition 3.8(iii) and (iv)),
(III) all the posets that conform t are non-trivial (see Definition 3.8(iii) and (iv)),
(IV) δ and π have uncountable cofinality,
(V) for ξ ∈ S = St, Q̇α,β,ξ is forced to be R-good by Pα,β,ξ for all α ≤ γ and β ≤ δ, and

(VI) if (I)(ii) is assumed then Sξ ∈ {C,E} ∪ R for all ξ ∈ S.

Then, Pγ,δ,π forces

(a) non(M) ≤ cf(π) ≤ cov(M),
(b) b(R) ≤ min{cf(δ), cf(π)} ≤ max{cf(δ), cf(π)} ≤ d(R),
(c) b(R) ≤ min{cf(γ), cf(δ), cf(π)} ≤ max{cf(γ), cf(δ), cf(π)} ≤ d(R) when (I)(i) is as-

sumed and
(d) a ≤ cf(δ) when (I)(ii) is assumed.
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Proof. (a) Any FS iteration of length π of uncountable cofinality adds cofinal cf(π)-many
Cohen reals which witness non(M) ≤ cf(π) ≤ cov(M). Also note that the FS itera-
tion 〈Pγ,δ,ξ, Q̇γ,δ,ξ : ξ < π〉 generates the final extension Vγ,δ,π of the coherent system
t.

(b) We look at the 2D-coherent system tγ. As the chain of posets 〈Pγ,β,0 : β ≤ δ〉 is
generated by a FS iteration of ccc posets, for a fixed cofinal sequence 〈βζ : ζ < cf(δ)〉
in δ of limit ordinals, for each ζ < cf(δ) there is a Pγ,βζ+1,0-name ċ′ζ for a Cohen real
over Vγ,βζ ,0. Thus, tγ and 〈ċ′ζ : ζ < cf(δ)〉 satisfy the hypotheses of Theorem 3.10
by (V), so Pγ,δ,π forces b(R) ≤ cf(δ) ≤ d(R). Besides, since b(R) ≤ non(M) and
cov(M) ≤ d(R), (a) immediately implies b(R) ≤ cf(π) ≤ d(R).

(c) We first look at the 2D-coherent system m. By Theorem 3.10, Pα+1,δ,0 forces that ċα
is R-unbounded over Vα,δ,0 for every α < γ. Now, we apply Theorem 3.10 to tδ to
conclude that b(R) ≤ cf(γ) ≤ d(R).

(d) By Theorem 4.14 applied to the 2D-coherent system m, each ȧα is forced by Pα+1,δ,0 to

diagonalize Vα,δ,0 outside Ȧ�α for each α < γ and furthermore, using the same theorem
one more time for the coherent system tδ, Pα+1,δ,π forces that ȧα diagonalizes Vα,δ,π
outside Ȧ�α. Thus, the maximality of A is preserved in Vγ,δ,π and so a ≤ cf(γ).

�

In our applications and in accordance with the previous result, we consider standard
3D-coherent systems where 〈Pα,β,0 : α ≤ γ, β ≤ δ〉 is generated by a standard 2D-coherent
system.

Definition 5.3. Given ordinals γ and δ, define the following standard 2D-coherent sys-
tems.

(1) The system mC(γ, δ) where

(i) Im
C(γ,δ) = γ + 1,

(ii) P
mC(γ,δ)
α,0 = Cα for each α ≤ γ, and

(iii) πmC(γ,δ) = δ, S = δ, C = ∅ and Sβ = C for all β < δ.
(2) The system m∗(γ, δ) where

(i) Im
∗(γ,δ) = γ + 1,

(ii) P
m∗(γ,δ)
α,0 = Hα for each α ≤ γ, and

(iii) πm∗(γ,δ) = δ, S = δ, C = ∅ and Sβ = C for all β < δ.

If both γ and δ have uncountable cofinality, it is clear that both mC(γ, δ) and m∗(γ, δ)
satisfy (I) and (II) of Theorem 5.2, moreover, the former satisfies (I)(i) and the latter
satisfies (I)(ii). These standard 2D-coherent systems are the start point for the 3D-
coherent systems constructed to prove the main results below.

Note that in Theorems 5.6(b), 5.7(c) and (d) we cannot say anything about a because
full Hechler generics are added (see the discussion about full and restricted generics after
Definition 3.8) so mad families are not preserved anymore in the way proposed in Section
4. For these results we start with mC(·, ·). For the results where we can force b = a we
start with m∗(·, ·) (we can start with mC(·, ·) as well, but a should be ignored in that
case). Observe that the results below are “three-dimensionalizations” of the 2D-coherent
systems constructed in [Mej13a, Sect. 6].

