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Abstract. We introduce the notion of an arithmetical type of combinatorial sets of reals, which

serves to generalize different types of families such as mad families, maximal cofinitary groups,

ultrafilter bases, splitting families and other similar types of families commonly studied in com-

binatorial set theory.

We then prove that every combinatorial set of reals of arithmetical type which is indestruc-

tible by the product of Sacks forcing Sℵ0 is in fact universally Sacks-indestructible, i.e. it is

indestructible by any countably supported iteration or product of Sacks-forcing of any length.

Further, under CH we present a unified construction of universally Sacks-indestructible families

for various arithmetical types of families. In particular we prove the existence of a universally

Sacks-indestructible maximal cofinitary group under CH.

1. Introduction

In combinatorial set theory there is a vast amount of different combinatorial families of reals to

be studied, e.g. mad families, maximal cofinitary groups, maximal independent families, ultrafilter

bases, unbounded families, splitting families, maximal eventually different families and many

others. We refer to these as different types of combinatorial families of reals. Assume we fixed

some type of combinatorial family and let F be a family of that type. Then, in any forcing

extension we might introduce new reals, which witness that F is not a family of our fixed type

any more. For example for a mad family F we might add a new real which has finite intersection

with every element of F so that F is not maximal in the forcing extension any more. We call

such reals intruders for F and for a forcing P we say that P preserves F iff there are no intruders

for F after forcing with P. We also say F is P-indestructible.

Note that the notion of an intruder for F heavily depends on the type of family at hand.

In many examples an intruder is a real that witnesses non-maximality, e.g. for mad families

or independent families. However, in other contexts an intruder can also have various other

interpretations, for example:

◦ unbounded family F −→ a real dominating F ,

◦ splitting family F −→ a set not split by F ,

◦ ultrafilter basis F −→ a set A with both A and Ac not in the filter generated by F .
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One interesting research direction is the study of which forcings may preserve which types

of combinatorial families. Given the vast amount of possible combinations, there are various

constructions of indestructible families, alternative characterizations of the indestructibility of

such families and implications between different types of forcing indestructibilities. First, we give

a small non-exhaustive overview:

Maximal almost disjoint (mad) families are the most well studied case. In [13] Kunen con-

structed a Cohen-indestructible mad family under CH and Hrušák [10] and Kurilić [14] indepen-

dently proved combinatorial characterizations of Cohen-indestructibility of mad families. These

ideas have also been expanded to other types of forcings, such as Sacks, Miller, Laver and ran-

dom forcing in [10][2]. Moreover, in [2] Brendle and Yatabe proved implications between these

different types of forcing indestructibilities and also considered characterizations of iterated Sacks-

indestructibility of mad families.

For other types of families usually Cohen and Sacks-indestructibility are the most well-studied

cases. In [7] Fischer, Schrittesser and Törnquist constructed a Cohen-indestructible maximal

cofinitary group. The construction may be adapted to also obtain a Cohen-indestructible maximal

eventually different (med) family. For a construction of a Sacks-indestructible med family, see [6].

In [8] Fischer and Switzer adapted the notion of tightness to med families and proved that

it implies Cohen-indestructibility. For independent families Shelah [17] implicitly proved the

existence of a Sacks-indestructible maximal independent family, also see [1] and [4] for an explicit

construction. In [16] Newelski forced the existence of a product Sacks-indestructible partition

of Baire space into Fσ-meager sets. Further, Sacks-indestructibility of ultrafilter bases is closely

related to the Halpern-Lauchli theorem [9]. Laver generalized Halpern and Lauchli’s results to

prove that every selective ultrafilter is product Sacks-indestructible [15]; also see [3] for an analysis

of Sacks-indestructibility of ultrafilters and reaping families. Of particular interest for this paper

is the construction of a maximal eventually different family which is indestructible under any

product or iteration of Sacks forcing of any length by Fischer and Schrittesser in [6]. Since this

property is crucial for this paper we define:

Definition. A family F is called universally Sacks-indestructible iff F is indestructible under

any product or iteration of Sacks forcing of any length.

In order to obtain such a med family Fischer and Schrittesser [6] constructed a Sℵ0-indestructible

med family and proved that this family is in fact universally Sacks-indestructible, where Sℵ0 is

the product of Sacks forcing. In [5] the authors proved that a similar construction may also be

used to construct a universally Sacks-indestructible partition of Baire space into compact sets.

In this paper we will generalize these findings to various other types of combinatorial families.

To this end, we introduce the notion of an arithmetical type of combinatorial family of reals and

formally define the notion of an intruder (cf. Definition 3.2), which generalizes all the different

types of combinatorial families of reals mentioned above:

Definition. An arithmetical type t (of combinatorial family of reals) is a pair of sequences

t = ((ψn)n<ω, (χn)n<ω) such that both ψn(w0, w1, . . . , wn) and χn(v, w1, . . . , wn) are arithmetical
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formulas in n+ 1 real parameters. The domain of the type t is the set

dom(t) := {F ⊆ P(ωω) | ∀n < ω ∀{f0, . . . , fn} ∈ [F ]n+1 we have ψn(f0, . . . , fn)}

If F ∈ dom(t) we say F is of type t. Now, let F be of type t. If a real g satisfies

∀n < ω∀{f1, . . . , fn} ∈ [F ]n χn(g, f1, . . . , fn),

then we call g an intruder for F .

Thus, in the notion of an arithmetical type we essentially require that what constitutes a

suitable family and an intruder is definable by a sequence of arithmetical formulas in the above

sense. We then prove the following Theorem 3.5:

Theorem. Assume that t is an arithmetical type and F is a Sℵ0-indestructible family of type t.

Then F is universally Sacks-indestructible.

For example we immediately obtain the following new facts (see Corollaries 4.7 and 4.35):

Corollary. Every Sℵ0-indestructible mad family is universally Sacks-indestructible.

Corollary. Every Sℵ0-indestructible independent family and every Sℵ0-indestructible ultrafilter

is universally Sacks-indestructible.

In particular, not only the med family constructed by Fischer and Schrittesser in [6] is uni-

versally Sacks-indestructible, but in fact every Sℵ0-indestructible family already is. We also

generalize the constructive part of their proof to obtain universally Sacks-indestructible families

of various types under CH. However, in order to present a unified construction, we require the

following additional property (see Definition 4.1):

Definition. Let t be an arithmetical type. We say that t satisfies elimination of intruders and

write EoI(t) holds iff the following property is satisfied: If F is a countable family of type t,

p ∈ Sℵ0 and ġ is a name for a real such that

p  ġ is an intruder for F .

Then there is q≤ p and a real f such that F ∪ {f} is of type t and

q  ġ is not an intruder for F ∪ {f}.

Now, if EoI(t) is satisfied we prove a unified construction of a universally Sacks-indestructible

witness under CH in Theorem 4.3:

Theorem. Assume CH and EoI(t) holds. Then there is a universally Sacks-indestructible family

of type t.

In Lemma 4.30 we prove that elimination of intruders indeed holds for maximal cofinitary

groups, so that we may apply the previous theorem to obtain the following new result (see

Corollary 4.29):

Corollary. Under CH there is a universally Sacks-indestructible maximal cofinitary group.
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Finally, since the definition of an arithmetical type requires us to work with arithmetical for-

mulas, we prove the following technical Lemma 3.1 which is an interesting result on its own.

Essentially, it allows us for any condition p ∈ Sℵ0 to translate the statement “p forces an arith-

metical property of the generic sequence sĠ” into an equivalent Π1
3-statement (see Lemma 3.1):

Lemma. Let χ(v1, . . . , vk, w1, . . . , wl) be an arithmetical formula in k+l real parameters. Further,

let p ∈ Sℵ0, f1, . . . , fl be reals and g1, . . . , gk be codes. Then the following are equivalent:

(1) p  χ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl),

(2) ∀q≤ p ∃r≤ q ∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

Here, sĠ ∈
ω(ω2) is the name for the generic sequence of Sacks-reals, the codes gi are interpreted

as continuous functions g∗i : ω(ω2) → ωω and an arithmetical formula χ is a first-order formula

with possibly real parameters, so that χ only contains integer quantifiers.

This paper is structured as follows: In the second section we revisit all necessary preliminaries

such as all important notions for Sacks forcing and its fusion, followed by a similar discussion for

countably supported product/iteration of Sacks forcing. Furthermore, we will want to apply a

nice version of continuous reading of names for countably supported products/iterations of Sacks

forcing developed by Fischer and Schrittesser in [6], so in order to state their result we also go

over some technicalities concerning coding of continuous functions.

In the third section we prove the technical Lemma 3.1 just mentioned and the implication

from Sℵ0-indestructibility to universal Sacks-indestructibility. Finally, in the fourth section, we

prove the existence of a universally Sacks-indestructible witness under CH given that elimination

of intruders holds (Theorem 4.3). We then show that various different types of combinatorial

families of reals fit in our framework of arithmetical types. Section 4.1 covers mad families, Section

4.2 med families and Section 4.3 partitions of Baire space into compact sets. Section 4.4 and 4.5

handle maximal cofinitary groups. There, we also reintroduce the notion of nice words as there

are some inaccuracies in the literature. Finally, in Section 4.6 we cover independent families and

ultrafilter bases and finish with other types of families such as unbounded, dominating, splitting

and reaping families in the last Section 4.7. For mad families, med families and maximal cofinitary

groups we also provide proofs for elimination of intruders in their respective sections.

2. Preliminaries

First, we consider the basic notions and definitions used throughout this paper. We start with

iterations and products of Sacks forcing and their fusion. The following lemmata are well-known,

for a more detailed presentation see [11] for example.

Definition 2.1. Let T ⊆ <ω2 be a tree, i.e. T is closed under initial subsequences.

(1) For s, t ∈ <ω2 we write sE t iff s is an initial subsequence of t.

(2) Let s ∈ T then Ts := {t ∈ T | sE t or tE s}.
(3) spl(T ) := {s ∈ T | sa 0 ∈ T and sa 1 ∈ T} is the set of all splitting nodes of T .

