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Abstract. A family A ⊆ [ω]ω such that for all finite {Xi}i∈n ⊆ A
and A ∈ A \ {Xi}i∈n, the set A \

⋃
i∈n Xi is infinite, is said to be ideal

independent.
We prove that an ideal independent family A is maximal if and

only if A is J -completely separable and maximal J -almost disjoint
for a particular ideal J on ω. We show that u ≤ smm, where smm

is the minimal cardinality of maximal ideal independent family. This,
in particular, establishes the independence of smm and i. Given an
arbitrary set C of uncountable cardinals, we show how to simultaneously
adjoin via forcing maximal ideal independent families of cardinality λ
for each λ ∈ C, thus establishing the consistency of C ⊆ spec(smm).
Assuming CH, we construct a maximal ideal independent family, which
remains maximal after forcing with any proper, ωω-bounding, p-point
preserving forcing notion and evaluate smm in several well studied forcing
extensions.

We also study natural filters associated with ideal independence and
introduce an analog of Mrówka spaces for ideal independent families.

1. Introduction

Given a family A ⊆ [ω]ω, the ideal generated by A is the collection of
all X ⊆ ω so that X ⊆∗ ⋃

i<nAi for some {Ai}i∈n ⊆ A where ⊆∗ means
inclusion mod finite. A family A is ideal independent if no A ∈ A is in
the ideal generated by A \ {A}. Almost disjoint families and independent
families are both examples of ideal independent families. An easy application
of Zorn’s lemma shows that there are maximal ideal independent families,
however it is not always the case that a maximal almost disjoint or a maximal
independent family is maximal ideal independent. In this paper to each
ideal independent family A we correspond an ideal J (A) (see Definition 3.1)
which allows us to characterize maximal ideal independent families as follows
(see Theorem 3.3):
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Theorem. An ideal independent family A is maximal if and only if A is
maximal J (A)- almost disjoint and J (A)-completely separable.

By smm we denote the least cardinality of a maximal ideal independent
family. An earlier investigation of smm can be found [5], where it is shown
that max{d, r} ≤ smm and that each of the following inequalities u < smm,
smm < i, smm < c is consistent. Here d, u, r, i denote the dominating
number, the ultrafilter number, the reaping and independence numbers,
respectively. We refer the reader to [1] for definitions and basic properties
of the combinatorial cardinal characteristics, which are not stated here.
Strengthening and complementing the above results, in Section 2, we establish
the following ZFC inequality, which also answers Question 17 of [5], see
Theorem 3.7:

Theorem. u ≤ smm.

Consequently, we obtain the independence of smm and i, as the consistency
of smm < i is shown in [5, Theorem 16], while the consistency of i < u is
established in Shelah’s [17] and hence by the above theorem, i < smm holds
in the latter model.

Corollary. smm and i are independent.

A key role in our investigations is taken by specific filters, which are
naturally associated to a given ideal independent family. On one side, these
are filters to which we refer as complemented filters, see Definition 3.1 and
on the other side, filters resembling the notion of a diagonalization filter for
an independent family, see for example [8, Definition 1]. In difference with
earlier instances of diagonalization reals, associated to say almost disjoint
families, towers, or cofinitary groups, the existence of a diagonalization real
for a given ideal independent family, employs a Cohen real (see Lemma 4.1).
Adjoining diagonalization reals for ideal independent families cofinally along
an appropriate finite support iteration, as well as building on and modifying
earlier forcing constructions used to control for example the spectrum of
independence (see in particular [8, 9]) we establish the following (see Theorem
4.4):

Theorem. (GCH) Let R be a set of regular uncountable cardinals. Then,
there is a ccc generic extension in which for every λ ∈ R there is a maximal
ideal independent family of cardinality λ.

Moreover, we look at the preservation of small witnesses to smm. The
preservation of the maximality of extremal sets of reals, like mad families,
maximal eventually different families of reals, or maximal independent families,
under forcing iterations is usually a non-trivial task and often involves the
construction of a combinatorial object which is maximal in a strong sense,
examples given by tight almost disjoint and selective independent families.
Partially inspired by the notion of a U-supported maximal independent
family in the higher Baire spaces given in [7], in Definition 5.1 we introduce
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the notion of an U-encompassing ideal independent family and establish the
following powerful preservation result (see Theorems 5.2 and 5.3).

Theorem. (CH) There is a maximal ideal independent family A which
remains maximal, and so a witness to smm = ℵ1, in any generic extension
obtained by a proper, ωω-bounding, p-points preserving forcing notion.

The above theorem applies to a large class of partial orders and implies
that in many well-studied forcing extensions, smm = max{d, u}.

Finally, to each ideal independent family A we correspond a topological
space ψ(A) which is a generalized version of the well-known Mrówka space.
Mrówka spaces play important role in set-theoretic topology (see [12] and
references therein). In this paper we characterize ideal independent families
whose corresponding spaces are locally compact or pseudocompact (see
Propositions 6.6 and 6.7). Suprisingly this corresponds to the case of almost
disjoint families, thus suggesting that Mrówka spaces of non-almost disjoint
families behave very differently to the classical theory. Specifically we show
the following.

Theorem. For a maximal ideal independent family A the following are
equivalent.

(1) ψ(A) is pseudocompact.
(2) A is MAD family.
(3) A is a completely separable MAD family.

We conclude the paper with a brief discussion of remaining open questions.

2. Preliminaries

Recall that given f, g ∈ ω we write f ≤∗ g (f is eventually dominated by
g), provided there is n ∈ ω such that for all m ≥ n, f(m) ≤ g(m). The
cardinal b, the bounding number is the least size of a family A ⊆ ωω so that
no single f ∈ ωω eventually dominates every g ∈ A. Dually, the dominating
number, d, is the least size of a dominating family, that is a family D ⊆ ωω

so that every f ∈ ωω is eventually dominated by some g ∈ D. We denote
by [ω]ω the Ramsey space, that is the Polish space of infinite subsets of ω.
Often it is convenient to quotient this space by the ideal Fin consisting of
finite subsets of ω. For instance, if A,B in [ω]ω then we write A ⊆∗ B, read
“A is almost contained in B” if A \B is finite. Similarly we say that A and
B are almost equal, denoted A =∗ B, if their symmetric difference is finite,
and we say that A and B are almost disjoint, denoted A ∩ B =∗ ∅, if their
intersection is finite.