We first prove that there is a constellation of Cichoń’s diagram with 7 different values
as illustrated in Figure 3.
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b b b b b

b b

b b b b b

θ0

θ1

κ

µ ν

λ

ℵ1
add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N )
c

Figure 3. Cichoń’s diagram as in Theorem 5.4.

Theorem 5.4. Assume λ<θ1 = λ. Then, there is a ccc poset forcing add(N ) = θ0,
cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) = c = λ.

Proof. Let V be the ground model where we perform a FS iteration which comes from the
standard 3D-coherent system t constructed as follows. Fix a bijection g = 〈g0, g1, g2〉 :
λ→ κ× ν × λ.

(1) γ = κ+ 1, δ = ν + 1 and π = λ · ν · µ.
(2) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 is obtained from m∗(κ, ν).
(3) Consider λ · ν · µ as the disjoint union of the ν · µ-many intervals Iζ = [lζ , lζ+1) (for

ζ < ν · µ) of order type λ. Let S := {lζ : ζ < ν · µ} and C = π r S (note that
lζ = λ · ζ).

(4) A function ∆ = 〈∆0,∆1〉 : C → κ× ν such that the following properties are satisfied:
(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals,2

(ii) ∆−1(α+ 1, β + 1)∩ {lζ + 1 : ζ < ν · µ} is cofinal in π for any (α, β) ∈ κ× ν, and
(iii) for fixed ζ < ν · µ and e < 2, ∆(lζ + 2 + 2 · ε+ e) = (g0(ε) + 1, g1(ε) + 1) for all

ε < λ.
(5) Sξ = E for all ξ ∈ S.

(6) Fix, for each α < κ, β < ν and ζ < ν ·µ, two sequences 〈 ˙LOC
ζ

α,β,η〉η<λ and 〈Ḃζα,β,η〉η<λ
of Pα,β,lζ -names for all σ-linked subposets of the localization forcing LOCVα,β,lζ of size

< θ0 and all subalgebras of random forcing BVα,β,lζ of size < θ1, respectively.
Given ξ ∈ C, define Q̇ξ according to the following cases.

(i) If ξ = lζ + 1 then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ , the Hechler poset

adding a dominating real ḋζ over the model V∆(ξ),ξ.

(ii) If ξ = lζ + 2 + 2ε then Q̇ξ = ˙LOC
ζ

g(ε).

(iii) If ξ = lζ + 2 + 2ε+ 1 then Q̇ξ = Ḃ
ζ
g(ε).

We prove that Vκ,ν,π satisfies the statements of this theorem.

Claim 5.5. If X ∈ Vκ,ν,π is a set of reals of size < µ, then there are (β, ζ) ∈ ν × (ν · µ)
so that X ∈ Vκ,β,lζ . Furthermore, if |X| < κ, then there is also an α < κ such that
X ∈ Vα,β,lζ .
Proof. As cf(π) = µ and Vκ,ν,π is obtained by a FS iteration of length π, there is a ζ < ν ·µ
such that X ∈ Vκ,ν,lζ (because {lζ : ζ < ν ·µ} is cofinal in π). Now, look at the 2D-coherent

2Both ordinals ∆0(ξ) and ∆1(ξ) are successor because, if they are limits of uncountable cofinality
and we force with DV∆(ξ),ξ above (∆(ξ), ξ) and trivial otherwise, then R ∩ V∆(ξ),ξ+1 may not be R ∩⋃
α<∆0(ξ),β<∆1(ξ) Vα,β,ξ+1.
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system tκ and apply Corollary 3.9 to find a β < ν so that X ∈ Vκ,β,lζ . In the case that

|X| < κ, apply Corollary 3.9 to tβ to find an α < κ so that X belongs to Vα,β,lζ . �

add(N ) = θ0. For the inequality add(N ) ≥ θ0 take an arbitrary set X of reals in Vκ,ν,π
of size < θ0 so, by Claim 5.5, there is a triple of ordinals (α, β, ζ) ∈ κ × ν × (ν · µ)
such that X ∈ Vα,β,lζ . In Vα,β,lζ , there is a transitive model N of (a large enough finite
fragment of) ZFC such that X ⊆ N and |N | < θ0. Then, there exists an η < λ such that

LOC
ζ
α,β,η = LOCN . Put ε = g−1(α, β, η) and ξ′ = lζ + 2 + 2ε, so Qξ′ = LOC

ζ
α,β,η = LOCN

adds a generic slalom over N and, therefore, it localizes all the reals in X.
To obtain the converse inequality, apply Theorem 2.7 to 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π.
cov(N ) = θ1. This case is similar to the one above. To get cov(N ) ≥ θ1 take an

arbitrary family Z of Borel null sets coded in Vκ,ν,π of size < θ1 so, by Claim 5.5, there
exists (α, β, ζ) ∈ κ × ν × (ν · µ) such that the sets in Z are already coded in Vα,β,lζ .
Hence, as in the previous argument, there exists an ordinal η < λ such that the generic
random real added by Bζα,β,η avoids all the Borel sets in Z. Put ε = g−1(α, β, η) and

ξ′ = lζ + 2 + 2ε+ 1, so Qξ′ = B
ζ
α,β,η and the random real it adds is already in Vα+1,β+1,ξ′+1.