(4) T is perfect iff for all s ∈ T there is t ∈ spl(T ) such that sE t.
(5) S := {T ⊆ <ω2 | T is a perfect tree} ordered by inclusion is Sacks forcing.
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Definition 2.2. Let T ∈ S. We define the fusion ordering for Sacks forcing as follows:

(1) Let s ∈ T then succsplT (s) is the unique minimal splitting node in T extending s.

(2) stem(T ) := succsplT (∅).
(3) spl0 := {stem(T )} and if spln(T ) is defined for n < ω we set

spln+1 := {succsplT (sa i) | s ∈ spln(T ), i ∈ 2}.

spln(T ) is called the n-th splitting level of T .

(4) Let n < ω and S, T ∈ S. We write S≤n T iff S ⊆ T and spln(S) = spln(T ).

Lemma 2.3. Let 〈Tn ∈ S | n < ω〉 be a sequence of trees such that Tn+1≤n Tn for all n < ω.

Then T :=
⋂
n<ω Tn ∈ S and T ≤n Tn for all n < ω.

We call the sequence 〈Tn ∈ S | n < ω〉 above a fusion sequence in S and the element T ∈ S its

fusion.

Definition 2.4. Let λ be a cardinal. Sλ is the countable support product of Sacks forcing of

size λ. Moreover,

(1) for A ⊆ Sλ let
⋂
A be the function with dom(

⋂
A) :=

⋃
p∈A dom(p) and for all α < λ we

have (
⋂
A)(α) :=

⋂
p∈A p(α). Notice that we do not necessarily have

⋂
A ∈ Sλ.

(2) Let n < ω, p, q ∈ Sλ and F ∈ [dom(q)]<ω. Write p≤F,n q iff p≤ q and p(α)≤n q(α) for all

α ∈ F . For λ = ℵ0 we assume every condition has full support and write ≤n for ≤n,n.

Lemma 2.5. Let 〈pn ∈ Sλ | n < ω〉 and 〈Fn ∈ [dom(pn)]<ω | n < ω〉 be sequences such that

(1) pn+1≤Fn,n pn for all n < ω.

(2) Fn ⊆ Fn+1 for all n < ω and
⋃
n<ω Fn =

⋃
n<ω dom(pn).

Then p :=
⋂
n<ω pn ∈ Sλ and p≤Fn,n pn for all n < ω.

Again, we call the sequence 〈pn ∈ Sλ | n < ω〉 above a fusion sequence in Sλ for 〈Fn | n < ω〉
and the element p ∈ Sλ its fusion. In order to construct such fusion sequences we use the notion

of suitable functions:

Definition 2.6. Let p ∈ Sλ, F ∈ [dom(p)]<ω, n < ω and σ : F → V be a suitable function for p,

F and n, i.e. σ(α) ∈ spln(p(α))a 2 for all α ∈ F . Then we define p �σ ∈ Sλ by

(p �σ)(α) :=

{
p(α)σ(α) if α ∈ F,
p(α) otherwise.

Notice that for fixed p ∈ Sλ, n < ω and F ∈ [dom(p)]<ω there are only finitely many σ which are

suitable for p, F and n. Also, if q≤F,n p, then q and p have the same suitable functions for F

and n. Furthermore, the set

{p �σ | σ : F → V is a suitable function for p, F and n}

is a maximal antichain below p. Again, if λ = ℵ0 we just say σ is suitable for p and n in case

that σ is suitable for p, n and n.
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For most fusion arguments in the subsequent sections we will need the following easy lemma:

Lemma 2.7. Let p ∈ Sλ, F ∈ [dom(p)]<ω, n < ω and D ⊆ Sλ be open dense below p. Then

there is q ≤F,n p such that q �σ ∈ D for all σ suitable for p, F and n.

Proof. Let 〈σi | i < N〉 enumerate all suitable functions for p, F and n and set q0 := p. We

will define a ≤F,n-decreasing sequence 〈qi | i ≤ N〉 so that all of the qi have the same suitable

functions as p for F and n. Assume i < N and qi is defined. Choose ri≤ qi �σi in D and define

qi+1(α) :=

{
ri(α) ∪

⋃
{qi(α)s | s ∈ spln(qi(α))a 2 and s 6= σ(α)} if α ∈ F

ri(α) otherwise

Clearly, qi+1≤F,n qi and qi+1 �σ = ri. Now, set q := qN and let σ be suitable for p, F and n.

Choose i < N such that σ = σi. Then we have q �σ≤ qi+1 �σ = ri ∈ D, so q �σ ∈ D as D is

open. �

Next, we briefly present a simplified version of the presentation of continuous reading of names

for Sacks-forcing in [6] suited for our needs, see also [12]. First, we consider how to code continuous

functions f∗ : ω(ω2)→ ωω by monotone and proper functions f : <ω(<ω2)→ <ωω:

Definition 2.8.

(1) For s, t ∈ <ω(<ω2) write s E t iff dom(s) ≤ dom(t) and for all n ∈ dom(s), s(n) E t(n).

(2) A function f : <ω(<ω2)→ <ωω is monotone iff for all s E t ∈ <ω(<ω2), f(s) E f(t).

(3) A function f : <ω(<ω2)→ <ωω is proper iff for all x ∈ ω(ω2):

| dom(f(x �n× n))| n→∞−→ ∞.

(4) For a monotone, proper function f : <ω(<ω2)→ <ωω define a continuous function

f∗ : ω(ω2)→ ωω via f∗(x) :=
⋃
n<ω

f(x �n× n).

In this case f is called a code for f∗.

Remark 2.9. Conversely, for every continuous function f∗ : ω(ω2)→ <ωω there is a code for it.

In the following a code f will always refer to a monotone and proper function f : <ω(<ω2)→ <ωω.

Remark 2.10. For all p, q ∈ S there is a natural bijection π : spl(p) → spl(q) which for every

n < ω restricts to bijections π � spln(p) : spln(p)→ spln(q) and which preserves the lexicographical

ordering. We can extend π to a monotone and proper function π : p → q in a similar sense as

above. π then codes a homeomorphism π : [p] → [q] which we call the induced homeomorphism

(of p and q). We usually identify both functions π : p→ q and π : [p]→ [q] with the same letter.

Note that π is indeed a homeomorphism as its inverse is given by the induced homeomorphism

from q to p.

Lemma 2.11. Let p, q, r ∈ S such that r≤ p and let π : [p]→ [q] be the induced homeomorphism.

Then there is s≤ q such that π[[r]] = [s].
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Proof. We define

s := {u ∈ <ω2 | ∃f ∈ [r] u ⊆ π(f)}.
We have to show that s ∈ P. Clearly, s is downwards closed, so let u ∈ s. Choose f ∈ [r] such

that u ⊆ π(f). Since π(f) ∈ [q] we have u ∈ q. By definition of the induced map choose v ∈ p
such that v ⊆ f and u ⊆ π(v). Then v ∈ r, so choose w ∈ r with v ⊆ w and w ∈ spl(r). Then,

also w ∈ spl(p) and we have π(w) ∈ spl(q) and π(v) ⊆ π(w). Since r ∈ S for i ∈ 2 we may

choose fi ∈ [r] such that w a i ⊆ fi. But π(w)a i ⊆ π(fi) implies π(w)a i ∈ s for i ∈ 2, i.e.

π(w) ∈ spl(s). Further, u ⊆ π(v) ⊆ π(w) which proves that s ∈ S. �

Remark 2.12. Notice that s is uniquely determined by the property above. We call s the image

of r under π. In the dual case where p, q, s ∈ S are such that s≤ q and π : [p]→ [q] is the induced

homeomorphism we say that r is the preimage of s under π iff r is the image of s under π−1.

Here, we use that the inverse is given by the induced homeomorphism from q to p.

Definition 2.13. Let P be the countably supported iteration of Sacks forcing of length λ ≥ ω.

Let p ∈ P. We may always assume the dense in P property that |dom(p)| = ω and 0 ∈ dom(p).

(1) A standard enumeration of dom(p) is a sequence

Σ = 〈σk | k < ω〉,

such that σ0 = 0 and ran(Σ) = dom(p).

(2) Let [p] be a P-name such that

p  [p] = 〈x ∈ dom(p)(ω2) | For all α ∈ dom(p) we have x(α) ∈ [p(α)]〉.

(3) Let Σ be a standard enumeration of dom(p). For k < ω let ėp,Σk be a P �σk-name such

that

p �σk  ė
p,Σ
k is the induced homeomorphism between [p(σk)] and ω2.

Moreover, let ėp,Σ be a P-name such that

p  ėp,Σ : [p]→ ω(ω2) such that ėp,Σ(x) = 〈ėp,Σk (x(σk)) | k < ω〉 for all x ∈ [p].

(4) Given s ∈ Sℵ0 we define the preimage r of s under ėp,Σ as follows. Let r ∈ P with

dom(r) = dom(p), where for k < ω we have that r(σk) is a P �σk-name such that

p �σk  r(σk) is the preimage of s(k) under ėp,Σk .

In particular we have

p �σk  r(σk)≤ p(σk),
so that r ≤ p. Furthermore, r satisfies for every k < ω

r  sĠ(σk) ∈ [r(σk)],

so that by the previous discussion

r  ėp,Σk (sĠ(σk)) ∈ [s(k)]

Thus, we obtain

r  ėp,Σ(sĠ �dom(p)) ∈ [s]
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Remark 2.14. For the countable support product of Sacks forcing we define the analogous

notions. In fact, in this simpler case [p], ėp,Σk and ėp,Σ can be defined as ground model objects.

However, we will still treat them as names, so that we may consider both cases at the same time.

Definition 2.15. Let P be the countable support iteration or product of Sacks forcing of any

length. Let q ∈ P and ḟ be a P-name for a real. Let Σ = 〈σk | k < ω〉 be a standard enumeration

of dom(q) and f : <ω(<ω2)→ <ωω be a code for a continuous function f∗ : ω(ω2)→ ωω such that

q  ḟ = (f∗ ◦ ėq,Σ)(sĠ �dom(q)).

Then we say ḟ is read continuously below q (by f and Σ).