Given a family A of subsets of ω by A+ we denote the collection of all
subsets of ω which are not in the ideal generated by A. For an ideal J on
ω which contains the ideal Fin and subsets A,B of ω we write A ⊆J B if
A \B ∈ J . A family A ⊆ J + is called J -almost disjoint if A1 ∩A2 ∈ J for
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any distinct A1, A2 ∈ A. Given a family B ⊆ [ω]ω \ J , let

B+J = [ω]ω \ {X ∈ [ω]ω : X ⊆J
⋃

Y, where Y ∈ [B]<ω}

and

B++J = {X ∈ [ω]ω : ∃{Bi : i ∈ ω} ∈ [B]ω such that X ∩Bi /∈ J ∀i ∈ ω}.

Elements of the set B+J are called positive with respect to the ideal J . If
J = Fin, then we write B+ (B++, resp.) instead of B+J (B++J , resp.).

Given a family A ⊆ [ω]ω we say that A has the finite intersection property
if any finite subfamily has infinite intersection. An infinite subset B ⊆ ω
is called a pseudo-intersection of a family A ⊆ [ω]ω if B ⊆∗ A for every
A ∈ A. The cardinal characteristic p is the least size of a family with the
finite intersection property with no pseudo-intersection. An ultrafilter is
said to be principal if it contains a singleton and non-principal otherwise.
Unless otherwise stated we will assume all ultrafilters to be non-principal.
If U is an ultrafilter then a base for U is a subset B ⊆ U so that every
element A ∈ U almost contains some B ∈ B. In this case, we say that B
generates U , sometimes denoted ⟨B⟩. The ultrafilter number u, is the least
size of a base of a non-principal ultrafilter. For an ultrafilter U we say that

(1) U is a p-point if every countable subfamily of U has a pseudo-
intersection in U .

(2) U is a q-point if every partition of ω into finite sets {In}n<ω there
is a U ∈ U so that |U ∩ In| = 1 for each n < ω.

(3) U is Ramsey, or, selective if it is a p-point and a q-point.
(4) U is a pc-point if any F ⊆ U , |F | < c has a pseudo-intersection in

U .

Finally, a family I ⊆ [ω]ω is said to be independent if whenever A,B are
finite, disjoint, non-empty subfamilies of I, the set

⋂
A \

⋃
B is infinite.

While this notion technically makes sense for finite families it is somewhat
degenerate in this case thus we will implicitly mean by an independent
family an infinite independent family. The least size of a maximal (infinite)
independent family is denoted i.

3. Filters, Almost Disjointness and Ideal Independence

The following definition plays a central role in this section.

Definition 3.1. Let A be an ideal independent family and A ∈ A.

(1) By F(A, A) we denote the filter generated by the family

{A \
⋃

B : A /∈ B ∈ [A]<ω}.

(2) By J (A, A) we denote the ideal generated by the family

{A ∩B : B ∈ A \ {A}} ∪ Fin.

(3) By J (A) we denote the ideal generated by the family
⋃

A∈A J (A, A).
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We refer to the filters of the form F(A, A) as the complemented filters of
A, while for a fixed A ∈ A we say that F(A, A) is the complemented filter
(of A) corresponding to A. Observe that for any A ∈ A a subset B ⊆ A
belongs to the ideal J (A, A) if and only if A \B ∈ F(A, A).

Note that an ideal independent family A is maximal if and only if every
X ∈ [ω]ω is either in the ideal generated by A or belongs to at least one
of the filters F(A, A) (these two possibilities are not mutually exclusive).
The name “complemented” comes from this observation: under maximality
every element of the complement of the ideal generated by A is in some
complemented filter.

The proof of the following lemma is straightforward.

Lemma 3.2. For a family A ⊆ [ω]ω the following statements hold:

(1) if for some ideal J on ω the family A is J -almost disjoint, then A
is ideal independent;

(2) if the family A is ideal independent, then A is J (A)-almost disjoint.

Definition. A J -almost disjoint family A is called J -completely separable
if for any B ∈ A++J there exists A ∈ A such that A ⊆J B.

One can easily check that A+J = A++J for any maximal J -almost
disjoint familyA. In case J = Fin, we refer to J -completely separable family
simply as completely separable. The existence of a completely separable
maximal almost disjoint family in ZFC is still an open problem (see [13] for
the history thereof). Completely separable maximal almost disjoint families
are intensively studied in the literature (see the survey [11] and references
therein). J -almost disjoint families were recently investigated in [16]. The
following theorem establishes a connection between J -completely separable
J -almost disjoint families and maximal ideal independent families.

Theorem 3.3. An ideal independent family A is maximal if and only if A
is maximal J (A)-almost disjoint and J (A)-completely separable.

Proof. Let A be a maximal ideal independent family. By Lemma 3.2, the
family A is J (A)-almost disjoint. To derive a contradiction assume that
there exists B ∈ J (A)+ \ A such that B ∩A ∈ J (A) for any A ∈ A. Then
A∪{B} is ideal independent, which contradicts the maximality of A. Thus,
the family A is maximal J (A)-almost disjoint. To show that the family A
is J (A)-completely separable fix any C ∈ A++J (A) . Note that C ∈ A+ \ A.
By the maximality of A there exist A ∈ A and {Ai : i ∈ n} ∈ [A \ {A}]<ω

such that A ⊆∗ ⋃
i∈nAi ∪ C. Hence

A = A ∩A ⊆∗ A ∩ (
⋃
i∈n

Ai ∪ C) ⊆
( ⋃
i∈n

(A ∩Ai)
)
∪ C.