Conversely, since the posets we use in the FS iteration 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π are θ1-Edb-good
posets and cov(N ) ≤ b(Edb), Theorem 2.7 implies that, in Vκ,ν,π, b(Edb) ≤ θ1.

non(M) = cov(M) = µ. The inequalities non(M) ≤ µ ≤ cov(M) follow from Theo-

rem 5.2(a). Conversely, from the cofinal µ-many eventually different reals added by the
iteration 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π, we force the inequalities cov(M) ≤ µ and non(M) ≥ µ.

add(M) = b = a = κ. Given a family F of reals in Vκ,ν,π of size < κ, we can find a

(α, β, ζ) ∈ κ × ν × (ν · µ) such that F ∈ Vα,β,lζ . We use now the restricted dominating

reals {ḋζ : ζ < ν · µ}. Since (∆)−1(α + 1, β + 1) ∩ {lζ + 1 : ζ < ν · µ} is cofinal in ν · µ,

there exists a ζ ′ ∈ [ζ, ν · µ) such that ∆(lζ′ + 1) = (α + 1, β + 1) and then the real ḋζ′
added by Qα+1,β+1,ξ′ , where ξ′ = lζ′ + 1, dominates all the reals in F .

On the other hand, a ≤ κ follows from Theorem 5.2 which guarantees that the mad
family added along the α-axis, which lives in the model Vκ,0,0, still remains mad in the
final extension Vκ,ν,π.

d = cof(M) = ν. For Vκ,ν,π |= d ≥ ν we just use Theorem 5.2. Conversely, to see V P |=
d ≤ ν note that the argument above shows that the family of (restricted) dominating

reals {ḋζ : ζ < ν · µ} is dominating in Vκ,ν,π.
non(N ) = cof(N ) = c = λ. As d(Edb) ≤ non(N ), from Theorem 2.7 we have that, in

Vκ,ν,π, d(Edb) ≥ |π|= λ. Certainly, c ≤ λ holds because |Pκ,ν,π| = λ.
�

Theorem 5.6. Assume λ<θ0 = λ. Then, for any of the statements below, there is a ccc
poset forcing it.

(a) add(N ) = θ0, b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N}, d = ν and
cof(N ) = c = λ.

(b) add(N ) = θ0, cov(N ) = κ, add(M) = cof(M) = µ, non(N ) = ν and cof(N ) = c = λ.
(c) add(N ) = θ0, cov(N ) = b = a = κ, non(M) = cov(M) = µ, d = non(N ) = ν and

cof(N ) = c = λ.

Proof. Fix bijection g : λ→ κ× ν × λ. All the 3D-coherent systems we use in this proof
are of the form t where

(1) γ = κ+1, δ = ν+1 and π = λ ·ν ·µ, the latter which is the disjoint union of ν ·µ-many
intervals {Iζ := [lζ , lζ+1) : ζ < ν · µ} of length λ where each lζ := λ · ζ.



20 VERA FISCHER, SY D. FRIEDMAN, DIEGO A. MEJÍA, AND DIANA C. MONTOYA

(2) S = {lζ : ζ < ν · µ} and C = π r S.
(3) For (a) and (c) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 comes from m∗(γ, δ) and, for (b), it comes

from from mC(κ, ν).
(4) A function ∆ = 〈∆0,∆1〉 : C → κ× ν such that the following properties are satisfied:

(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals,
(ii) ∆−1(α + 1, β + 1) ∩ {lη + 1 : η < ν · µ} is cofinal in π for each (α, β) ∈ κ × ν;

additionally, for (c), ∆−1(α + 1, β + 1) ∩ {lη + 2 : η < ν · µ} is cofinal in π and
(iii) for fixed ζ < ν · µ, ∆(lζ + n0 + ε) = (g0(ε) + 1, g1(ε) + 1) for all ε < λ, where

n0 = 2 for (a) and (b), and n0 = 3 for (c).

For each of the item below, t is properly defined.

(a) For all ξ ∈ S, Sξ = B. Fix, for each α < κ, β < ν and ζ < ν · µ, a sequence

〈 ˙LOC
ζ

α,β,η〉η<λ of Pα,β,lζ -names for all σ-linked subposets of LOCVα,β,lζ of size < θ0.

For ξ ∈ C, Q̇ξ is defined according to the following cases.