Lemma 2.16 (Lemma 4 of [6]). Let P be the countable support iteration or product of Sacks

forcing of length λ. Suppose p ∈ P and ḟ is a P-name for a real. Then there is q≤ p such that ḟ

is read continuously below q.

Remark 2.17. For any p ∈ P and P-name ḟ for a real it is easy to see that if ḟ is read continuously

below p then for all q≤ p also ḟ is read continuously below q. Thus, the previous lemma shows

that the set

{q ∈ P | ḟ is read continuously below q}
is dense open in P.

3. Main Results

Before we dive in into our main results, let us first consider the following application of Π1
1-

absoluteness. Given p ∈ S, real parameters f1, . . . , fn and a Π1
1-formula χ(v, w1, . . . , wn) with

n+ 1 real parameters assume that the following holds

∀q≤ p ∃r≤ q ∀x ∈ [r] χ(x, f1, . . . , fn).

Then we claim that also p  χ(sĠ, f1, . . . , fn) holds. Indeed, let q≤ p. By assumption choose

r≤ q such that

∀x ∈ [r] χ(x, f1, . . . , fn).

This is a Π1
1-statement so that by Π1

1-absoluteness

S  ∀x ∈ [r] χ(x, f1, . . . , fn).

But we also we have r  “sĠ ∈ [r]” so that

r  χ(sĠ, f1, . . . , fn),

which proves the statement.

The main goal of this chapter will be to show that if χ is an arithmetical formula, then we can

also prove the converse, namely that p  χ(sĠ, f1, . . . , fn) implies

∀q≤ p ∃r≤ q ∀x ∈ [r] χ(x, f1, . . . , fn).

Even better, we will show that we also have an analogous equivalence for Sℵ0 in place of S. Thus,

we are able to transfer arithmetical forcing statements of Sℵ0 into Π1
3-formulas and back, which

will be one of the main ingredients for Theorem 3.5.



UNIVERSALLY SACKS-INDESTRUCTIBLE COMBINATORIAL SETS OF REALS 9

Lemma 3.1. Let χ(v1, . . . , vk, w1, . . . , wl) be an arithmetical formula in k + l real parameters.

Further, let p ∈ Sℵ0, f1, . . . , fl be reals and g1, . . . , gk be codes. Then the following are equivalent:

(1) p  χ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl),

(2) ∀q≤ p ∃r≤ q ∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

Proof. First assume (2) and let q≤ p. By assumption choose r≤ q such that

∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

This is a Π1
1-statement so that Π1

1-absoluteness implies

Sℵ0  ∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

But we also have r  “sĠ ∈ [r]” which implies

r  χ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl).

Thus, we proved (1).

For the other direction we may assume that all integer quantifiers are in the front of χ and

do an induction over the number of quantifiers of χ. Let q≤ p. First, we have to consider

the quantifier-free case. Then χ(v1, . . . , vk, w1, . . . , wl) only depends on finitely many values of

v1, . . . , vk, w1, . . . , wl. So choose N such that χ(v1, . . . , vk, w1, . . . , wl) only depends on the values

of v1 �N, . . . , vk �N,w1 �N, . . . , wl �N . Since g1, . . . , gk are codes by Π1
1-absoluteness we have

q  ∃K N ⊆ dom(gi(sĠ �K ×K)) for all i ∈ {1, . . . , k},

so choose r≤ q and K < ω such that

r  N ⊆ dom(gi(sĠ �K ×K)) for all i ∈ {1, . . . , k}.

Now, let x ∈ [r] and define rx≤ r by

rx(n) := r(n)x(n) �K ,

which is well-defined since x(n) �K ∈ r(n) follows from x ∈ [r]. But then

rx  sĠ �K ×K = x �K ×K,

so by choice of r and K we also have

rx  g
∗
i (sĠ) �N = g∗i (x) �N for all i ∈ {1, . . . , k}.

But rx  χ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl), so by choice of N we obtain

rx  χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

Thus, we have proven ∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

Next, we have to prove the induction step. We handle the two different quantifier cases

separately. First, assume that χ ≡ ∃nψ, so by assumption

q  ∃n ψ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl, n).
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Choose r≤ q and n < ω such that

r  ψ(g∗1(sĠ), . . . , g∗k(sĠ), f1, . . . , fl, n).

By induction assumption choose s≤ r such that

∀x ∈ [s] ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n).

Then, we also have

∀x ∈ [s] ∃n ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n).

Thus, we have proven ∀x ∈ [s] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl).

Finally, assume that χ ≡ ∀nψ. We construct a fusion sequence 〈qn | n < ω〉 below q as follows.

Set q0 := q. Assume qn is defined. By induction assumption the set

Dn := {r≤ qn | ∀x ∈ [r] ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n)}

is dense open below qn. By Lemma 2.7 take qn+1≤n qn such that qn+1 �σ ∈ Dn for all σ suitable

for qn and n. Notice, that

[qn+1] =
⋃

σ suitable for qn and n

[qn+1 �σ],

since {qn+1 �σ | σ is suitable for qn and n} is a maximal antichain below qn+1. But this implies

∀x ∈ [qn+1] ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n),

for if x ∈ [qn+1] choose σ suitable for qn and n such that x ∈ [qn+1 �σ]. Then the desired

conclusion follows from qn+1 �σ ∈ Dn. Finally, let r be the fusion of 〈qn | n < ω〉. We claim that

∀x ∈ [r] ∀n ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n),

so let x ∈ [r] and n < ω. Then r≤ qn+1, so that x ∈ [r] ⊆ [qn+1]. So by construction of qn+1

ψ(g∗1(x), . . . , g∗k(x), f1, . . . , fl, n).

Thus, we have proven ∀x ∈ [r] χ(g∗1(x), . . . , g∗k(x), f1, . . . , fl). �

Next, we will introduce the notion of an arithmetical type. In chapter 4 we will verify that

many different types of combinatorial families can be put into the following form:

Definition 3.2. An arithmetical type t (of combinatorial family of reals) is a pair of sequences

t = ((ψn)n<ω, (χn)n<ω) such that both ψn(w0, w1, . . . , wn) and χn(v, w1, . . . , wn) are arithmetical

formulas in n+ 1 real parameters. The domain of the type t is the set

dom(t) := {F ⊆ P(ωω) | ∀n < ω ∀{f0, . . . , fn} ∈ [F ]n+1 we have ψn(f0, . . . , fn)}

If F ∈ dom(t) we say F is of type t. Now, let F be of type t. If a real g satisfies

∀n < ω∀{f1, . . . , fn} ∈ [F ]n χn(g, f1, . . . , fn),

then we call g an intruder for F .
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Thus, the sequence (ψn)n<ω defines what constitutes a family of that type and the sequence

(χn)n<ω defines which reals constitute intruders. Note that in some specific examples these two

properties coincide, e.g. for eventually different families both ψ1(w0, w1) and χ1(v, w1) assert the

eventual difference of w0 (or v, resp.) and w1 (cf. Section 4.2). Also, if we want no restriction of

what constitutes a family of type t, we set ψn :≡ > for all n < ω to obtain dom(t) = P(P(ωω)).

This will be the case for the families considered in Section 4.7.

Lemma 3.3. Let t be an arithmetical type. Then we have the following:

(1) ∅ is of type t,

(2) If G is of type t and F ⊆ G, then F is of type t,

(3) Let δ be a limit ordinal. If 〈Fα | α < δ〉 is an increasing sequence of families of type t,

then also F :=
⋃
α<δ Fα is a family of type t.

Proof. (1) and (2) are obvious. For (3) let 〈Fα | α < δ〉 is an increasing sequence of families of

type and n < ω and {f0, . . . , fn} ∈ [F ]n+1. Since δ is a limit we may choose α < δ such that

{f0, . . . , fn} ∈ [Fα]n+1. But then ψn(f0, . . . , fn) holds since Fα is of type t. �

Also note that since the ψn are arithmetical formulas the notion of dom(t) is absolute, i.e. for

model of set theory M ⊆ N we have that dom(t)M = dom(t)N ∩M . Analogously, the notion of

an intruders is absolute. However, a family may have no intruders in M , but some in the larger

model N . Thus, we define the following:

Definition 3.4. Given a forcing P and a family F of type t we say that F is P-indestructible or

P preserves F iff P forces that F has no intruders. In particular F has no intruders in the ground

model. If F is indestructible by any countably supported product or iteration of Sacks-forcing

of any length, we say that F is universally Sacks-indestructible.

Now, equipped with these definitions we may now prove one of our main results:

Theorem 3.5. Assume t is an arithmetical type and F is a Sℵ0-indestructible family of type t.

Then F is universally Sacks-indestructible.

Proof. Let P be the countably supported product or iteration of Sacks-forcing of any length and

assume that F is not preserved by P. We may assume that the length of the product or iteration

is at least ℵ0. Choose p ∈ P and a P-name ġ for a real such that

p  P ġ is an intruder for F .

By Lemma 2.16 choose q≤ p, a standard enumeration Σ of dom(q) and a code g such that

q  P ġ = g∗(ėq,Σ(sĠ �dom(q))).

Since F is Sℵ0-indestructible we have

Sℵ0  Sℵ0 g∗(sĠ) is not an intruder for F ,

which is by assumption expressed by

Sℵ0  Sℵ0 ∃n < ω ∃{f1, . . . , fn} ∈ [F ]n ¬χn(g∗(sĠ), f1, . . . , fn).
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So choose s ∈ Sℵ0 and {f1, . . . , fn} ∈ [F ]n such that

s  Sℵ0 ¬χn(g∗(sĠ), f1, . . . , fn).

Since χn is an arithmetical formula by Lemma 3.1 choose t≤ s such that

∀x ∈ [t] ¬χn(g∗(x), f1, . . . , fn).

Now, this is a Π1
1-formula, so we obtain

P  P ∀x ∈ [t] ¬χn(g∗(x), f1, . . . , fn).

Let r be the preimage of t under ėq,Σ, i.e. we have r≤ q and

r  P ėq,Σ(sĠ �dom(q)) ∈ [t].

