
SELECTIVE INDEPENDENCE

VERA FISCHER AND JAROSLAV �UPINA

Abstract. We show that consistently i < aT , where i is the minimal cardinality of a maximal
independent family and aT is the minimal cardinality of a maximal family of pairwise almost
disjoint subtrees of 2<ω.

Moreover, we introduce the notion of selective independence and show that a variant of Sacks
forcing, which preceded and is closely related to Miller's rational perfect set forcing, preserves
selective independent families, P-points and Ramsey ultra�lters. In particular, we establish the
consistency of u = i < aT . Additionally, we show that consistently i < u = aT .

1. Introduction

In this paper, we focus on the following in�nitary combinatorial families of reals: independent

families, almost disjoint families, and ultra�lter bases. A familyA of [ω]ω is said to be independent

if for every two disjoint �nite non-empty subfamilies B and C of A the set
⋂
B\

⋃
C is in�nite. It

is maximal independent if it is in addition maximal under inclusion. The minimal cardinality of a

maximal independent family is denoted i. The almost disjointness number, denoted a, is de�ned as

the minimal cardinality of a maximal (under inclusion) in�nite family of pairwise disjoint in�nite

subsets of ω. The consistency of a < i is well-known, as it holds in the Cohen model. However,

the consistency of i < a is a long-standing open problem. Since d ≤ i (see [7]), a model of i < a

is necessarily a model of d < a. Note that, in all known models of d < a (using ultrapowers, or

Shelah's template construction, [14]) the value of i coincides with the value of a. For more recent

studies on the set of possible cardinalities of maximal independent families, see [4, 5].

Building upon earlier work [2], we de�ne a class of independent families (originally appearing

in [12]), to which we refer as selective independent families (see De�nition 22). Selective inde-

pendent families exist under CH (shown originally in [12] and later [2]). We show that selective

independent families are preserved under the countable support iteration of a modi�cation of

Sacks forcing, to which we refer as partition forcing (see De�nition 7 and Theorem 23) and so

in particular, we show that the existence of selective independent families is consistent with the

negation of CH. Moreover, the use of partition forcing allows us to control the value of aT , a close
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relative of the almost disjointness number, de�ned as the minimal cardinality of a maximal family

of pairwise disjoint subtrees of 2<ω. This leads to our main result:

Theorem. Assume CH. It is relatively consistent that i < aT .

Since d ≤ i, in the above model d = ω1 < aT = ω2, result which was �rst obtained by O. Spinas

in [16]. We show that partition forcing preserves P -points, which leads to the following:

Theorem. Assume CH. It is relatively consistent that

cof(N ) = a = u = i < aT .

The preservation properties of selective independent families, allow to simultaneously increase

u and aT , while preserving a small witness to i (see Theorem 26) and so, additionally we establish

the consistency of i = ω1 < aT = u = ω2.

Good surveys on the cardinal invariant aT can be found in [16, 11]. Based on an earlier result

by A. Miller [9], O. Spinas [16] shows that aT is the minimal cardinality of a maximal family

of pairwise disjoint closed subsets of an uncountable Polish space, while L. Newelski [11] and

O. Spinas [16] established d ≤ aT . The consistency of cof(N ) < aT was obtained in [16] via

an iteration of partition forcings. The notion of a partition forcing was introduced by A. Miller

in [9] and is pointed out as the origin of Miller's well known rational perfect set forcing [10]

(see the historical comments on Miller forcing in Helbeisen's [7]). Recently, the consistency

of a < aT was established by O. Guzmán, M. Hru²ák and O. Téllez [6]. J. Stern [15] and

independently K. Kunen (see [16]) established the consistency of aT < cof(M), by showing that

the inequality holds in the random real model. Hence, by the results of our paper and the fact

that aT = ω1 < c = i = u = r holds in the random real model, the invariant aT is independent

from i, u and r. Furthermore, aT is independent from cof(M), cof(N ), non(M), and cov(N ).