(i) If ξ = lζ + 1 then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ which adds a

dominating real ḋζ over V∆(ξ),ξ.

(ii) If ξ = lζ + 2 + ε for some ε < λ, then Q̇ξ = ˙LOC
ζ

g(ε).
Most of the arguments for each of the cardinals characteristics are identical as the

ones presented in Theorem 5.4, so we just present the missing ones.
non(N ) ≤ µ ≤ cov(N ). It holds because we add cofinal µ-many random reals (cor-

responding to the coordinates ξ ∈ S).
cof(N ) ≥ λ. It is a consequence of both the fact that cof(N ) = d(Lc) and Theorem

2.7 which gives us d(Lc) ≥ |π|= λ.
(b) For all ξ ∈ S, Sξ = D and, for ξ ∈ C, Q̇ξ is defined as in (a) but, in (i), we consider

BV∆(ξ),ξ instead.
Recall that, in this construction, our base 2D-coherent system comes from mC(κ, ν).

The argument to prove that Vκ,ν,π satisfy (b) is similar to (a) and to the proof of
Theorem 5.4. For instance,

cov(N ) = κ and non(N ) = ν. Given a family X of Borel-null sets coded in V P of

size < κ, we can find (α, β, ζ) ∈ κ× ν × (ν · µ) such that all the sets in X are already
coded in Vα,β,lζ . Since ∆−1(α + 1, β + 1) ∩ {lζ + 1 : ζ < ν · µ} is cofinal in ν · µ,
there exists ζ ′ ∈ [ζ, λ) such that ∆(lζ′ + 1) = (α+ 1, β + 1) and then the random real

ṙζ′ added by Q̇α,β,ξ′ with ξ′ = lζ′ + 1 avoids all the sets in X. Note that this same
argument also proves that the set {ṙζ : ζ < ν · µ} is not null, so non(N ) ≤ ν.

Conversely, cov(N ) ≤ b(Edb) ≤ κ and ν ≤ d(Edb) ≤ non(N ) are direct conse-
quences of Theorem 5.2.

b = d = µ. Because the cofinal µ-many dominated reals added by 〈Pκ,ν,ξ, Q̇κ,ν,ξ〉ξ<π
forms a scale of length µ.

(c) For all ξ ∈ S, Sξ = E. For ξ ∈ C, Q̇ξ is defined according to the following cases

(i) If ξ = lζ + 1, then Q̇ξ is a P∆(ξ),ξ-name for the poset DV∆(ξ),ξ .

(ii) If ξ = lζ + 2, then Q̇ξ is a P∆(ξ),ξ-name for the poset BV∆(ξ),ξ .
(iii) Otherwise, like (ii) of the proof of (a).

�

Theorem 5.7. Assume λℵ0 = λ. Then, for any of the statements below there is a ccc
poset forcing it.
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(a) add(N ) = cov(N ) = b = a = κ, non(M) = cov(M) = µ, d = non(N ) = cof(N ) = ν
and c = λ.

(b) add(N ) = b = a = κ, cov(I) = non(I) = µ for I ∈ {M,N}, d = cof(N ) = ν and
c = λ.

(c) add(N ) = cov(N ) = κ, add(M) = cof(M) = µ, non(N ) = cof(N ) = ν and c = λ.
(d) add(N ) = κ, cov(N ) = add(M) = cof(M) = non(N ) = µ, cof(N ) = ν and c = λ.

Proof. The 3D-coherent systems we use in this proof are of the form t where

(1) γ = κ+1, δ = ν+1 and π = λ ·ν ·µ is a disjoint union of {Iξ = [lζ , lζ+1) : ζ < ν ·µ}
as in Theorem 5.4.

(2) C = {lζ : ζ < ν · µ} and S = π r C.
(3) For items (a) and (b) 〈Pα,β,0 : α ≤ κ, β ≤ ν〉 comes from m∗(γ, δ); for (c) and (d),

it comes from mC(κ, ν).
(4) A function ∆ = 〈∆0,∆1〉 : C → κ × ν such that the following properties are

satisfied:
(i) For all ξ < π, both ∆0(ξ) and ∆1(ξ) are successor ordinals and

(ii) ∆−1(α + 1, β + 1) ∩ {lζ : ζ < ν · µ} is cofinal in π.