Then we get

r  P ¬χn(g∗(ėq,Σ(sĠ �dom(q)), f1, . . . , fn),

which yields

r  P ¬χn(ġ, f1, . . . , fn),

contradicting that r forces ġ to be an intruder for F . �

4. Constructing Sacks-indestructible maximal combinatorial families under CH

In this section we show that Theorem 3.5 may be applied to many different combinatorial

families of reals considered in combinatorial set theory. We also provide a unified construction

of a universally Sacks-indestructible witness under CH for many of these types of families if they

satisfy the following following property:

Definition 4.1. Let t be an arithmetical type. We say that t satisfies elimination of intruders

and write EoI(t) holds iff the following property is satisfied: If F is a countable family of type t,

p ∈ Sℵ0 and ġ is a name for a real such that

p  ġ is an intruder for F .

Then there is q≤ p and a real f such that F ∪ {f} is of type t and

q  ġ is not an intruder for F ∪ {f}.

As the name suggests EoI(t) essentially asserts that for every countable family F of type t and

every possible Sℵ0-name ġ for a possible intruder for F we may extend F by one element f so

that ġ is not an intruder for this extended family any more. Usually, in case that some q ≤ p

forces “ġ = f ∈ V ” the conclusion of EoI(t) holds trivially for q := p and F ∪ {f} or some other

canonical extension of F , so that we will additionally assume that p  “ġ /∈ V ” when proving

EoI(t) for some arithmetical type t.

Finally, under CH we may now use continuous reading of names to enumerate all possible

intruders for a given family in length ℵ1 to iteratively construct a family of type t which is

indestructible under Sℵ0 . Note that in the construction of the following proof we make use of

Lemma 3.3 multiple times.



UNIVERSALLY SACKS-INDESTRUCTIBLE COMBINATORIAL SETS OF REALS 13

Theorem 4.2. Assume CH and EoI(t) holds. Then there is a Sℵ0-indestructible family of type t.

Proof. By CH we may enumerate all pairs 〈(pα, gα) | α < ℵ1〉 of elements p ∈ Sℵ0 and codes g.

We construct an increasing and continuous sequence 〈Fα | α < ℵ1〉 of families of type t as follows:

Set F0 := ∅. Now assume Fα is defined and (pα, gα) is given. If we have

pα 6 g∗α(sĠ) is an intruder for Fα,

then set Fα+1 := Fα. Otherwise, we have

pα  g
∗
α(sĠ) is an intruder for Fα.

Thus, by EoI(t) choose q≤ pα and a real f such that the family Fα+1 := Fα ∪ {f} is of type t

and such that

q  g∗α(sĠ) is not an intruder for Fα+1.

Finally, we set F :=
⋃
α<ℵ1 Fα. We show that F is Sℵ0-indestructible.

Assume not. Choose p ∈ Sℵ0 and a Sℵ0-name ġ for a real such that

p  ġ is an intruder for F .

By Lemma 2.16 choose q≤ p and a code g : <ω(<ω2)→ <ωω so that

q  ġ = g∗(sĠ).

But then, the pair (q, g) appeared at some step α in our enumeration and we extended Fα using

EoI(t) at that step. Thus, there is r≤ q with

r  g∗(sĠ) is not an intruder for Fα+1,

which yields the contradiction

r  ġ is not an intruder for F .

�

Remember that by Theorem 3.5 we have that Sℵ0-indestructibility actually implies universal

Sacks-indestructibility, so we proved the following theorem:

Theorem 4.3. Assume CH and EoI(t) holds. Then there is a universally Sacks-indestructible

family of type t.

Proof. This follows directly by composing the previous theorem with Theorem 3.5. �

Thus, the remaining objective for this paper will be to verify that many different types of

combinatorial families fall into our framework of arithmetical types and to prove elimination of

intruders for various different types of families.
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4.1. Mad families. We start with one of the most common example for combinatorial sets

of reals - mad families. For this case we will explain a bit more explicitly how to phrase the

definitions in a suitable way so that we may apply Theorem 3.5. For the subsequent types of

families the discussion we will just mention the necessary coding arguments, but we omit the

analogous details. Remember the following definition:

Definition 4.4. A family A of infinite subsets of ω is almost disjoint (a.d.) iff A ∩ B is finite

for all A 6= B ∈ A and for all A0 ∈ [A]<ω we have that ω \
⋃
A0 is infinite. A is called maximal

(mad) iff it is maximal with respect to inclusion. The corresponding cardinal characteristic is

the almost disjointness number a:

a := min {|A| | A is a mad family}.

The second property in the definition of an a.d. family is vacuous if A is infinite, but in the

finite case it allows us to exclude maximal finite a.d. families. Note that Theorem 3.5 is applied

to combinatorial families on the Polish space ωω, so to be more precise we code a.d. families in

that Polish space:

Definition 4.5. A family F of reals codes an a.d. family iff every f ∈ F codes an infinite subset

of ω, i.e. f is a strictly increasing function, ran(f) ∩ ran(g) is finite for all f 6= g ∈ F and for all

F0 ∈ [F ]<ω we have that ω \
⋃
f∈F0

ran(f) is infinite. F is called maximal iff it is infinite and

maximal w.r.t. inclusion.

Proposition 4.6. Coded mad families are an arithmetical type.

Proof. We define the formula ψ0(w0) to be

∀n∀m(n < m implies w0(n) < w0(m)),

expressing ‘w0 codes an infinite subset of ω’. Further, ψ1(w0, w1) is defined as

∃N∀n∀m(n > N implies w0(n) 6= w1(m)),

expressing ‘ran(w0) ∩ ran(w1) is finite’. Finally, for n > 1 we define ψn(w0, . . . , wn) by

∀N∃n∀m(n > N and

n∧
i=0

wi(m) 6= n),

expressing ‘ω \
⋃n
i=0 ran(wi) is infinite’. Analogously, we define the formula χ0(v) to be

∀n∀m(n < m implies v(n) < v(m)),

expressing ‘v codes an infinite subset of ω’. Finally, we define χ1(v, w1) by

∃N∀n∀m(n > N implies v(n) 6= w1(m)),

expressing ‘ran(v) ∩ ran(w1) is finite’ and set χn :≡ > for all n > 1. Clearly, with respect to

Definition 3.2 this exactly captures our definition of a coded mad family. Thus, coded mad

families are an arithmetical type. �
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Thus, explicitly for mad families Theorem 3.5 implies that Sℵ0-indestructibility for families

which code a mad family implies universal Sacks-indestructibility. Since the coding is absolute

this is equivalent to the respective version without coding:

Corollary 4.7. Every Sℵ0-indestructible mad family is universally Sacks-indestructible.

Next, we prove EoI(a), i.e. elimination of intruders for mad families. To be more precise we

would have to prove elimination of intruders for families which code mad families, but since our

coding is absolute these are easily seen to be equivalent.

Lemma 4.8. Let A be a countable a.d. family, p ∈ Sℵ0 and Ḃ be a name for an infinite subset

of ω such that

p  Ḃ /∈ V and A ∪ {Ḃ} is an a.d. family.

Then there is q≤ p and an infinite subset A of ω such that A ∪ {A} is an a.d. family and

q  A ∪ {A, Ḃ} is not an a.d. family.

Proof. If A is finite we have that ω \
⋃
A is infinite, so let D ∪ E be a partition of ω \

⋃
A into

two infinite sets. By assumption for every A ∈ A we have

p  ∃k < ω A ∩ Ḃ ⊆ k.

Since A is finite choose q≤ p and k < ω such that for all A ∈ A

q  A ∩ Ḃ ⊆ k.

This implies that

q  Ḃ \ k ⊆ ω \
⋃
A = D ∪ E.

Since Ḃ is a name for an infinite subset of ω there is r≤ q such that

r  D ∩ Ḃ is infinite or r  E ∩ Ḃ is infinite.

W.l.o.g. assume the first case holds. Then A ∪ {D} is an a.d. family and

r  A ∪ {D, Ḃ} is not an a.d. family.

Now, assume that A is infinite, so enumerate A = {An | n < ω}. We construct a fusion sequence

〈pn | n < ω〉 below p and a sequence 〈kn < ω | n < ω〉 as follows. Set p0 := p. Now, assume pn is

defined. By assumption the set

Dn := {q≤ pn | ∃k < ω q  “An ∩ Ḃ ⊆ k”}

is dense open below pn. By Lemma 2.7 take pn+1≤n pn such that pn+1 �σ ∈ Dn for all σ suitable

for pn and n, witnessed by kσ < ω. Set kn := max {kσ | σ suitable for pn and n}, so that

pn+1  An ∩ Ḃ ⊆ kn.

Let q0 be the fusion of 〈pn | n < ω〉. We define a second fusion sequence 〈qn | n < ω〉 below q0

and a sequence 〈an ∈ [ω]<ω | n < ω〉 of disjoint sets. Assume qn is defined and choose K < ω

with K > am, km for all m < n. Since qn  “Ḃ is infinite” the set

En := {q≤ qn | ∃k > K q  “k ∈ Ḃ”}
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is dense open below pn. Again by Lemma 2.7 take qn+1≤n qn such that qn+1 �σ ∈ En for all σ

suitable for qn and n, witnessed by kσ. Set an := {kσ | σ suitable for qn and n}, so that

qn+1  Ḃ ∩ am 6= ∅.

By choice of km for m < n we also have that an ∩ Am = ∅ for all m < n. Finally, let q be the

fusion of 〈qn | n < ω〉 and set A :=
⋃
n<ω an. Then we have that A ∪ {A} is an a.d. family and

q  A ∩ Ḃ is infinite.

Since q  “Ḃ /∈ V ” we have q  “A 6= Ḃ”, so we obtain

q  A ∪ {A, Ḃ} is not an a.d. family.

�

Thus, we proved EoI(a) and we get the following new result as an instance of Theorem 4.3 for

mad families:

Corollary 4.9. Assume CH. Then there is a universally Sacks-indestructible mad family.