The conditions of a partition forcing are special perfect trees and so the question about the

value of aT in Sacks model becomes of interest. L. Newelski [11] shows that aT = ω1 in the Sacks

model1 and so the partition forcing appears optimal in raising the value of aT . Note that the

ZFC relation of aT with a, or non(N ), is unclear. That is, neither a ≤ aT nor non(N ) ≤ aT is

known (see [6]).

In our study of the partition forcing, we introduce the notion of a C-branching trees (see

De�nition 8), which itself underlines the notion of a fusion with witnesses (see De�nition 10 and

Lemma 11) and plays an important role in establishing the preservation properties of selective

independent families. Moreover, our notion of a fusion with witnesses generalizes earlier fusion

arguments appearing in [6, 16, 11].

Outline of the paper: In section 2 we study dense maximality for independent families and

provide three equivalent charactrisations of such densely maximal independent families. In sec-

tion 3 we give further analysis on the partition forcing, establish the notion of a fusion with

witnesses, and apply it to give an alternative proof of Spinas' theorem on the ωω-boundedness

of the partition forcing. In Section 4 we establish preservation properties of the density ideal

1It is the consequence (C7) of Covering Property Axiom, see [1].
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associated to an independent family with respect to the partition forcing and its iterations. In

Section 5, we introduce the notion of selective independence, which is captured by dense maxi-

mality and properties of the density �lter. In Section 6 we establish our main results, by showing

that the partition forcing and countable support iterations of partition forcing preserve selective

independent families, P-points and Ramsey ultra�lters. We conclude the paper with stating two

remaining open problems.

2. Dense Maximality

For more on the notions in the following de�nition, we refer the reader to [2].

De�nition 1. Let A be an in�nite independent family. Then:

(1) The density ideal of A, denoted id(A) consists of all X ⊆ ω with the property that

∀h ∈ FF(A) there is h′ ∈ FF(A) such that h′ ⊇ h and Ah′ ∩X = ∅.
(2) The density �lter of A, denoted fil(A), is the dual �lter of id(A). Thus Y ∈ fil(A) if and

only if ∀h ∈ FF(A)∃h′ ∈ FF(A) such that h′ ⊇ h and Ah′ ⊆ Y .

Lemma 2. Let A be an in�nite independent family. The following are equivalent:

(a) For all X ∈ P(ω)\A and all h ∈ FF(A) there is an extension h′ of h such that Ah′ ∩ X or

Ah′\X is �nite (and so empty).

(b) For all h ∈ FF(A) and all X ⊆ Ah either Ah\X ∈ id(A), or there is h′ ∈ FF(A) such that

h′ ⊇ h and Ah′ ⊆ Ah\X.

(c) For each X ∈ P(ω)\ fil(A) there is h ∈ FF(A) such that X ⊆ ω\Ah.

Proof. The equivalence of (a) and (b) can be found in [3, Lemma 31]. The equivalence of (b)

and (c) implicitly appears in [2, Theorem 29], as well as [12]. In interest of completeness of the

presentation, we give a detailed proof.

((a) ⇒ (b)) Fix h ∈ FF(A), X ⊆ Ah and suppose Ah\X /∈ id(A). Thus, in particular Ah\X /∈
id(X). Thus, there is h′ ∈ FF(A) such that for all h′′ ⊇ h′ the set Ah′′ ∩ (Ah\X) 6= ∅.

If h⊥h′, then Ah′ ∩ (Ah\X) = ∅, which is a contradiction.

Therefore, h′ 6⊥ h. Wlg h′ ⊇ h and so for all h′′ ⊇ h′, Ah′′\X 6= ∅. Apply the fact that

(a) holds. Then, there is h′′ ⊇ h′ such that Ah′′ ∩ X = ∅ or Ah′′\X = ∅. However, the latter

can not happen by the choice of h′ and so there is h′′ ⊇ h′ such that Ah′′ ∩ X = ∅. Therefore

Ah′′ ⊆ Ah′\X ⊆ Ah\X, which establishes (b).