(a) Put Sξ = E for all ξ ∈ S. For ξ ∈ C, Q̇ξ = LOCV∆(ξ),ξ .
We just prove add(N ) = cov(N ) = b = κ and d = non(N ) = cof(N ) = ν. If X

is a set of reals in Vκ,ν,π of size < κ, there is a (α, β, ζ) ∈ κ × ν × (ν · µ) such that
X ∈ Vα,β,lζ . Since ∆−1(α + 1, β + 1) ∩ {lζ : ζ < µ} is cofinal in ν · µ, there exists a

ζ ′ ∈ [ζ, λ) such that ∆(lζ′) = (α+ 1, β + 1) and then the slalom ϕ̇ζ′ added by Q̇α,β,lζ′

localizes all the reals in X. Note that {ϕ̇ζ : ζ < ν · µ} witnesses cof(N ) ≤ ν.
The inequalities b, cov(N ) ≤ κ and ν ≤ d, non(N ) follow directly from Theorem

5.2.
(b) Put Sξ = B for all ξ ∈ S and, for ξ ∈ C, Q̇ξ is as in (a).

(c) Put Sξ = D for all ξ ∈ S and, for ξ ∈ C, Q̇ξ is as in (a)

(d) For ξ ∈ S, if it is odd then Sξ = D, but when it is even then Sξ+1 = B. For ξ ∈ C, Q̇ξ

is defined as in (a).

�

We present some other models of constellations of the Cichoń diagram known from
[Mej13a], where additionally b = a holds.

Theorem 5.8. (a) If λ<θ1 = λ then there is a ccc poset forcing add(N ) = θ0, cov(N ) =
θ1, b = a = non(M) = κ, cov(M) = d = ν and non(N ) = c = λ.

(b) If λ<θ0 = λ then there is a ccc poset forcing add(N ) = θ0, cov(N ) = b = a =
non(M) = κ, cov(M) = d = non(N ) = ν and cof(N ) = c = λ.

(c) If λℵ0 = λ then there is a ccc poset forcing add(N ) = non(M) = a = κ, cov(M) =
cof(N ) = ν and c = λ.

Proof. For (a) use the construction in [Mej13a, Thm. 20], for (b) see [Mej13a, Thm.
16] and for (c) see [Mej13a, Thm. 11] but, for the 2D-coherent systems, obtain the first
column by forcing with Hκ instead. �

Remark 5.9. In Theorems 5.1, 5.4, 5.6 and 5.8(a) and (b) we can slightly modify the
constructions to force, additionally, MA<θ0 . For instance, in (6) of the proof of Theorem

5.4 we use, instead of 〈LOCζα,β,η〉η<λ, an enumeration 〈Q̇ζ
α,β,η〉η<λ of all the (nice) Pα,β,lζ -

names for all the ccc posets with domain an ordinal < θ0. In (6)(ii), Q̇ξ = Q̇
ζ
g(ε) whenever
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Pκ,ν,ξ forces Q̇ζ
g(ε) to be ccc, otherwise, Q̇ξ is just a name for the trivial poset. In a similar

way, we can additionally force MA<κ in Theorems 5.7 and 5.8(c).

6. ∆1
3 well-orders of the reals

There has been significant interest towards the study of possible constellations among
the classical cardinal characteristics of the continuum in the presence of projective, in fact
∆1

3-definable well-order of the reals (see [FF10, FFZ11, FFK14]). Answering a question
of [FFK14], we show that each of the constellations described in the previous section
is consistent with the existence of such projective well-order. Since the proofs are very
similar, we will only outline the proof of the following theorem.

Theorem 6.1. In L, let θ0 < θ1 < κ < µ < ν < λ be uncountable regular cardinals
and, in addition, λ < ℵω. Then there is a cardinals preserving forcing extension of the
constructible universe, L, in which there is a ∆1

3 well-order of the reals and in addition
add(N ) = θ0, cov(N ) = θ1, b = a = κ, non(M) = cov(M) = µ, d = ν and non(N ) =
c = λ.

In order to prove the above theorem, we will use the method of almost disjoint coding
as it is developed in [FFZ11]. The forcing construction can be viewed as a two stage
construction: a preliminary stage in which we prepare the universe, followed by a coding
stage in which we will not only add the ∆1

3-definition, but also provide the desired con-
stellations of the cardinal characteristics. We will work over the constructible universe L.
The preparatory stage of the construction is very similar to the preparatory stage of the
construction in [FFZ11], with the sole difference that now the size of the continuum in the
desired generic extension is λ (rather than ω3 as in the construction from [FFZ11]). The
prepared universe (a generic extension of L) will be denoted V . The coding stage will be
a 3D-iterated forcing construction which is a modification of the construction providing
Theorem 5.4, modification which allows to adjoin the desired ∆1