4.2. Eventually different families. Next, we will briefly consider maximal eventually different

families. This case is especially noteworthy as the idea for the Main Theorem 3.5 originates from

Fischer’s and Schrittesser’s construction of a universally Sacks-indestructible eventually different

family in [6]. The main definition is the following:

Definition 4.10. A family of reals F ⊆ ωω is eventually different (e.d.) iff for all f 6= g ∈ F
there is N < ω such that f(n) 6= g(n) for all n > N . F is called maximal (med) iff it is maximal

w.r.t. to inclusion. The corresponding cardinal characteristic is ae:

ae := min {|F| | F is a med family}.

Proposition 4.11. Med families are an arithmetical type.

Proof. We set ψn :≡ > for n 6= 1 and define the formula ψ1(w0, w1) to be

∃N∀n(n > N implies w0(n) 6= w1(n)),

expressing ‘w0 and w1 are eventually different’. Analogously, we set χn ≡ > for n 6= 1 and define

the formula χ1(v, w1) to express ‘v and w1 are eventually different’. Thus, med families is an

arithmetical type. �

Hence, Theorem 3.5 implies for this instance:

Corollary 4.12. Every Sℵ0-indestructible med family is universally Sacks-indestructible.

Note that Fischer and Schrittesser essentially proved EoI(ae) in [6]. More precisely, combining

EoI(ae) with Lemma 3.1 exactly yields their Lemma 7, which they used to construct their uni-

versally Sacks-indestructible med family. For completeness we present a direct proof of EoI(ae),

which will also serve as a rough template for the corresponding lemma for maximal cofinitary

groups in one of the following sections.
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Lemma 4.13. Let F be a countable e.d. family, p ∈ Sℵ0 and ġ be a name for a real such that

p  ġ /∈ V and F ∪ {g} is an e.d. family.

Then there is q≤ p and a real f such that F ∪ {f} is an e.d. family and

q  F ∪ {f, ġ} is not an e.d. family.

Proof. Enumerate F = {fn | n < ω}. We construct a fusion sequence 〈pn | n < ω〉 below p and

a sequence 〈kn < ω | n < ω〉 as follows. Set p0 := p. Now, assume pn is defined. By assumption

the set

Dn := {q≤ pn | ∃k < ω q  “∀l > k fn(l) 6= ġ(l)”}
is dense open below pn. By Lemma 2.7 take pn+1≤n pn such that pn+1 �σ ∈ Dn for all σ suitable

for pn and n, witnessed by kσ < ω. Set kn := max {kσ | σ suitable for pn and n}, so that

pn+1  ∀l > kn fn(l) 6= ġ(l).

Let q0 be the fusion of 〈pn | n < ω〉. We define a second fusion sequence 〈qn | n < ω〉 below q0

and a sequence of partial functions 〈hn | n < ω〉 with the following properties:

(1) The sequence 〈dom(hn) | n < ω〉 is an increasing interval partition of ω,

(2) We have kn ≤ max(dom(hn)),

(3) For all m < n and l ∈ dom(hn) we have fm(l) 6= hn(l),

(4) qn+1  ∃l ∈ dom(hn) hn(l) = ġ(l).

This finishes the proof, for if q is the fusion of 〈qn | n < ω〉, then f :=
⋃
n<ω hn is total function

by (1). Furthermore, (3) implies that F ∪ {f} is an e.d. family and (4) implies that

q  f and ġ are not eventually different.

Since q  “ġ /∈ V ” we have q  “f 6= ġ, so we obtain

q  F ∪ {f, ġ} is not an e.d. family.

For the fusion construction assume qn is defined and enumerate with 〈σi | i < N〉 the set of all

suitable functions σ for qn and n. Let I be the interval above
⋃
m<n dom(hm) of size max(kn, N).

We construct hn with dom(hn) = I, so that (1) to (4) hold. The choice of I already implies that

(1) and (2) are satisfied. Note, that the set

En := {q≤ pn | q decides ġ on I”}

is dense open below pn. Again by Lemma 2.7 take qn+1≤n qn such that qn+1 �σ ∈ En for all σ

suitable for qn and n, witnessed by the decision gσ : I → ω. We define hn for i < N by

hn(min(I) + i) := gσi(min(I) + i).

For all other l ∈ I with l ≥ min(I) + N we define hn(l) arbitrarily so that (3) is satisfied. By

construction of qn+1 and hn we have for all i < N

qn+1 �σi  hn(min(I) + i) = gσi(min(I) + i) = ġ(min(I) + i),
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i.e. (4) is satisfied. For (3) let m < n and l ∈ I. If l ≥ min(I) + N there is nothing to show, so

let i < N . By induction assumption for m < n we have km < min(I) + i, so that by choice of km

qn+1  fm(min(I) + i) 6= ġ(min(I) + i).

On the other hand we have

qn+1 �σi  ġ(min(I) + i) = hn(min(I) + i),

which implies fm(min(I) + i) 6= hn(min(I) + i). �

Thus, we proved EoI(ae) and as before, Theorem 4.3 yields the following theorem, which

corresponds to Theorem 9 in [6]:

Corollary 4.14. Assume CH. Then there is a universally Sacks-indestructible med family.

4.3. Partitions of Baire space into compact sets. In this section we want to consider par-

titions of Baire space into compact sets. Recently, the authors constructed a universally Sacks-

indestructible such partition in [5] with the same techniques, so that we only summarize how our

results generalize that construction. The key observation is that partitions of Baire space into

compact sets are in one-to-one correspondence with the following types of families:

Definition 4.15. A family T of finitely splitting trees on ω is called an almost disjoint family

of finitely splitting trees (or an a.d.f.s. family) iff S and T are almost disjoint, i.e. S ∩ T is finite

for all S 6= T ∈ T . It is called maximal iff for all f ∈ ωω there is T ∈ T with f ∈ [T ]. Here, [T ]

denotes the set of branches trough T . The corresponding cardinal characteristic is aT:

aT := min {|T | | F is a maximal a.d.f.s. family}.

Remark 4.16. There is a one-to-one correspondence between non-empty compact subsets of ωω

and finitely splitting trees on ω given by the following maps:

Given a finitely splitting tree T on ω its set of branches [T ] is a non-empty compact subset of ωω.

Conversely, given a non-empty compact subset C of ωω we define a finitely splitting tree by

TC := {s ∈ ωω | ∃f ∈ C s ⊆ f}.

It is easy to check that these maps are inverse to each other.

Notice that by König’s lemma for finitely splitting trees S and T we have that S and T are

almost disjoint iff [T ]∩ [S] = ∅. Thus, using the above identification of finitely splitting trees and

non-empty compact subsets of ωω, we can also identify maximal a.d.f.s. families with partitions

of ωω into non-empty compact sets.

Proposition 4.17. Maximal a.d.f.s. families are an arithmetical type.

Proof. As for mad families, finitely splitting trees do not live in ωω, so we have to use an arithmeti-

cally definable coding of sequences of natural numbers (for example using prime decomposition).

This means that there is an injection ‘ code ’ : <ωω → ω such that the statements ‘n is the
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code for some sn ∈ <ωω’, ‘snE sm’ and ‘code(v �n) = m‘ are definable by arithmetical formulas

ϕ0(n), ϕ1(n,m) and ϕ2(v, n,m). Then, we define ψ0(w0) by

∀n(w0(n) = 1 implies ϕ0(n))

and ∀n,m((w0(n) = 1 and smE sn) implies w0(m) = 1)

and ∀n(w0(n) = 1 implies ∃m(m 6= n, snE sm and w0(m) = 1))

and ∀n(w0(n) = 1 implies ∃M∀m((m > M, snE sm and w0(m) = 1)

implies ∃k(k 6= n, k 6= m and snE skE sm))),

expressing ‘code−1[w−1
0 [{1}]] is a finitely splitting tree’. Further, we define ψ1(w0, w1) by

∃N∀N(n > N implies (w0(n) 6= 1 or w1(n) 6= 1)),

expressing ‘code−1[w−1
0 [{1}]] and code−1[w−1

1 [{1}]] are almost disjoint’. Set ψn :≡ > for all n > 1.

Analogously, set χn :≡ > for all n 6= 1. Finally, we set χ1(v, w1) as

∃n∀m(ϕ2(v, n,m) implies w1(m) = 0),

expressing ‘v /∈ [code−1[w−1
0 [{1}]]]’. Thus, maximal a.d.f.s. families are an arithmetical type. �

As usual, Theorem 3.5 yields the following new result:

Corollary 4.18. Every Sℵ0-indestructible a.d.f.s. family (partition of Baire space into compact

sets) is universally Sacks-indestructible.

In order to construct a universally Sacks-indestructible partition of Baire space into compact

sets, the authors proved EoI(ag) in Lemma 4.8 in [5], that is:

Lemma 4.19. Let T be a countable a.d.f.s. family, p ∈ Sℵ0 and ġ be a name for a real such that

p  ġ /∈ V and ∀T ∈ T ġ /∈ [T ].

Then there is q≤ p and a finitely splitting tree S such that T ∪ {S} is an a.d.f.s. family and

q  ġ ∈ [S].

Thus, together with Theorem 4.3 we also obtain Theorem 4.17 in [5]:

Corollary 4.20. Assume CH. Then there is a universally Sacks-indestructible a.d.f.s. family

(partition of Baire space into compact sets).

Finally, by Lemma 4.20 in [5] exactly the same arguments also work for almost disjoint families

of nowhere dense trees, which correspond to partitions of ω2 into closed sets.

4.4. Maximal cofinitary groups. Next on our list is a more algebraic example, namely max-

imal cofinitary groups. As with the other type of families we first show that also maximal

cofinitary groups are an arithmetical type. Very similarly to med families we will also construct

a universally Sacks-indestructible maximal cofinitary group. We will also carefully set up nice

words again, since there are some inaccuracies in the literature. For the remainder of this section

fix a set A, which will serve as an index set.
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4.4.1. Definitions and notations. We denote with WA the set of all reduced words in the language

A±1 := {ai | a ∈ A and i = ±1}. WA is a group with concatenate-and-reduce as group operation.

WA satisfies the universal property of the free group generated by A, i.e. for every group G any

map ρ : A→ G uniquely extends to a group homomorphism ρ̂ : WA → G.