Then A ⊆J (A) C, as
⋃

i∈n(A ∩ Ai) ∈ J (A, A) ⊆ J (A). It follows that the
family A is J (A)-completely separable.

Assume that the family A is maximal J (A)-almost disjoint and J (A)-
completely separable. By Lemma 3.2, the family A is ideal independent.
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Fix any C ∈ A+. Let us show that C ∈ A+J (A) . Assuming the contrary we
can find {Ai : i ∈ n} ∈ [A]<ω and D ∈ J (A) such that C ⊆

⋃
i∈nAi ∪D.

Then there exists {Di : i ∈ m} ∈ [A]<ω such that D ⊆∗ ⋃
i∈mDi. But

then C ⊆∗ ⋃
i∈nAi ∪ (

⋃
i∈mDi), witnessing that C /∈ A+. The obtained

contradiction implies that C ∈ A+J (A) . Taking into account that A+J (A) =
A++J (A) , the J (A)-complete separability implies the existence of A ∈ A
such that A ⊆J (A) C. By the definition of J (A), the set A \ C belongs to
J (A) and thus it can be covered mod finite by the union of finitely many
elements E1, . . . , Em ∈ A \ {A}, witnessing that C ∈ F(A, A). Hence the
family A is maximal ideal independent. □

The following corollary of Theorem 3.3 describes almost disjoint families
which are maximal ideal independent.

Corollary 3.4. An almost disjoint family A is maximal ideal independent
if and only if A is a completely separable maximal almost disjoint family.

Note that, independent families are never maximal ideal independent.
Indeed, for every element A of an independent familyA the familyA∪{ω\A}
is ideal independent.

For a filter F let χ(F) = min{|B| : B is a base of F}.

Theorem 3.5. Let A = {Aα : α ∈ κ} be a (maximal) ideal independent
family and for any α ∈ κ, Gα be a filter on ω such that F(A, Aα) ⊆ Gα

and χ(Gα) ≤ κ. Then there exists a (maximal) ideal independent family
A′ = {A′

α : α ∈ κ} such that F(A′, A′
α) = Gα for all α ∈ κ.

Proof. Fix an ideal independent family A = {Aα : α ∈ κ} and filters Gα,
α ∈ κ which satisfy the conditions above. For each α ∈ κ let Cα be a base
of Gα of cardinality ≤ κ. Moreover assume that for every α ∈ κ and C ∈ Cα
we have that C ⊆ Aα. The latter assumption implies that Cα ∩ Cβ = ∅
for every α ̸= β. Enumerate the set D =

⋃
α∈κ Cα as {Dα : α ∈ κ},

additionally assuming that Dα /∈ Cα for every α ∈ κ. For each α ∈ κ let
A′

α = Aα ∪ (Aσ(α) \Dα), where Dα ∈ Cσ(α). Since for every α ̸= β the set
Cα ∩ Cβ is empty, the ordinal σ(α) is unique and, thus, well-defined. Let us
show that the family A′ = {A′

α : α ∈ κ} is ideal independent. Fix any α ∈ κ
and {βi : i ∈ n} ∈ [κ \ {α}]<ω. We need to show that A′

α \
⋃

i∈nA
′
βi

̸=∗ ∅.
There are two cases:

(1) α /∈ {σ(βi) : i ∈ n};
(2) α ∈ {σ(βi) : i ∈ n}.
Case 1) Observe that Aα ⊆ A′

α and⋃
i∈n

A′
βi

=
⋃
i∈n

(Aβi
∪ (Aσ(βi) \Dβi

)) ⊆
⋃
i∈n

(Aβi
∪Aσ(βi)).

Therefore, A′
α\
⋃

i∈nA
′
βi

⊆ Aα\
⋃

i∈n(Aβi
∪Aσ(βi)) ̸=∗ ∅, as α does not belong

to {βi : i ∈ n} ∪ {σ(βi) : i ∈ n} and the family A is ideal independent.
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Case 2) Let Γ = {i ∈ n : α = σ(βi)}. Since Aα ∩
⋂

i∈ΓDβi
∈ Gα we

obtain:

A′
α \
⋃
i∈n

(Aβi
∪ (Aσ(βi) \Dβi

)) ⊇

(
Aα \ (

⋃
i∈n

Aβi
)
)
∩ (Aα ∩

⋂
i∈Γ

Dβi
) ∩ (Aα \ (

⋃
i/∈Γ

Aσ(βi))) ∈ Gα.

HenceA′
α\
⋃

i∈nA
′
βi

̸=∗ ∅, witnessing that the familyA′
α is ideal independent.

Fix any α ∈ κ and C ∈ Cα. There is ξ ∈ κ \ {α} such that C = Dξ ⊆ Aξ.
Observe that σ(ξ) = α. Then

A′
α \ (A′

σ(α) ∪A
′
ξ) ⊆ (Aα ∪ (Aσ(α) \Dα)) \

(
Aσ(α) ∪ (Aσ(ξ) \Dξ)

)
⊆ Aα \ (Aα \Dξ) = C,

witnessing that Gα ⊆ F(A′, A′
α). To show the converse inclusion fix any

F ∈ F(A′, A′
α). Then there exists {αi : i ∈ n} ∈ [κ \ {α}]<ω such that

A′
α \
⋃
i∈n

A′
αi

=
(
Aα ∪ (Aσ(α) \Dα)

)
\
⋃
i∈n

(
Aαi ∪ (Aσ(αi) \Dαi)

)
⊆∗ F.