3-definition.
Now we turn to the preliminary stage of the construction. As most of the ideas (and

proofs) are identical to the ones in [FFZ11] we will only give a brief outline. For con-
venience we fix natural numbers n1 < · · · < n6 such that θ0 = ωn1 , θ1 = ωn2 , κ = ωn3 ,
µ = ωn4 , ν = ωn5 , λ = ωn6 . Let π = λ · ν · µ and let f : π → λ be a canonical bijection.
For each α < π, let Wα be the L-least subset of ωn6−1 coding f(α). In the following,
we will refer to Wα as the L-least code of α modulo f , or simply the L-least code of α.
We will say that a transitive ZF− model M is suitable if ωMn6

exists and ωMn6
= ωL

M
n6

(here ZF− denotes ZF− minus the power set axiom). We start with a nicely definable
sequence S̄ = 〈Sα : α < π〉 of stationary, co-stationary subsets of ωn6−1. Using bounded
approximations, for each α < π, we add a closed unbounded subset Cα of ωn6−1 which is
disjoint from Sα. Our intended ∆1

3-definition will depend on the existence of reals which
code this stationary kill of some of the Sα’s. Following the notation of [FFZ11], for a set
of ordinals X, Even(X) denotes the subset of all even ordinals in X. Now, reproducing
the ideas of [FFZ11], we can find subsets Zα ⊆ ωn6−1 such that

(∗)α: If β < ωn6−1 and M is a suitable model such that ωn6−2 ⊆ M, ωMn6−1 = β,
Zα ∩ β ∈ M, then M � ψ(ωn6−1, Zα ∩ β), where ψ(ωn6−1, X) is the formula “Even(X)

codes a triple (C̄, W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo f of ordinals ᾱ, ¯̄α < π
respectively such that ¯̄α is the largest limit ordinal not exceeding ᾱ, and C̄ is a club in
ωn6−1 disjoint from Sᾱ”.



COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS 23

For each m = 1, · · · , n6−2, let S̄m = 〈Smα : α < ωn6−m〉 be a nicely definable in Ln6−m−1

sequence of almost disjoint subsets of ωn6−m−1. Successively using almost disjoint coding
with respect to the sequences S̄m (see [FFZ11]), we can code the sets Zα into subsets Xα

of ω1 with the following property.

(∗∗)α: If ω1 < β ≤ ω2 and M is a suitable model with ωM2 = β, {Xα} ∪ ω1 ⊆ M, then
M � ϕ(ωn6−1, Xα), where ϕ(ωn6−1, X) is the formula: “Using the sequences {S̄m}m=n6−1

m=1 ,
the set X almost disjointly codes a subset Z of ωn6−1 whose even part codes the triple

(C̄, W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo f of ordinals ᾱ, ¯̄α < π, respectively,
such that ¯̄α is the largest limit ordinal not exceeding ᾱ, and C̄ is a club in ωn6−1 disjoint
from Sᾱ”.

Finally, using the posets L(Xα+m, Xα) for α ∈ Lim(π) (for a set of ordinals C, Lim(C)
denotes the set of limit ordinals in C), m ∈ ω from [FFZ11, Definition 1], we can add the
characteristics functions of subsets Yα+m of ω1 such that:

(∗∗∗): If β < ω1,M is suitable with ωM1 = β, Yα+m∩β ∈M, thenM � ϕ(ωn6−1, Xα+m∩
β) ∧ ϕ(ωn6−1, Xα ∩ β).

With this, the preliminary stage of the construction is complete. We denote by P0 the
finite iteration of forcing notions described above. Note that the poset P0 is ω-distributive
(the proof is almost identical to [FFZ11, Lemma 1]) so in particular P0 does not add new
reals. Let V = LP0 and let B̄ = 〈Bζ,m : ζ < ω1,m ∈ ω〉 ∈ L be a nicely definable sequence
of almost disjoint subsets of ω. As in the proof of Theorem 5.4 partition π into intervals
Iζ = [lζ , lζ+1) for ζ < ν · µ, where lζ = λ · ζ, and let

C0 = {2 · ζ ′ + 1 : ζ ′ < ν · µ}.
Furthermore let C∗0 =

⋃{[lζ , lζ+1) : ζ ∈ C0}, let S∗ = {lζ : ζ ∈ ν · µ r C0} and let
C∗1 = π r (S∗ ∪ Lim(C∗0)).

Modifying the 3D-coherent system from the proof of Theorem 5.4, we will define in
V = LP0 a standard 3D-coherent system t∗ where γt

∗
= κ + 1, δt

∗
= ν + 1, πt∗ = π,

St∗ := S∗, Ct∗ = C∗ = πrS∗. The sole difference between t of Theorem 5.4 and t∗ is the
ξ-th step of the FS iterations conforming t∗ for ξ ∈ Lim(C∗0). For notational simplicity,
P∗α,β,ξ = Pt∗

α,β,ξ, Q̇
∗
α,β,ξ = Q̇t∗

α,β,ξ, V
∗
α,β,ξ = V t∗

α,β,ξ, ∆∗ = ∆t∗ : π → κ × ν and so on, while

without the asterisk we refer to the components of t, that is, Pα,β,ξ = Pt
α,β,ξ and so on.