Analogously, with MA we denote the set of all words in the language A±1. MA is a monoid

with concatenate as monoid operation. MA satisfies the universal property of the free monoid

generated by A±1, i.e. for every monoid M any map ρ : A±1 →M uniquely extends to a monoid

homomorphism ρ̂ : MA →M .

S∞ denotes the set of all permutations of ω and Sfin
∞ the set of all finite partial injections

f : ω
part→ ω. For f ∈ Sfin

∞ and n < ω we write f(n) ↓ iff n ∈ dom(f) and f(n) ↑ otherwise. Set

S+
∞ := S∞ ∪Sfin

∞ . Then S∞ is a group with concatenation, whereas S+
∞ is only a monoid. In fact,

S∞ are exactly the invertible elements of S+
∞. For f ∈ S+

∞ let

fix(f) := {n < ω | f(n) = n}

be the set of fixpoints of f . Further, define the set of all cofinitary permutations

cofin(S∞) := {f ∈ S∞ | fix(f) is finite}.

We say ρ : A → S∞ induces a cofinitary representation iff the induced map ρ̂ : WA → S∞
satisfies ran(ρ̂) ⊆ cofin(S∞) ∪ {id}. Analogously, we call a subgroup G of S∞ cofinitary iff

G ⊆ cofin(S∞)∪{id}. Note that G is cofinitary iff there is cofinitary representation ρ̂ : WA → S∞
with ran(ρ̂) = G. G is called maximal iff it is maximal w.r.t. to inclusion. Analogously, a

cofinitary representation ρ is called maximal iff ran(ρ̂) is a maximal cofinitary group.

If ρ : A→ S+
∞ its induced map ρ̂ : MA → S+

∞ is defined as follows. Define ρ±1 : A±1 → S+
∞ by

ρ±1(ai) :=

{
ρ(a) if i = 1

ρ(a)−1 if i = -1

Then let ρ̂ : MA → S+
∞ be the induced map for ρ±1 given by the universal property of MA. Note

that this map coincides with the induced map given by the universal property of WA in case that

ρ : A→ S∞.

From now on we usually identify ρ and its induced map ρ̂, write ε for the empty word and

|w| for the length of a word w. Further, we fix x /∈ A and if ρ : A → S∞ induces a cofinitary

representation and f ∈ S+
∞ we write ρ[f ] for ρ ∪ (x, f).

4.4.2. Arithmetical definability.

Proposition 4.21. Maximal cofinitary groups are an arithmetical type.

Proof. Define the formula ψ0(w0) to be

(∀n∀m v(n) = v(m) implies n = m) and (∀n∃m v(m) = n),
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expressing ‘w0 ∈ S∞’. Next, we fix an enumeration 〈un | 1 < n < ω〉 of WN, so that un only

contains natural numbers up to n as letters. For n > 0 we define ψn(w0, . . . , wn) to be

∀k0∃k1, . . . ,∃k|un|(
|un|−1∧
i=0

πi(v, w1, . . . , wn, ki, ki+1) and k0 = k|un|)

or ∃K∀k0,∃k1, . . . ,∃k|un| (K < k0 implies (

|un|−1∧
i=0

πi(v, w1, . . . , wn, ki, ki+1) and k0 6= k|un|)),

expressing ‘ρ(un) = id or ρ(un) has finitely many fixpoints’, where ρ is defined by m 7→ wm.

Here, for un := y|un|−1 . . . y0 the formula πi(v, w1, . . . , wn, ki, ki+1) is defined as{
ki+1 = wm(ki) if yi = m for m ∈ N,
ki = wm(ki+1) if yi = m−1 for m ∈ N,

expressing ‘ρ(yi)(ki) = ki+1’. Analogously, we define χ0(v) as

(∃n∃m n 6= m and v(n) = v(m)) or (∃n∀m v(m) 6= n),

expressing v /∈ S∞. Finally, fix an enumeration 〈un | 1 < n < ω〉 of WN, so that un only contains

natural numbers up to n as letters. Analogously, for n > 0 there is an arithmetical formula

χn(v, w1, . . . , wn) expressing

ρ(un) = id or ρ(un) has finitely many fixpoints,

where ρ is defined by 0 7→ v and m 7→ wm for m > 0. Thus, maximal cofinitary groups are an

arithmetical type. �

Thus, using Theorem 3.5 we obtain the following new fact:

Corollary 4.22. Every Sℵ0-indestructible m.c.g. is universally Sacks-indestructible.

4.4.3. Nice words and range/domain extension. In this subsection we reintroduce nice words and

reprove their corresponding range and domain extension lemmata, which are the crucial tools to

approximate elements of S∞ by finite segments. First, we prove that if we are only interested in

the number of fixpoints of ρ(w), then we can also equivalently consider any cyclic permutation

of w.

Proposition 4.23. Let ρ : A → S∞ and u, v ∈ WA. Then | fix(ρ(uv))| = |fix(ρ(vu))|. In fact,

there is a bijection given by π : n 7→ ρ(v)(n).

Proof. π is injective as ρ(v) ∈ S∞. Let n ∈ fix(ρ(uv)). Then

ρ(vu)(π(n)) = ρ(vu)(ρ(v)(n)) = ρ(vuv)(n) = ρ(v)(ρ(uv)(n)) = ρ(v)(n) = π(n),

i.e. π(n) ∈ fix(vu). Now, let n ∈ fix(ρ(vu)), then ρ(v−1)(n) ∈ fix(ρ(uv)) since

ρ(uv)(ρ(v−1)(n)) = ρ(v−1vuvv−1)(n) = ρ(v−1)(ρ(vu)(n)) = ρ(v−1)(n).

But π(ρ(v−1(n))) = ρ(v)(ρ(v−1)(n)) = ρ(vv−1)(n) = n, thus π is surjective. �
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From now on assume that ρ : A→ S∞ induces a cofinitary permutation.

Definition 4.24. We call two words w, v ∈ WA∪{x} equivalent (with respect to ρ) and write

w ∼ρ v iff [x]∼ρ = [v]∼ρ , where [x]∼ρ is the equivalence class of w in WA/ ker(ρ).

Definition 4.25. Define W 0
ρ,x := WA \ ker(ρ). For n > 0 define Wn

ρ,x to be the set of all reduced

words w ∈WA∪{x} of the form w = x±n or

w = ulx
klul−1x

kl−1 . . . u1x
k1u0x

k0

for some l < ω and ui ∈ W 0
ρ,x, ki ∈ Z \ {0} for i ≤ l and

∑l
i=0 |ki| = n. Finally, we set

Wρ,x :=
⋃
n>0W

n
ρ,x. We call Wρ,x the set of all nice words (with respect to ρ). Further, we say a

reduced word w is split into uv iff w = uv without reducing.

Lemma 4.26. Every word w ∈WA∪{x} can be split as w = uv for u, v ∈WA∪{x} such that vu is

equivalent to a word in WA or equivalent to a nice word with respect to ρ.

Proof. Let w ∈WA∪{x}. If the set

{w′ ∈ [vu]∼ρ | w is split as w = uv for some u, v ∈WA∪{x}}

contains a word w′ ∈WA we are done. Otherwise, choose w′ from it of minimal length and such

that q is minimal where w′ = px±1q and p ∈WA∪{x}, q ∈WA. Let w = uv be the witnessing split

for w′ ∈ [vu]∼ρ . In fact, this implies that q is the empty word, for if otherwise we may adjust the

split w = uv to move the q to the other side as this does not increase the length of w′.

If w′ = x±n for some n > ω we are done. Otherwise let w′ = xkqx±1 where q ∈ WA∪{x} and

k ∈ Z with |k| maximal. We may assume that k = 0, for if otherwise we may adjust the split

w = uv to move the xk to the other side as this does not increase the length of w′ and does not

introduce a non-empty q as above.

Finally, we may choose l < ω, ui ∈WA and ki ∈ Z \ {0}

w′ = ulx
klul−1x

kl−1 . . . u1x
k1u0x

k0 .

In fact, ui /∈ ker(ρ), for if otherwise w′ is equivalent to a shorter word, contradicting its minimality.

Thus, w′ is nice. �

Corollary 4.27. Let f ∈ S∞ and assume for all nice words w ∈ Wρ,x we have fix(ρ[f ](w)) is

finite. Then ρ[f ] induces a cofinitary representation.

Proof. Let w ∈ WA∪{x}. By the previous lemma write w = uv where vu is equivalent to a word

in WA or equivalent to a nice word w′ with respect to ρ. Then ρ[f ](vu) = ρ[f ](w′), so that

Proposition 4.23 implies

|fix(ρ[f ](w))| = | fix(ρ[f ](uv))| = | fix(ρ[f ](vu))| = |fix(ρ[f ](w′))| < ω,

which proves that ρ[f ] is a cofinitary representation. �

Thus, to construct a maximal cofinitary group, we may restrict ourself to nice words. These

have the advantage that they satisfy the following range and domain extension lemma:
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Lemma 4.28. Let s ∈ Sfin
∞ , W0 ⊆Wρ,x be a finite subset. Then we have

(1) If n ∈ ω \ dom(s) then for almost all m ∈ ω we have that t := s ∪ (n,m) ∈ Sfin
∞ and for

every word w ∈W0

fix(ρ[s](w)) = fix(ρ[t](w)).

(2) If m ∈ ω \ ran(s) then for almost all n ∈ ω we have that t := s ∪ (n,m) ∈ Sfin
∞ and for

every word w ∈W0

fix(ρ[s](w)) = fix(ρ[t](w)).

Proof. First, we show how 1. implies 2. Let m ∈ ω \ ran(s) and let W⊥0 := {w⊥ | w ∈W0}, where

w⊥ is constructed by replacing all occurrences of x by x−1 and vice versa. Note that w is nice iff

w⊥ is nice and for any t ∈ Sfin
∞ we have

ρ[t](w) = ρ[t−1](w⊥).

Furthermore, m /∈ dom(s−1), so by 1. for almost all n ∈ ω we have that t−1 := s−1∪ (m,n) ∈ Sfin
∞

and for every word w⊥ ∈W⊥0

fix(ρ[s−1](w⊥)) = fix(ρ[t−1](w⊥)).