It is straightforward to check that if α is not in {σ(αi) : i ∈ n}, then

A′
α \
⋃
i∈n

A′
αi

∈ F(A, Aα) ⊆ Gα,

implying that F ∈ Gα. Assume that the set Γ = {i ∈ n : σ(αi) = α} is not
empty. Then

F ⊇∗ A′
α \
⋃
i∈n

A′
αi

⊇
(
Aα \

⋃
i∈n

Aαi

)
∩ (Aα ∩

⋂
i∈Γ

Dαi)∩ (Aα \
⋃
i/∈Γ

Aσ(αi)

)
∈ Gα.

Hence Gα = F(A′, B′
α) for every α ∈ κ.

Assume the ideal independent family A is maximal and fix any C ∈ A′+.
It is easy to see that A+ = A′+. By maximality of A there is α ∈ κ such
that C ∈ F(A, Aα) ⊆ Gα = F(A′, A′

α), witnessing that the family A′ is
maximal as well. □

In particular we obtain:

Corollary 3.6. There exists a maximal ideal independent family A such
that F(A, A) is an ultrafilter for all A ∈ A.

Proof. Let D be an almost disjoint family of size c. Enlarge it to a maximal
ideal independent family A. For any A ∈ A fix any ultrafilter GA which
contains the filter F(A, A). Theorem 3.5 implies that there exists a maximal
ideal independent family A′ such that for any A′ ∈ A′ the filter F(A′, A′)
coincides with the ultrafilter GA. □

We want to point out, that under the assumption p = c one can obtain
in addition the existence of a maximal ideal independent family A with the
property that all complemented filters of A are pc-points.
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The relation between ideal independent families and ultrafilters can be
formalized by the following ZFC theorem.

Theorem 3.7. u ≤ smm.

Proof. Assume otherwise smm < u and letA be a maximal ideal independent
family of minimal cardinality. Maximality implies that there is a countable
subfamily {An}n∈ω of A whose union is almost equal to ω. Define B0 = A0

and for n > 0, Bn = An \
⋃

i<nAi. For each n ∈ ω, let Fn be the filter
F(A, An) ↾ Bn. Since Fn is not an ultrafilter (by assumption on the size of
u), for any s ∈ 2n there is Ds ∈ F+

n \ Fn such that for different s, r ∈ 2n,
Dr ∩Ds = ∅. Now, for each f ∈ 2ω, define Df =

⋃
n∈ωDf↾n.

Claim. For each f ∈ 2ω and each F ∈ [A]<ω, Df ̸⊆
⋃
F .

Proof. Let F ∈ [A]<ω and let n ∈ ω be such that An /∈ F . We can assume
that {Ai : i < n} ⊆ F . Since Df↾n is Fn-positive, it can not be covered by⋃
F and so Df can not be covered by

⋃
F either. □

By maximality of A, for any f ∈ 2ω, there are

Af ∈ A and Ff ∈ [A \ {Af}]<ω

such that Af \
⋃
Ff ⊆∗ Df . Note that for no n ∈ ω we have An = Af , as

otherwise, for some n ∈ ω we would have An \ Ff ⊆∗ Df , which implies

Bn \
⋃

Ff = An \

(⋃
Ff ∪

⋃
i<n

Ai

)
⊆∗ Df↾n,

contradicting the choice of the set Df↾n. Since smm < c, there are different
f, g ∈ 2ω such that Af = Ag and Ff = Fg. By construction, we have

Af \ Ff ⊆∗ Df ∩Dg ⊆
⋃
i≤n0

Bi,

where n0 ∈ ω is the maximal natural number such that f ↾ n0 = g ↾ n0.
But

⋃
i≤n0

Bi =
⋃

i≤n0
Ai, which means that Af \

⋃
Ff ⊆∗ ⋃

i≤n0
An0 , and

so Af ⊆∗ ⋃Ff ∪
⋃

i≤n0
Ai, a contradiction. □

Examining the proof of Theorem 3.7 one observes that in fact we only
needed smm < c alongside the existence of countably infinitely many elements
An ∈ A whose associated complemented filters are not ultrafilters to obtain
the contradiction. It follows that the same proof can be used to derive the
following proposition which complements Corollary 3.6.

Proposition 3.8. If A is a maximal ideal independent family of size < c,
then there are at most finitely many A ∈ A for which the corresponding
complemented filter is not an ultrafilter.

Note, this is not necessarily the case for maximal ideal independent families
with cardinality c, as any completely separable maximal almost disjoint
family A is maximal ideal independent (see Corollary 3.4), and for any
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A ∈ A the corresponding complemented filter F(A, A) is not an ultrafilter,
as it is generated by cofinite subsets of A.

4. Arbitrarily Large Maximal Ideal Independent Families

In this section we examine the question of how to adjoin via forcing a
maximal ideal independent family of desired cardinality and thus begin an
investigation of the spectrum of such families. The spectrum of maximal
ideal independent families, denoted spec(smm), is defined as the set of all
cardinalities of maximal ideal independent families. Throughout V denotes
the ground model and C denotes the poset for adding a single Cohen real.

Lemma 4.1. Let A be an ideal independent family. There is a ccc forcing
P(A) which adds a set z such that in V P(A):

(1) A ∪ {z} is an ideal independent family, and
(2) for each y ∈ V ∩([ω]ω\A) the family A ∪{z, y} is not ideal independent.

Proof. Add a Cohen real to V and consider a filter U which contains the
Cohen real and is maximal with respect to the following property:

(∗) For anyX ∈ U , any A ∈ A and finite F ⊆ A\{A}, the setX∩(A\
⋃
F)

is infinite.

Let M(U) be Mathias forcing relativized to U , let x be the generic real
added by M(U) over V C, let ẋ be M(U)-name for x (in V C) and let P(A) =

C ∗M(U̇).

Claim 4.2. In V P(A) the family A ∪ {ω \ x} is ideal independent.