((b)⇒ (a)) Suppose A satis�es (b). Let X ∈ [ω]ω\A, h ∈ FF(A). We have to show that there is

h′ ⊇ h such that either Ah′′ ∩X, or Ah′\X is empty. Consider Y = X ∩ Ah.
If Ah\Y ∈ id(A), then since Y ⊆ X, ω\X ⊆ ω\Y and so Ah\X ⊆ Ah\Y . Therefore, in this

case Ah\X ∈ id(A). But then there is h′ ⊇ h such that Ah′ ∩ (Ah\X) = Ah′\X = ∅.
Otherwise, there is h′ ⊇ h such that Ah′ ⊆ Ah\Y and so Ah′ ∩ Y = ∅. However, Ah′ ∩ Y =

Ah′ ∩ (X ∩ Ah) = Ah′ ∩X, i.e. Ah′ ∩X = ∅. Therefore (a) holds.
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((b) ⇒ (c)) : Consider any Z /∈ fil(A). Then ω\Z /∈ id(A) and so there is h ∈ FF(A) such that

for all h′ ⊇ h
|Ah′ ∩ (ω\Z)| = |Ah′\Z| = ω.

Consider the set Y = Ah\Z. Thus Y ⊆ Ah. By (b) either Ah\Y ∈ id(A), or there is h′ ⊇ h such

that Ah′ ⊆ Ah\Y . In the former case ∃h′ ⊇ h such that Ah′ ∩ (Ah\Y ) = Ah′\Y = ∅. However

Ah′\Y = Ah′\(Ah ∩ ω\Z) = Ah′ ∩ [ω\Ah ∪Z] = Ah′ ∩Z. Thus there is h′ such that Z ⊆ ω\Ah′ .
In the latter case, there is h′ ⊇ h such that

Ah′ ⊆ Ah\Y = Ah ∩ [ω\Ah ∪ Z] = Ah ∩ Z.

But then Ah′\Z = ∅, which is a contradiction to the choice of h.

((c) ⇒ (b)) Take any X,h ∈ FF(A) such that X ⊆ Ah. If X ∈ fil(A) then X ∪ ω\Ah ∈ fil(A)

and so

ω\(X ∪ ω\Ah) = Ah\X ∈ id(A).

If X /∈ fil(A) then by (c) there is h ∈ FF(A) such that X ⊆ ω\Ah. Take any h′ ⊇ h. Then

Ah′ ⊆ Ah and so ω\Ah ⊆ ω\Ah′ , which implies that X ⊆ ω\Ah′ . Therefore Ah′ ∩X = ∅ and so

Ah′ ⊆ Ah\X. �

The following crucial notion for indestructible maximal independent families was introduced

in [2].

De�nition 3. An independent family A is said to be densely maximal if any of the above three

equivalent characterisations holds.

Remark 4. We shall use the notation 〈G〉up = {X ∈ P(ω) : ∃G ∈ G(G ⊆ X)} and 〈G〉dn = {X ∈
P(ω) : ∃G ∈ G(X ⊆ G)}.

Corollary 5. A family A is densely maximal if and only if

P(ω) = fil(A) ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn.

Lemma 6. Let A be an in�nite independent family. Then

id(A) =
⋃
{id(B) : B ∈ [A]≤ω}.

Proof. Let B ∈ [A]≤ω and let X ∈ id(B). Take any h ∈ FF(A) and let h∗ = h � B. Then

h∗ ∈ FF(B) and so there is h∗∗ ∈ FF(B) such that h∗∗ ⊇ h∗ and X ∩ Bh∗∗ = ∅. Let h′ = h �
(A\B) ∪ h∗∗. Then h′ ⊇ h and Ah′ ∩X ⊆ Bh∗∗ ∩X = ∅. Thus X ∈ id(A).