But then for every such n < ω we have t ∈ Sfin
∞ and for every word w ∈W0

fix(ρ[s](w)) = fix(ρ[s−1](w⊥)) = fix(ρ[t−1](w⊥)) = fix(ρ[t](w)).

Next, we have to prove 1. It suffices to prove the statement for W0 = {w}, the general case then

follows iteratively. Consider the following cases:

Case 1: w = xn for some n > 0. We claim that every m ∈ ω \ (dom(s) ∪ ran(s) ∪ {n}) is

suitable, for if ρ[t](w)(k) ↓ and ρ[s](w)(k) ↑ for some k ∈ dom(t) we can choose i > 0 minimal such

that ρ[s](xi)(k) ↑. Then ρ[s](xi−1)(k) = n, so that ρ[t](xi)(k) = m /∈ dom(t). But ρ[t](w)(k) ↓, so

i = n and we get ρ[t](w)(k) = m 6= k. Thus, k /∈ fix(ρ[t](w)).

Case 2: w = x−n for some n > 0. We claim that every m ∈ ω \ (dom(s) ∪ ran(s) ∪ {n}) is

suitable, for if ρ[t](w)(k) ↓ and ρ[s](w)(k) ↑ for some k ∈ ran(t) we can choose i > 0 minimal such

that ρ[s](x−i)(k) ↑. Then ρ[s](x−i+1)(k) = m, so that i = 1 for if otherwise m ∈ ran(ρ[s](x−1)),

so we get m ∈ dom(s), contradicting the choice of m. But then k = m and we get ρ[t](w)(m) 6= m

as m /∈ dom(t). Thus, k /∈ fix(ρ[t](w)).

For the remaining case we may choose l < ω and ui ∈W 0
ρ,x, ki ∈ Z \ {0} for i ≤ l such that

w = ulx
klul−1x

kl−1 . . . u1x
k1u0x

k0 .

Also, since ui ∈W 0
ρ,x we may choose M < ω large enough such that for all i ≤ l

(M1) dom(s) ∪ ran(s) ∪ {n} ⊆M .

(M2) ρ(ui)[dom(s) ∪ ran(s) ∪ {n}] ⊆M .

(M3) ρ(ui)
−1[dom(s) ∪ ran(s) ∪ {n}] ⊆M .

(M4) fix(ρ(ui)) ⊆M .



24 V. FISCHER AND L. SCHEMBECKER

We will show that every m ≥ M is suitable, so assume ρ[t](w)(k) ↓ and ρ[s](w)(k) ↑ for some

k ∈ dom(s) ∪ ran(s) ∪ {n,m}. Choose i ≤ l minimal and then j ≤ |ki| minimal such that

ρ[s](xsign(ki)jui−1x
ki−1 . . . u1x

k1u0x
k0)(k) ↑ .

Then j > 0 by minimality of i. We consider the following two cases:

Case 1: ki > 0. Then

ρ[s](xj−1ui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = n,

so that by definition of t

ρ[t](xjui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = m.

By (M1) j < ki contradicts ρ[t](w)(k) ↓, so j = ki and we get

ρ[t](xkiui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = m

By (M3) and (M4) we get

ρ[t](uix
kiui−1x

ki−1 . . . u1x
k1u0x

k0)(k) /∈ dom(s) ∪ ran(s) ∪ {n,m},

so i < l contradicts ρ[t](w)(k) ↓. Thus i = l and

ρ[t](w)(k) /∈ dom(s) ∪ ran(s) ∪ {n,m},

which proves that k /∈ fix(ρ[t](w)).

Case 2: ki < 0. Then

ρ[s](x−j+1ui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = m,

so that by definition of t

ρ[t](x−jui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = n.

By (M1) we have j = 1 and we get

ρ[s](ui−1x
ki−1 . . . u1x

k1u0x
k0)(k) = m.

If i > 0 by minimality of i we would have

ρ[s](xki−1 . . . u1x
k1u0x

k0)(k) ∈ dom(s) ∪ ran(s) ∪ {n},

which contradicts (M2). Thus, i = 0, i.e. k = ρ[s](ε)(k) = m. Further, we have

ρ[t](xklul−1x
kl−1 . . . u1x

k1u0x
k0)(m) ∈ dom(s) ∪ ran(s) ∪ {n,m}.

But then (M2) and (M4) imply

ρ[t](w)(m) 6= m

which proves that k /∈ fix(ρ[t](w)). �
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4.5. Elimination of intruders for maximal cofinitary groups. Finally, we will prove EoI(ag),

so that Theorem 4.3 will give us the following new result:

Corollary 4.29. Under CH there is a universally Sacks-indestructible maximal cofinitary group.

The proof will follow a similar structure as the proof of Lemma 4.13 for med families, while

using the case distinctive argumentation as in the extending domain/range Lemma 4.28. We will

need to handle W 1
ρ,x, i.e. nice words with exactly one occurrence of x, differently, so let us denote

W>1
ρ,x :=

⋃
n>1W

n
ρ,x.

Lemma 4.30. Let A be countable and assume ρ : A → S∞ induces a cofinitary representation.

Let p ∈ Sℵ0 and ġ be a name for an element of S∞ such that

p  ġ /∈ V and ρ[ġ] induces a cofinitary representation.

Then there is q≤ p and f ∈ S∞ such that ρ[f ] induces a cofinitary representation and

q  f and ġ are not eventually different.

Proof. First, we prove that for all w ∈W 1
ρ,x

p  fix(ρ[ġ](w)) is finite.

Otherwise, choose w ∈W 1
ρ,x and q ≤ p such that

q  fix(ρ[ġ](w)) is infinite.

Then by assumption on ġ we get

q  ρ[ġ](w) = id .

Write w := ux±1, where u ∈WA. Then

q  ġ±1 = ρ[ġ](x±1) = ρ(u)−1,

so depending on the case we get

q  ġ = ρ(u)−1 or q  ġ = ρ(u).

Either way we obtain q  “ġ ∈ V ”, a contradiction. Let 〈wn | n < ω〉 enumerate all nice words,

so that wm is a subword of wn implies that m ≤ n. We define a fusion sequence 〈pn | n < ω〉
below q0, a sequence 〈Kn < ω | n < ω〉 and an increasing sequence 〈fn ∈ Sfin

∞ | n < ω〉 with the

following properties:

(1) n ∈ ran(fn) ∩ dom(fn).

(2) If wn ∈W 1
ρ,x then pn+1  fix(ρ[ġ](wn)) ⊆ Kn

(3) For all m ≤ n we have fix(ρ[fn](wm)) ⊆ Km.

(4) pn+1  ∃l ∈ (dom(fn) \
⋃
m<n dom(fm)) fn(l) = ġ(l).

To see that this proves the theorem, let q be the fusion of 〈pn | n < ω〉 and define f :=
⋃
n<ω fn.

By (1) and since 〈fn | n < ω〉 is an increasing sequence of partial injections we have that f ∈ S∞.



26 V. FISCHER AND L. SCHEMBECKER

By (3) we have that ρ[f ] induces a cofinitary representation, since for every m < ω we have that

fix(ρ[f ](wm)) ⊆ Km. Finally, (4) implies that

q  f and ġ are not eventually different.

So set p0 := p and assume that qn is defined - we then have to construct pn+1,Kn and fn.

If n /∈
⋃
m<n dom(fm) or n /∈

⋃
m<n ran(fm) use Lemma 4.28 to extend fn to h0 ∈ Sfin

∞ with

n ∈ dom(h0) ∩ ran(h0) while preserving (3). In case that wn ∈W 1
ρ,x by the previous observation

the set

Dn := {q ≤ pn | ∃K < ω q  fix(ρ[ġ](wn)) ⊆ K}

is open dense below pn. By Lemma 2.7 take q0≤n pn such that q0 �σ ∈ Dn for all σ suitable for

pn and n. Thus, there is a K < ω such that

q0  fix(ρ[ġ](wn)) ⊆ K.

Next, enumerate all suitable functions σ for q0 and n by 〈σi | i < N〉. Inductively, we will

define an ≤n-decreasing sequence 〈qi | i ≤ N〉 and an increasing sequence 〈hi ∈ Sfin
∞ | i ≤ N〉 with

(a) For all m < n we have fix(ρ[hi+1](wm)) ⊆ Km.

(b) qi+1 �σi  ∃l ∈ (dom(hi+1) \ dom(hi)) fn(l) = ġ(l).

Assuming we are successful with this, we may set fn := hN and choose K ′ < ω such that

fix(ρ[fn](wn)) ⊆ K ′ and define

Kn := max(K,K ′)

Then, we took care of (1) at the beginning of the construction and (2) follows from the definition

of K. Furthermore, (3) follows from (a) for m < n and by definition of K ′ for m = n. Finally,

(4) follows directly from (b).

For the construction, let i < N and assume qi and hi are defined. Choose M < ω large enough

such that

(M1) ran(hi) ∪ dom(hi) ⊆M ,

and for all m < n if we can choose lm < ω and ui,m ∈W 0
ρ,x, ki,m ∈ Z \ {0} for i ≤ l such that

w = ulx
klul−1x

kl−1 . . . u1x
k1u0x

k0 ,

then we have for all i ≤ l that

(M2) ρ(ui,m)[dom(hi) ∪ ran(hi)] ⊆M ,

(M3) ρ(ui,m)−1[dom(hi) ∪ ran(hi)] ⊆M .

(M4) fix(ρ(ui,m)) ⊆M
Finally, we also require

(M5) for all m < n we have Km ≤M .