Proof. Let F be a finite subset of A. First we prove that
⋃
F does not

almost contain ω \ x. Let A ∈ A\F , (s,B) ∈ M(U) and let n ∈ ω be
arbitrary. Since the Cohen real belongs to U , we can assume that B is
a subset of it, so A \ (B ∪

⋃
F) is infinite. Let k ∈ ω be big enough so

[max(s), k) ∩ (A \ (B ∪
⋃
F)) has more than n elements. Then (s ∪ {k}, B)

forces that (ω\ ẋ)\
⋃
F has more than n elements and since n was arbitrary,

it follows that (ω \ x) \
⋃
F is infinite. A genericity argument shows that

x ∩ (A \
⋃
F) is infinite for any A ∈ A and F ∈ [A \ {A}]<ω, which implies

that (A \
⋃
F) \ (ω \ x) is infinite. □

Claim 4.3. Let A ∈ ([ω]ω ∩ V )\A. Then in V P(A), A ∪ {ω \ x,A} is not
ideal independent.

Proof. Let A ∈ [ω]ω ∩V be an arbitrary set. If there are X ∈ U , B ∈ A and
F ∈ [A\{B}]<ω such that X∩(B\

⋃
F) ⊆∗ A, then x∩(B\

⋃
F) ⊆∗ A. But

x ∩ (B \
⋃
F) = (B \

⋃
F) \ (ω \ x), so A can not be added to A∪ {ω \ x},

as witnessed by B,F and ω \ x. On the other hand, if for all X ∈ U ,
B ∈ A and F ∈ [A \ {B}]<ω it happens that X ∩ (B \

⋃
F ) ⊈∗ A, then

(ω \ A) ∩X ∩ (B \
⋃
F ) is infinite. Thus, by maximality of U , ω \ A ∈ U ,

which implies that x ⊆∗ ω \A and so A ⊆∗ ω \ x. □
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This completes the proof of the Lemma. □

Theorem 4.4. Assume GCH. Let C be a set of uncountable cardinals and
let κ be a regular uncountable cardinal such that supC ≤ κ. Then there is a
ccc generic extension in which

C ⊆ spec(smm).

Proof. Add κ Cohen reals to the ground model V to obtain a model of c = κ
and for each λ ∈ C let Aλ be an ideal independent family of cardinality λ.
Let ⟨λβ : β < γ⟩ be an enumeration of C. Proceed with a finite support

iteration ⟨Pα, Q̇α : α < ω1⟩ where each iterand is a finite support iteration
of length, the cardinality of C, as follows:

Let P0 be the finite support iteration ⟨R0
β, Ṡ0j : j < γ⟩ defined by R0

0 =

P(Aλ0) and R0
j ⊩ Ṡ0j = P(Aλj

). After forcing with P0, for each j < γ,

define A0
j = Aλj

∪ {xj}, where xj is the real from Lemma 4.1 added by

the j-th-step of the iteration P0. Now, assume Pβ and {Aβ
j : j < γ} are

defined. The next step Q̇β is the finite support iteration ⟨Rβ
j , Ṡ

β
j : j < γ⟩

such that Rβ
0 = P(Aβ

0 ) and Rβ
j ⊩ Ṡβj = P(Aβ

j ). In V [Gβ+1], after forcing

with Pβ ∗ Q̇β, define Aβ+1
j = Aβ

j ∪ {xj}, where xj is the real from Lemma

4.1 added by the j-th-step of the iteration Q̇β. If β is a limit ordinal and
Pα, Aα

j are defined for all α < β and j < γ, let Pβ be the finite support

iteration ⟨Pα, Q̇α : α < β⟩ and for j < γ, Aβ
j =

⋃
α<β Iα

j .

Let Pω1 be the above iteration and for any j < γ, let A∗
j =

⋃
α<ω1

Aα
j .

Fix j. Let y ∈ V [Gω1 ]∩ [ω]ω\A∗
j . Then, there is α < ω1 such that y is added

at stage α of the iteration. Since y /∈ Aj , it is also the case that y /∈ Aα+1
j

and so by the diagonalization properties of the generic x added at by Sαj ,
Aj

α+1 ∪ {x, y} is not ideal independent. Since x ∈ Aj , Aj ∪ y is not ideal
independent. Thus A∗

j is maximal. The poset Pω1 preserves all cardinals
and we only added ω1 sets to the family Aj to obtain A∗

j , A∗
j has indeed

size λj . □

Remark 1. The cardinality of a maximal ideal independent family can have
countable cofinality, while the character of any ultrafilter is uncountable.
The first assertion follows from the previous theorem by taking κ > ℵω. The
second assertion can be found in [3].

5. Forcing Invariant Maximal Ideal Independent Families

In the following, we construct a maximal ideal independent family with
strong combinatorial properties, which guarantee that its maximality is
preserved by a large number of forcing notions.

Definition 5.1. Let U be an ultrafilter. A maximal ideal independent family
A is called U-encompassing if the following conditions hold:
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(1) U ∩ A = ∅, i.e. A is contained in the dual ideal of U .
(2) For every X ∈ U the set of A ∈ A so that X ∈ F(A, A) is co-

countable.

Theorem 5.2. Assume CH. For any p-point U there is a U-encompassing
maximal ideal independent family A such that for all A ∈ A, the corresponding
complemented filter F(A, A) is a p-point.

Proof. Let U be a p-point and ⟨Yα : α ∈ ω1⟩ be an ⊆∗-decreasing sequence
which generates the p-point U . Let ⟨Xα : α ∈ ω1⟩ be an enumeration of
[ω]ω. By recursion we construct a sequence ⟨Aα : α ∈ [ω, ω1)⟩ such that:

(1) For all α, Aα ⊆ U∗ is a countable ideal independent family.
(2) For all α, ifXα /∈ Aα+1 thenAα+1∪{Xα} is not an ideal independent

family.
(3) For all α, Aα+1 = Aα or Aα+1 = Aα ∪ {Aα

0 , A
α
1 } for some Aα

0 , A
α
1 ∈

U∗ and such that Aα
0 \Aα

1 , A
α
1 \Aα

0 ⊆ Yα.
(4) If α is a limit ordinal, then Aα =

⋃
β<αAβ.