Suppose X ∈ id(A). Take any B ∈ [A]≤ω. Inductively, construct an increasing chain {Bn}n∈ω
of countable independent families, contained in A such that

∀h ∈ FF(Bn)∃h′ ∈ FF(Bn+1)

such that Bh′n+1(= Ah
′
) ∩X = ∅. Let B =

⋃
n∈ω Bn. Then B ∈ [A]≤ω and X ∈ id(B). �
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3. Partition Forcing

Let us recall that a set A which is contained in [p] for some perfect subtree p of 2<ω is nowhere

dense in [p] if for every s ∈ p there is t ∈ p such that s ⊆ t and {f ∈ [p] : t ⊆ f} ∩A = ∅.

De�nition 7 (Partition forcing). Let C = {Cα}α∈ω1 be an uncountable partition of 2ω into closed

sets and let Q(C) be the set of perfect trees p ⊆ 2<ω such that each Cα is nowhere dense in [p].

The order of Q(C) is inclusion.

A. Miller, [9], showed that the poset Q(C) has the Laver property, while O. Spinas [16] es-

tablished the ωω-bounding property of Q(C). Thus, Q(C) has the Sacks property. Of particular

importance for our construction is the existence of fusion sequences in Q(C). We begin with

auxiliary notions.

De�nition 8. Let C = {Cα}α∈ω1 be an uncountable partition of 2ω into closed sets.

(1) We say that x, y ∈ ω2 are C-di�erent if x, y belong to di�erent elements of C.
(2) A tree p ⊆ 2<ω is said to be C-branching if for any s ∈ p there are C-di�erent branches

in [p] extending s.

Note that, a C-branching tree is perfect. We will use the following notation: whenever C as

above is given, for each x ∈ 2ω we denote by αx the unique ordinal such that x ∈ Cαx .

Lemma 9. Let p ⊆ 2<ω be a tree. The following are equivalent:

(a) p ∈ Q(C).
(b) p is C-branching.
(c) p is perfect and [p] contains a countable dense subset with C-di�erent branches.

Proof. ((a) ⇒ (c)) Let p ∈ Q(C). p is a perfect tree by the de�nition. Thus arrange split(p)

and assign by induction, to each splitting node s, a real x from [p] extending s which was either

already considered or belongs to di�erent set from C than all previously selected reals. This is

possible since any s ∈ split(p) may be extended to t ∈ split(p) with [p(t)] being disjoint with

�nitely many sets from C containing all previously selected reals. The set of all assigned branches

is the required dense set.

((c)⇒ (b)) Trivial.

((b) ⇒ (a)) Let β < ω1 and s ∈ p. There are x, y ∈ [p] such that s ⊆ x, y and αx 6= αy. We

take z ∈ {x, y} such that αz 6= β. Since z ∈ [p] \Cβ and Cβ is closed, there is s ⊆ t ⊆ z such that

[pt] ∩ Cβ = ∅. �

The particular enumeration constructed in Lemma 9 will be applied several times. Therefore

we state explicitely that we may assume the dense set in Lemma 9 is enumerated as {xt : t ∈ p}
such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs.

De�nition 10. [Fusion sequence with witnesses]

(1) Let p be a condition in Q(C). We say that a set X ⊆ ω2 is a p-witness for the n-th level if

X ⊆ [p], for each s ∈ splitn(p) there is x ∈ X extending s, and X has C-di�erent elements.
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Note that if X is a p-witness for the (n + 1)-st level then each node from n-th splitting

level of p is contained in C-di�erent branches.
(2) Let (p,X), (q, Y ) be couples with p, q being conditions in Q(C), and sets X,Y being p-

witness for the (n+ 1)-st level, q-witness for the n-th level, respectively. Then

(p,X) ≤n (q, Y ) if and only if p ≤ q and X ⊇ Y .
Note that if (p,X) ≤n (q, Y ) then split<n(p) = split<n(q).

(3) A sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses if (pn+1, Xn+1) ≤n (pn, Xn)

for each n.

Lemma 11. If a sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses then the fusion⋂
{pn : n ∈ ω} is a condition in Q(C).

Proof. We denote p =
⋂
{pn : n ∈ ω}, X =

⋃
{Xn : n ∈ ω}, and we assume that we have s ∈ p.