Choose r ≤ qi �σi which decides M + 1 values of ġ above M . Since, r  “ġ is injective” there

are n0,m0 ≥ M such that r  “ġ(n0) = m0”. Set hi+1 := hi ∪ 〈n0,m0〉 and qi+1 ≤n qi so that
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qi+1 �σi = ri by

qi+1(α) :=

{
ri(α) ∪

⋃
{qi(α)s | s ∈ spln(qi(α))a 2 and s 6= σi(α)} if α < n

ri(α) otherwise

Clearly, hi+1 ∈ S∞ by (M1) and qi+1 satisfies property (b) since

qi+1 �σi  hi+1(n0) = m0 = ġ(n0)

It remains to show that also property (a) is satisfied, so let m < n. First, we consider the

case wm ∈ W 1
ρ,x. But in this case we have wm = ux±1 for u ∈ W 0

ρ,x ∪ {ε}, so that for every

l ∈ dom(hi) ∪ ran(hi) we have

ρ[hi+1](wm)(l) = ρ[hi](wm)(l),

and for l ∈ {n0,m0} we may apply (2) inductively to obtain

qi �σi  ρ[hi+1](wm)(l) = ρ[ġ](wm)(l) and l /∈ fix(ρ[ġ](wm)),

since n0,m0 ≥ Km. Thus, fix(ρ[hi+1](wm)) = fix(ρ[hi](wm)) ⊆ Km inductively by (a).

Next, we consider the case wm ∈W>1
ρ,x . Again, for all l ∈ dom(hi) ∪ ran(hi) we have

ρ[hi+1](wm)(l) = ρ[hi](wm)(l)

by properties (M1), (M2) and n0,m0 ≥M . Thus, it remains to consider the cases l ∈ {n0,m0}.
We show that ρ[hi+1](wm)(l) ↑ which finishes the proof. If l = n0 we may write wm = vx±1ux

for v ∈WA∪{x} and u ∈W 0
ρ,x ∪ {ε}. By (M1) or (M3) we have that

ρ[hi+1](ux)(n0) /∈ dom(hi) ∪ ran(hi).

Further, if wm = vx−1ux we have u ∈W 0
ρ,x, so that by (M4) ρ(u)(m0) 6= m0. Hence,

ρ[hi+1](ux)(n0) 6= m0.

Otherwise, wm = vxux and ux ∈W 1
ρ,x is a subword of wm, so choose m′ < m with wm′ = ux, so

by (M5) and (2) we get

ρ[hi+1](ux)(n0) 6= n0.

Thus, in both cases ρ[hi+1](x±1ux) ↑.
Finally, for l = m0 we may write wm = vx±1ux−1 for v ∈ WA∪{x} and u ∈ W 0

ρ,x ∪ {ε}. By

(M1) or (M3) we have that

ρ[hi+1](ux−1)(m0) /∈ dom(hi) ∪ ran(hi).

Further, if wm = vxux−1 we have u ∈W 0
ρ,x, so that by (M4) ρ(u)(n0) 6= n0. Hence,

ρ[hi+1](ux−1)(m0) 6= n0.

Otherwise, wm = vxux−1 and ux−1 ∈ W 1
ρ,x is a subword of wm, so again choose m′ < m with

wm′ = ux−1, so by (M5) and (2) we get

ρ[hi+1](ux−1)(m0) 6= m0.

Thus, in both cases ρ[hi+1](x±1ux−1) ↑. �
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4.6. Independent families and ultrafilters. In this section we want to consider independent

families and ultrafilters. We show that both of these types of families are arithmetically definable,

so that we may apply Theorem 3.5. However, at this time we do not know if EoI(i) and EoI(u)

also holds in these cases, so that we could apply Theorem 4.3 to easily construct universally

Sacks-indestructible witnesses under CH without referring to some kind of selectivity. Remember

the following two definitions:

Definition 4.31. Let A be a subset of [ω]ω. Denote with FF(A) the set of all finite partial

functions f : A → 2. Given f ∈ FF(A) we define

Af := (
⋂

A∈f−1[0]

A) ∩ (
⋂

A∈f−1[1]

Ac).

The family A is independent iff for all f ∈ FF(A) we have that Af is infinite. A is called maximal

iff it is maximal w.r.t. inclusion. The corresponding cardinal characteristic is the independence

number i:

i := min {|A| | A is a maximal independent family}.

Proposition 4.32. Maximal independent family are an arithmetical type.

Proof. Using the same coding of [ω]ω by reals as for mad families let ψ0(w0) express ‘w0 codes

an infinite subset of ω’. For n > 0 there is an arithmetical formula ψn(w0, . . . , wn) expressing

(ran(w0) ∩ ran(w1) ∩ · · · ∩ ran(wn) is infinite)

and (ran(w0) ∩ ran(w1) ∩ · · · ∩ ran(wn)c is infinite)

and . . .

and (ran(w0)c ∩ ran(w1)c ∩ · · · ∩ ran(wn)c is infinite).

Analogously, we let χ0(v) express ‘v codes an infinite subset of ω’ and for n > 0 choose

χn(v, w1, . . . , wn) expressing

(ran(v) ∩ ran(w1) ∩ · · · ∩ ran(wn) is infinite)

and (ran(v) ∩ ran(w1) ∩ · · · ∩ ran(wn)c is infinite)

and . . .

and (ran(v)c ∩ ran(w1)c ∩ · · · ∩ ran(wn)c is infinite).

Thus, maximal independent families are an arithmetical type. �

Definition 4.33. We say a subset A ⊆ [ω]ω satisfies the strong finite intersection property

(SFIP) iff
⋂
A0 is infinite for all A0 ∈ [A]<ω. In this case we define the generated filter of A by

〈A〉 := {C ⊆ ω | ∃A0 ∈ [A]<ω
⋂
A0 ⊆ C}.

We call A an ultrafilter subbasis iff 〈A〉 is an ultrafilter. The corresponding cardinal characteristic

is the ultrafilter number u:

u := min {|A| | A is an ultrafilter subbasis}.
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Proposition 4.34. Ultrafilter subbases are an arithmetical type.

Proof. Using the same coding of [ω]ω by reals as for mad families let ψ0(w0) express ‘w0 codes

an infinite subset of ω’. For n > 0 there is an arithmetical formula ψn(w0, . . . , wn) expressing

n⋂
i=0

ran(wi) is infinite.

Analogously, let χ0(v) express ‘v codes an infinite subset of ω’. Furthermore, for n > 0 there is

an arithmetical formula χn(v, w1, . . . , wn) expressing

n⋂
i=1

ran(wi) 6⊆ ran(v) and
n⋂
i=1

ran(wi) 6⊆ ran(v)c

Thus, ultrafilter subbases are an arithmetical type. �

Applying, Theorem 3.5 to these two cases yields:

Corollary 4.35. Every Sℵ0-indestructible independent family and every Sℵ0-indestructible ultra-

filter is universally Sacks-indestructible.

In [17] Shelah implicitly constructed a universally Sacks-indestructible maximal independent

family, whereas in [15] Laver proved that every selective ultrafilter is preserved by any product

of Sacks-forcing. Thus, together with the corollary above we obtain another proof that every

selective ultrafilter is universally Sacks-indestructible.

Hence, universally Sacks-indestructible independent families and ultrafilters may exist, but

both of these construction refer to some kind of selectivity. Similar to the other types of families

considered before we would like to directly construct universally Sacks-indestructible independent

families/ultrafilters using elimination of intruders:

Question 4.36. Do EoI(i) and EoI(u) hold?

4.7. Bounding, dominating and other types of families. Finally, in this last section we take

a look at a few other types of families which do not have any restrictions as to what constitutes

a family of that type as they do not have additional structure, but only the notion of an intruder

really matters.

Definition 4.37. Given f, g ∈ ωω we write f <* g iff f(n) < g(n) for all but finitely many n < ω.

A family B ⊆ ωω is called unbounded iff for all g ∈ ωω there is f ∈ B such that f 6<* g. The

corresponding cardinal characteristic is the (un-)bounding number b:

b := min {|B| | B is an unbounded family}.

A family D ⊆ ωω is called dominating iff for all g ∈ ωω there is f ∈ D such that g <* f . The

corresponding cardinal characteristic is the dominating number d:

d := min {|D| | D is a dominating family}.

We verify that also these kinds of families may be considered in our framework:
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Proposition 4.38. Unbounded and dominating families are arithmetical types.

Proof. Set ψn :≡ > for all n < ω. Analogously, set χn :≡ > for all n 6= 1. Finally, define the

formula χ1(v, w1) to be

∃N∀n(n > N implies w1(n) < v(n)),

expressing ‘w1<
* v’. Thus, unbounded families are an arithmetical type. Dominating families

can be defined analogously. �

Definition 4.39. Given A,S ∈ [ω]ω we say S splits A iff A ∩ S and A ∩ Sc are infinite. A

family S ⊆ ωω is called splitting iff for all A ∈ [ω]ω there is S ∈ S such that S splits A. The

corresponding cardinal characteristic is the splitting number s:

s := min {|S| | S is a splitting family}.

A family R ⊆ ωω is called reaping or unsplit iff for all S ∈ [ω]ω there is R ∈ R such that S does

not split R. The corresponding cardinal characteristic is the reaping number r:

r := min {|R| | R is a reaping family}.

Proposition 4.40. Reaping and splitting families are arithmetical types.

Proof. Using the same coding of [ω]ω by reals as for mad families let ψ0(w0) express ‘w0 codes

an infinite subset of ω’ and set ψn :≡ > for n > 0. Analogously, we let χ0(v) express ‘v codes an

infinite subset of ω’. Further, there is an arithmetical formula χ1(v, w1) expressing

ran(v) ∩ ran(w1) is finite or ran(v) ∩ ran(w1)c is finite

and set χn :≡ > for all n > 1. Thus, splitting families are an arithmetical type. Reaping families

can be defined analogously. �

Corollary 4.41. Every Sℵ0-indestructible unbounded/dominating/reaping/splitting family is uni-

versally Sacks-indestructible.

For example one special case is that ωω-bounding is equivalent to ωω being preserved as a

dominating family. In this special case proving that Sℵ0 is ωω-bounding yields another way to

show that any countably supported product or iteration of Sacks-forcing of any length is ωω-

bounding.

It is easy to see that Sℵ0 preserves [ω]ω as a splitting family and in [15] Laver proved that

Sℵ0 preserves [ω]ω as a reaping family. Thus, in these special cases we obtain another proof that

any countably supported product or iteration of Sacks-forcing of any length preserves [ω]ω as a

splitting and reaping family.

The list of families to which we can apply Theorem 3.5 does not end here though. For example

we could also apply the same arguments to evading and predicting families or witnesses for p and

other types of families.
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