(5) If Aα
i ∈ A is added in step α of the iteration, ⟨Pα,i

β : β ∈ [α+1, ω1)⟩
is the enumeration of all partitions of Aα

i , for i ∈ 2, and for all α
and β > α, there are a finite F ⊆ [β \ {α}]<ω and k ∈ ω, such that

for any i, j ∈ 2 the set Aα
i \
(
Aβ

j ∪
⋃
F
)
\ k:

• either is a partial selector of the partition Pα,i
β ,

• or is contained in one element of the partition Pα,i
β .

After the recursion we define A =
⋃

α<ω1
Aα. Condition (1) makes sure that

A is an ideal independent family and (2) makes sure that A is maximal.
Condition (3) makes sure that A is U-encompassing. Condition (5) makes
sure that the filters F(A, A) are selective ultrafilters for all A ∈ A. We
start by setting Aω = ⟨An : n ∈ ω⟩ be a partition of ω into infinitely many

infinite sets. For each n ∈ ω, let An
0 = An

1 = An and let ⟨Pn,i
β : β ∈ [ω, ω1)⟩

enumerate all partitions of An. Assume Aα has been constructed. We take
care of the set Xα and define Aα+1.

If Xα ∈ U , we just define Aα+1 = Aα, and condition (2) from Definition
5.1 will make sure that Xα can not be added to the family A. If Xα is in the
ideal generated by the family Aα we have nothing to do and we can define
Aα+1 = Aα again. Otherwise, Xα /∈ U and Xα is positive relative to the
ideal generated by Aα. Let eα : ω → Aα be an enumeration of the elements
of Aα, and define C0 = eα(0), Cn+1 = eα(n+ 1) \

⋃
i≤n eα(i).

If there are n ∈ ω and finite F ⊆ Aα \ {eα(0), . . . , eα(n)} such that
Cn\Xα ⊆∗ ⋃F and Cn∩Xα is infinite, then we have Cn\

⋃
F ⊆∗ Cn∩Xα ⊆

Xα, and we can define again Aα+1 = Aα.

So let us assume that for all n ∈ ω, Cn \ Xα is finite or Cn \ Xα is not
covered by any F ⊆ Aα \ {eα(0), . . . , eα(n)}. Since eα(n) is not almost
contained in the union of finitely many elements from Aα \ {eα(n)}, and
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Aα \ {eα(n)} is countable, by recursion we can construct an infinite set
Bn ⊆ eα(n), such that:

(1) Bn ∩Xα = ∅,
(2) for all Z ∈ Aα different from eα(n), we have Z ∩Bn =∗ ∅,
(3) and moreover, by going to a subset if necessary, Bn is a partial

selector of the partition Pγ,i
α or is completely contained in one element

of the partition Pγ,i
α , where γ and i are such that Aγ

i = eα(n)

Also, since for all n ∈ ω, Cn /∈ U and U is a p-point, there is A ∈ U such
that for all n ∈ ω, Cn ∩A is finite, Xα ∩A = ∅ and A ⊆ Yα. Let W0,W1 be
infinite disjoint subsets of A which are not in the ultrafilter U . Define W as,

W =

(⋃
n∈ω

Cn \Bn

)
\A

Finally, define Aα
i = W ∪Wi, for i ∈ 2, and Aα+1 = Aα ∪ {Aα

0 , A
α
1 }. Note

that Xα ⊆ Aα
i , A

α
i \ Aα

1−i = Wi ⊆ Yα. It remains to observe that by
construction of Aα

0 and Aα
1 the family Aα+1 is ideal independent. □

Theorem 5.3. Let U be a p-point and let P be a proper, ωω-bounding forcing
notion which preserves p-points. Then P preserves the maximality of any U-
encompassing maximal ideal independent family A such that for all A ∈ A,
the corresponding complemented filter F(A, A) is a p-point.

Note that this theorem implies that under CH, in the generic extension
by any proper ωω-bounding p-point preserving forcing notion smm is ℵ1.

Proof. Fix an ultrafilter U , a U-encompassing maximal ideal independent
family A with the property that all of the complemented filters of A are
p-points, and a proper, ωω-bounding, p-point preserving forcing notion P.
Let p ∈ P and let Ẋ be a name so that p ⊩ Ẋ ∈ [ω]ω. We need to show

that some q ≤ p forces that Ẋ cannot be added to A without destroying
ideal independence. More precisely, this means that we need to either find
a q ≤ p so that q forces that Ẋ is in the ideal generated by A or else find
q ≤ p and an A ∈ A so that q forces that Ẋ is in the complemented filter
corresponding to A.

Thus suppose towards a contradiction that p forces that Ẋ is neither in
the ideal generated by A nor in any filter F(A, A) for any A ∈ A. Note that

this implies in particular that Ẋ is not in U since if it were, then in would
be in some filter F(A, A) (in fact co-countably many). Since P preserves U
being a p-point it follows that p forces that the complement of Ẋ is in U
and therefore we can find a q ≤ p and a Z ∈ U so that q ⊩ Ẋ ∩ Z = ∅.
Fix such a q and Z. To complete the proof it suffices to therefore show that
some r ≤ q forces that n ∈ Ẋ for some n ∈ Z.

For any u ∈ P let Xu = {n ∈ ω | u ⊮ ň /∈ Ẋ} be the outer hull of Ẋ

with respect to u, i.e. the collection of n < ω forced to be in Ẋ by some
u′ ≤ u. Note that u ⊩ Ẋ ⊆ X̌u for any u ∈ P. It follows that for any
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condition u stronger than p, Xu is not in the ideal generated by A. By the
maximality of A, moreover we get that for every r ≤ q the set Xr is in some
complemented filter of A. Therefore to finish the proof it suffices to show
that in fact any such Xr is actually in uncountably many such filters. This
suffices since if this is the case then in particular it applies to Xq and, since,
by the definition of U-encompassing, Z is in F(A, A) for co-countably many
A ∈ A, there is some A ∈ A so that Z ∩Xq ∈ F(A, A) and so Z ∩Xq has

infinite intersection. Thus, some r ≤ q forces that n ∈ Ẋ for some (in fact
infinitely many) n ∈ Z. Summing up, it suffices to show the following claim.