The starting point at ξ = 0 for t∗ is the same as for t, that is, P∗α,β,0 = Pα,β,0 for all

α ≤ κ and β ≤ ν. The tasks achieved by the posets Q̇α,β,ξ for ξ ∈ S (in the notation

of the proof of Theorem 5.4) can be achieved by the corresponding posets Q̇∗α,β,ξ in our

modified construction for ξ ∈ S∗, and similarly the tasks achieved by the posets Q̇α,β,ξ for

ξ ∈ C can be accomplished by the posets Q̇∗α,β,ξ for ξ ∈ C∗1 . Thus, in order to complete
the proof of Theorem 6.1, we are left with describing the ξ-th step for ξ ∈ Lim(C∗0) of
this modified construction. This modified 3D-construction will have the property that for
α∗ ≤ κ, β∗ ≤ ν and ξ∗ ≤ π, if Gα∗,β∗,ξ∗ is a P0 ∗ P∗α∗,β∗,ξ∗-generic filter over L then

L[Gα∗,β∗,ξ∗ ] ∩ R = L[{ȧα[Gα,0,0] : α < α∗} ∪ {ċβ[G0,β,0] : β < β∗}
∪ {u̇α∗,β∗,ξ[Gα∗,β∗,ξ] : ξ < ξ∗}] ∩ R,

where {ȧα : α < κ} is (the set of names of) the mad family added by Hκ, ċβ is the Cohen
real added by Pα,β+1,0 (which does not depend on α) and u̇α,β,ξ is a P0 ∗ P∗α,β,ξ+1-name
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for the generic real added by Q̇α,β,ξ. Note that, for ξ ∈ S∗, P0 ∗P∗α,β,ξ forces u̇α,β,ξ = u̇0,0,ξ

and, for ξ ∈ C∗, if α ≥ ∆∗0(ξ) and β ≥ ∆∗1(ξ) then P0 ∗ P∗α,β,ξ forces u̇α,β,ξ = u̇∆∗(ξ),ξ,
otherwise, u̇α,β,ξ is just forced to be ∅. Thus, we only need to look at u̇ξ := u̇0,0,ξ when
ξ ∈ S∗ and to u̇ξ := u̇∆∗(ξ),ξ when ξ ∈ C∗.

By recursion on α∗ ≤ κ, P0 ∗Pα∗,0,0 forces that there is a well-order of the reals <̇α∗,0,0

which depends only on {ȧα : α < α∗} such that it has <̇α,0,0 as an initial segment for
every α < α∗; by recursion on β∗ ≤ ν, for every α∗ ≤ κ, P0 ∗ Pα∗,β∗,0 forces that there is
a well-order of the reals <̇α∗,β∗,0 which depends only on {ȧα : α < α∗} ∪ {ċβ : β < β∗}
such that it has <̇α∗,β,0 as an initial segment for every β < β∗ and it contains <̇α,β∗,0

(not necessarily as an initial segment) for every α < α∗; and by recursion on ξ∗ ≤ π,
for all α∗ ≤ κ and β∗ ≤ ν, P0 ∗ Pα∗,β∗,ξ∗ forces that there is a well-order of the reals
<̇α∗,β∗,ξ∗ depending only on {ȧα : α < α∗} ∪ {ċβ : β < β∗} ∪ {u̇α∗,β∗,ξ : ξ < ξ∗} so that
it has <̇α∗,β∗,ξ as an initial segment for all ξ < ξ∗ and contains <̇α,β,ξ∗ (not necessarily as
an initial segment) for every α ≤ α∗ and β ≤ β∗. We denote <̇ξ∗ = <̇κ,ν,ξ∗ . Therefore,
P0 ∗Pκ,ν,ξ∗ forces that <̇ξ is an initial segment of <̇ξ∗ for all ξ < ξ∗ and P0 ∗Pκ,ν,π forces

<̇π =
⋃
{<̇ξ : ξ < π}

which will be the name of the desired well-order.
Now, we work in V . For each ξ ∈ Lim(π), we will define a Pκ,ν,ξ name Ȧξ for a

subset of [ξ, ξ + ω). Similarly to the construction in [FFZ11], for each ε ∈ [ωn6 , ωn6+1),
fix (in L) a bijection iε : {〈ξ0, ξ1〉 : ξ0 < ξ1 < ε} → Lim(ωn6). For subsets x, y of ω, let
x∗y = {2n : n ∈ x}∪{2n+ 1 : n ∈ y} and let ∆(x) = {2n+ 2 : n ∈ x}∪{2n+ 1 : n /∈ x}.