Claim 5.4. For any u ∈ P stronger than p the set Xu ∈ F(A, A) for
uncountably many A ∈ A.

Fix such a u ∈ P and suppose towards a contradiction that there were only
countably many A ∈ A with Xu ∈ F(A, A). Let M ≺ Hθ be a countable
model for θ sufficiently large with P, p, u,A,U ∈ M containing every A so
that Xu ∈ F(A, A). Enumerate A ∩M as {Ai | i < ω}. Since p, and hence

u, forces that for each n < ω the name Ẋ is not in F(A, An), and each
one of such filters is a p-point by our assumption and hence an ultrafilter
preserved by P, there is in M a dense set of conditions below u forcing that
Ẋ ∩ An \

⋃
i<kn,i ̸=nAi is finite for some kn ∈ ω. Applying ωω-boundedness

and properness we can find in the ground model functions f, g ∈ ωω and a
condition r ≤ u which is (M,P)-generic so that for each n < ω we have

r ⊩ Ẋ ∩An \
⋃

i<f̌(n),i ̸=n

Ai ⊆ ǧ(n)

In particular we get that Xr ∩ An \
⋃

i<f(n),i ̸=nAi ⊆ g(n) and thus Xr /∈
F(A, An) for any n < ω. But then, by applying the same argument to r
that we applied to u, we get that Xr is in some F(A, B) for some B ∈ A
with B ̸= An for any n < ω. This is a contradiction however since Xr ⊆ Xu

and by definition of the An’s Xu /∈ F(A, B). This contradiction implies that
Xq is in uncountably many complemented filters of A and hence the proof
is complete. □

As an straightforward corollary we obtain:

Corollary 5.5.

(1) smm = ℵ1 in the Sacks model.
(2) smm = ℵ1 in the Miller partition model and hence smm < aT is

consistent.
(3) smm = ℵ1 in the h-perfect tree forcing model and hence smm <

non(N ) is consistent.

Proof. For (1), it is a standard fact that the iterated Sacks forcing preserves
p-points and it is ωω-bounding. For (2), in [14], Miller has constructed a
forcing, known as Miller partition forcing, which makes the cardinal invariant
aT equal to ℵ2, as recently shown in [4] preserves p-points, and as shown in



14 S. BARDYLA, J. CANCINO-MANRÍQUEZ, V. FISCHER, AND C. BACAL SWITZER

[18]) is ωω-bounding. For (3) recall, that the h-perfect tree forcing is proper,
ωω-bounding, preserves p-points and that in the h-perfect tree forcing model
non(N ) = ℵ2, see [10, Section 2]. □

An alternation of Miller partition and h-perfect tree forcings will lead to
a model of i = smm < non(N ) = aT = ℵ2 (for the effect of the respective
posets on i see [4] and [19]).

Corollary 5.6. smm is independent of aT

Proof. In the Miller partition model, smm < aT . On the other hand, it is
well known that aT < u holds in the Random model and hence aT < smm

holds in that model as well. □

6. Ideal Mrówka Spaces

To each ideal independent family A we can associate a topological space
ψ(A) defined as follows.

Definition. Let A be an ideal independent family. The space ψ(A) is the
set ω∪A endowed with the topology τ which satisfies the following condition:

• a set U ∈ τ if and only if for any A ∈ A∩U there exists F ∈ F(A, A)
such that F ⊆ U .

It is easy to see that the set ω is a dense discrete subset of ψ(A) and for
any A ∈ A the family {F ∪{A} : F ∈ F(A, A)} forms an open neighborhood
base at A in ψ(A). The set A ⊆ ψ(A) is closed and discrete. For any A ∈ A
the set {A}∪A is a clopen neighborhood of A. Thus, we obtain the following:

Lemma 6.1. For any ideal independent family A the space ψ(A) is Tychonoff
zero-dimensional separable scattered (of height 2) space.

Observe that for any almost disjoint family A the space ψ(A) is the well-
known Mrówka space corresponding to the almost disjoint family A.

Lemma 6.2. Let A be an ideal independent family. If A is maximal, then
each C ∈ A+ has an accumulation point in ψ(A). Moreover, if all but
finitely many F(A, A), A ∈ A are ultrafilters, then A is maximal, whenever
each C ∈ A+ has an accumulation point.

Proof. Let A be a maximal ideal independent family and C ∈ A+. The
maximality of A implies that there exists A ∈ A such that C ∈ F(A, A).
Then A is an accumulation point of the set C.

Let A be an ideal independent family such that F(A, A) is an ultrafilter
for all but finitely many A ∈ A, and each C ∈ A+ has an accumulation point
in ψ(A). Denote P = {A ∈ A : F(A, A) is not an ultrafilter}. Consider
any C ∈ A+. Let D = C \

⋃
P. Since the family P is finite, the set D

is positive. Then there exists an accumulation point A ∈ A of D in ψ(A).
It follows that D ∩ F ̸= ∅ for any F ∈ F(A, A). Clearly, A /∈ P. Then
F(A, A) is an ultrafilter and, consequently, C ⊇ D ∈ F(A, A). Thus, the
ideal independent family A is maximal. □
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For an ideal independent family A by ClA(ω) we denote the set of all
closed subsets of ω in ψ(A). The following lemma topologically describes
the ideal J (A) corresponding to an ideal independent family A.

Lemma 6.3. For any ideal independent family A we have that J (A) ⊆
ClA(ω). Moreover, if A is maximal, then J (A) = ClA(ω).

Proof. Let A1, A2 be any distinct elements of an ideal independent family
A and put C = A1 ∩ A2. Observe that for any A ∈ A \ {A2} the set
A\A2 ∈ F(A, A) and (A\A2)∩C = ∅. Similarly, the set A2\A1 ∈ F(A, A2)
and (A2 \ A1) ∩ C = ∅. Thus, the set C is closed and discrete in ψ(A). At
this point it is easy to see that for any A ∈ A the ideal J (A) consists of
closed (in ψ(A)) sets. Since a finite union of closed sets is closed and any
subset of a closed discrete set is closed, we get that J (A) ⊆ ClA(ω).

Let A be a maximal ideal independent family. Consider an arbitrary set
C ∈ ClA(ω). Since the set C is closed we get that C /∈ F(A, A) for every
A ∈ A. The maximality of A implies that C /∈ A+. Hence there exists a
finite collection {Ai : i ∈ n} ∈ [A]<ω such that C ⊆∗ ⋃

i∈nAi. Since C is
closed, for every i ∈ n there exists Fi ∈ F(A, Ai) such that Fi ∩ C = ∅.
Then for every i ∈ n there exists m(i) ∈ ω and a finite family {Di

j : j ∈
m(i)} ∈ [A \ {Ai}]<ω such that (Ai \

⋃
j∈m(i)D

i
j) ∩ C =∗ ∅, witnessing that

C ⊆∗ ⋃
i∈n
⋃

j∈m(i)(Ai ∩Di
j) ∈ J (A). Hence J (A) = ClA(ω). □

A Tychonoff space X is called pseudocompact if each continuous real-
valued function on X is bounded. The following lemma is a folklore.

Lemma 6.4. Let X be a space with an open discrete dense subspace D.
Then X is pseudocompact if and only if each A ∈ [D]ω has an accumulation
point in X.

Lemma 6.5. Let A be an ideal independent family. The space ψ(A) is
pseudocompact if and only if A is a maximal almost disjoint family.

Proof. If A is a maximal almost disjoint family, then by [12] the Mrówka
space ψ(A) is pseudocompact.

Assume that the ideal independent family A is not almost disjoint. Then
there exists A1, A2 ∈ A such that the set C = A1 ∩ A2 is infinite. By
Lemma 6.3, the set C is closed in ψ(A). Lemma 6.4 implies that the space
ψ(A) is not pseudocompact. □

Corollary 3.4 and Lemma 6.5 imply the following.

Proposition 6.6. For a maximal ideal independent family A the following
conditions are equivalent:

(1) ψ(A) is pseudocompact;
(2) A is a maximal almost disjoint family;
(3) A is a completely separable maximal almost disjoint family.
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Proposition 6.7. Let A be an ideal independent family. The space ψ(A)
is locally compact if and only if ψ(A) is a homeomorphic to ψ(B) for some
almost disjoint family B.

Proof. The sufficiency follows from the fact that the Mrówka space ψ(B) is
locally compact for any almost disjoint family B.

Assume that ψ(A) is locally compact for some ideal independent familyA.
Since the space ψ(A) is zero-dimensional (see Lemma 6.1), for each A ∈ A we
can find a compact open neighborhood UA of A. Recall that for every A ∈ A
the set A ∪ {A} is a clopen neighborhood of A. Then VA = UA ∩ (A ∪ {A})
is a compact open neighborhood of A. Since VA ∩A = {A} we deduce that
A is the only non-isolated point of VA. The compactness of VA implies that
BA = VA∩ω is a convergent sequence to A in ψ(A). Let B = {BA : A ∈ A}.
Clearly, the family B is almost disjoint. Define f : ψ(B) → ψ(A) by

f(x) =

{
n if x = n ∈ ω;

A if x = BA ∈ B.

A routine verification shows that the map f is a homeomorphism. □

7. Conclusion and Open Questions

Of interest remains the following question:

Question 7.1. Is it consistent that for every maximal ideal independent
family A there is an A ∈ A so that F(A, A) is an ultrafilter?

A positive answer to this question would imply that there are no completely
separable maximal almost disjoint families. It is known that such families
exist under either s ≤ a or 2ℵ0 < ℵω, see [15] and [12], respectively.

In the context of topology we ask more about Mrówka spaces for ideal
independent families. In this paper we have barely scratched the surface of
what may be possible, for instance the following is a natural question which
is open.

Question 7.2. Does there exist a ZFC example of an infinite maximal ideal
independent family A such that ψ(A) is Fréchet-Urysohn or first-countable?

Clearly, the above question has positive answer if completely separable
maximal almost disjoint families exist in ZFC.

The results of the current paper together with those of [5] give either a
ZFC relation, or establish the independence between smm and any other well
studied cardinal characteristic, with the exception of the almost disjointness
number a. The following remains open.

Question 7.3. Is it consistent that smm < a?

The corresponding question for i, i.e. the consistency of i < a is one of the
most interesting open problems in cardinal characteristics of the continuum
and many of the roadblocks towards solving that problem are the same
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as trying to answer the question above. See the appendix of [4] for an
interesting discussion on Vaughan’s problem.

As noted in the introduction, Theorem 5.2 implies that smm = max{d, u}
in many standard forcing extensions. However, this is not a ZFC equality as
smm > max{d, u} holds in the Boolean ultrapower model, see for example
[2]. That model requires a measurable cardinal and increases both u and d.
As a result the following two questions remain very interesting:

Question 7.4. Is max{d, u} < smm consistent with ZFC?

Question 7.5. If d = u = ℵ1 does smm = ℵ1?

The later question is an ideal independent version of Roitman’s problem.
Theorem 4.4 opens up the possibility of a maximal ideal independent families
of size ℵω. We can therefore ask:

Question 7.6. Is it consistent that smm = ℵω? More generally can smm

have countable cofinality?

Finally, we can ask more generally about the spectrum of maximal ideal
independent families:

Question 7.7. What ZFC restrictions are there on the set spec(smm)? Can
it be equal to any set of regular cardinals which includes the continuum?
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