Let ξ ∈ Lim(C∗0). Then ξ = lζ + η for some ζ ∈ C0 and η < λ. Suppose P∗α,β,ξ has been

defined for all α ≤ κ, β ≤ ν. Consider the P∗κ,ν,lζ -names ξ̇0, ξ̇1 of ordinals so it is forced

that 〈ξ̇0, ξ̇1〉 = i−1

o.t.(<̇lζ )
(η). Furthermore, let Ȧξ be the P∗κ,ν,lζ -name of ξ+(ωr (xζ

ξ̇0
∗xζ

ξ̇1
)),

where xζρ is the ρ-th real in L[Gκ,ν,lζ ]∩ [ω]ℵ0 according to the well-order <̇lζ . By Corollary

3.9, there are α < κ and β < ν such that ξ̇0, ξ̇1 and Ȧξ are P∗α,β,lζ -names. So put

∆∗(ξ) = (α + 1, β + 1) and

Q∗ξ :=

{
〈s0, s1〉 ∈ [ω]<ℵ0 ×

[ ⋃
m∈∆(xζ

ξ̇0
∗xζ
ξ̇1

)

Yα+m × {m}
]<ℵ0

}

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊆ t1, s0 is an initial segment of t0 and (t0 r s0)∩
Bζ,m = ∅ for all 〈ζ,m〉 ∈ s1.

This completes the construction of the modified standard 3D-coherent system. In ad-
dition, for every ξ ∈ Lim(π)\Lim(C∗0) define Ȧξ to be the canonical P∗0,0,ξ-name for the
empty set. Since all posets used to control the cardinal characteristics in Theorem 5.4
are σ-linked, one can reproduce the proof of [FFZ11, Lemma 3] to show that if G is
P0 ∗ P∗κ,ν,π-generic over L, then for each η ∈ ⋃

ξ∈Lim(π)
Ȧξ[G] there is no real coding a

stationary kill of Sη. The proofs of [FFZ11, Lemmas 4 and 5] can be easily modified to
show that if G is P0 ∗P∗κ,ν,π-generic over L and x, y are reals in L[G] then x<̇π[G]y if and
only if there is a real r such that for every countable suitable modelM such that r ∈M,
there is ¯̄α < πM such that for all m ∈ ∆(x ∗ y),

(L[r])M � (Sᾱ+m is not stationary).

This completes the proof of Theorem 6.1.



COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS 25

7. Discussion and questions

Though the 3D-coherent systems we constructed yield models of several values in Ci-
choń’s diagram, it is still restricted (as in [Mej13a]) to constellations where the right side
of the diagram assumes at most 3 different values. So far, the only known model of more
than 3 values on the right (actually 5) is constructed in [FGKS] with a proper ωω-bounding
forcing by a large product of creatures (though it is restricted to cov(N ) = d = ℵ1).

As discussed before Corollary 3.9, in all our constructions we only add two types of
generic reals: full generic reals and restricted generic reals. Different type of generic reals
could be considered (like a real which is restricted generic in some plane but full generic
in the perpendicular plane), but the known attempts so far destroy the complete embed-
dability of the posets in the system and, therefore, the construction collapses. Success in
this problem of using a different type of generic reals in 3D-coherent systems would lead
to models where more than 3 different values can be obtained in the right side of Cichoń’s
diagram. For instance,

Question 7.1 ([Mej13a, Sect. 7]). Is it consistent with ZFC that cov(M) < d <
non(N ) < cof(N )?

Furthermore, success in including further types of generic reals will give a key to prove

Question 7.2 ([BF11, §6]). Is it consistent with ZFC (even assuming large cardinals)
that

(1) b < s < a?
(2) b < a < s?

It is even more difficult to construct a 3D-system for the latter problem. For instance,
to increase s, we must include ccc posets that are not definable (i.e., not Suslin) to add
non-restricted unsplitting reals, like a full Mathias-Prikry generic, which creates many
obstacles even to understanding how to define the ultrafilters at certain stages of the
system of iterations. On the other hand, the consistency of s = ℵ1 < b = d < a was
obtained by Shelah [She04] with template iterations, a result improved to ℵ1 < s < b =
d < a by the first and third authors [FM].

Concerning our constructions, recall that in Theorems 5.6(b) and 5.7(c),(d) we cannot
decide a with the methods of Section 4 because of the full Hechler generics we add. In
simpler cases, even though any (non-trivial) FS iteration of ccc posets with length of
cofinality ω1 would force a = ℵ1 (see Remark 4.16), it is not known, assuming c = ℵ3,
what an iteration of length ω2 of D would force about a. Nevertheless, some of the models
we constructed would do the job without adding full Hechler generics, if we expect to force
a = b, e.g., Theorem 5.4 with κ = µ = ν. Possibly, one reason that d < a is forced in
Shelah’s template iteration of Hechler forcing could be that the previous ω2 length FS
iteration of Hechler forcing cannot decide a.
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