We take n ∈ ω and t ∈ splitn(p) such that t extends s. Since splitn(p) = splitn(pn+1), the set

Xn+1 contains C-di�erent branches extending t. Hence, X is dense in [p]. One can easily see that

X is contained in [p]. Finally, by Lemma 9 we conclude that p ∈ Q(C). �

A. Miller [9] and O. Spinas [16] applied separate fusion arguments in their proofs, while

A. Miller [9] introduced the notion of a fusion even formally. The partial order Q(C) was re-

cently used in [6], where the notion of a nice sequence was isolated from O. Spinas's fusion

arguments. Our de�nition of fusion sequence covers both approaches. The sequence {Xn}n∈ω
in our de�nition may be obtained as sets of leftmost branches in Miller's fusion argument, and

as certain terms of nice sequence in Spinas's approach. In fact, nice sequence may be obtained

reenumerating our dense set {xt : t ∈ p} in Lemma 9.

In addition to fusion sequences, we shall use two basic schemas to amalgamate conditions.

Let us have a condition p ∈ Q(C), and for each s ∈ splitn(p), i ∈ {0, 1}, a condition q(s, i)

extending p(sai). Using Lemma 9, one can easily see that the tree

q =
⋃
{q(s, i) : s ∈ splitn(p), i ∈ {0, 1}}

is a condition in Q(C) as well. In the second amalgamation technique, we are given a decreasing

sequence {qi}i∈ω of extensions of p with strictly increasing stems sn = stem qn. We set x =
⋃
i∈ω si

and take q =
⋃
i∈ω qi(s

a
i 〈1 − x(|si|)〉). Again, using Lemma 9, one can easily see that q is

a condition in Q(C).
The proof of the fact that Q(C) is ωω-bounding is underlying many of the fusion arguments to

follow. For convenience of the reader, we repeat it here. We need two auxiliary assertions.

Lemma 12. Let ḟ be a Q(C)-name for a function in ωω and let h be a function in ωω ∩ V .
The set of all conditions q satisfying the following property is dense in Q(C): There is a real

x ∈ [q] and a sequence {fs}s∈x�split(q) of functions in <ωω such that for any s = x � splitn(q) we

have q(s)  ḟ � h(n) = fs.

Proof. Let p ∈ Q(C). One can construct a decreasing sequence {qi}i∈ω of extensions of p with

strictly increasing stems such that qn  ḟ � h(n) = fn for some fn ∈ h(n)ω. We denote sn =
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stem qn and we set x =
⋃
i∈ω si. Finally, we take the amalgamation q =

⋃
i∈ω qi(s

a
i 〈1− x(|si|)〉).

�

Lemma 13. Let ḟ be a Q(C)-name for a function in ωω. The set of all conditions q satisfying

the following property is dense in Q(C): For all m ∈ ω, for all t ∈ splitm(q) there is ft ∈ m+1ω

such that

q(t)  ḟ � (m+ 1) = f̌t.

Proof. Let p ∈ Q(C). We build a fusion sequence {(qn, Xn)}n∈ω with q0 ≤ q such that its

fusion q has the required property. Let the condition q0, branch x, and sequence {fs}s∈x�split(q0)
be obtained from Lemma 12 for p and h(n) = n+ 1. We set X0 = {x}.

Let 0 ≤ n < ω. Suppose we have de�ned qn ∈ Q(C) and �nite Xn ⊆ [qn]. Let s ∈ splitn(qn).

Take the unique branch x ∈ Xn extending s, node r = x � splitn+1(qn), and number i = x(|s|)
in {0, 1}. We set q(s, i) = qn(r). Let t ⊇ sa〈1− i〉 be such that [qn(t)] ∩ Cαx = ∅ for all already
considered branches x (i.e., all branches in Xn and those assigned to previous nodes in some order

of splitn(qn)). Use Lemma 12 for qn(t) and h(j) = n+ j+2 to obtain q(s, 1− i) ≤ qn(t), branch x

and sequence {fs}s∈x�split(qn).
Finally, let Xn+1 be the set of all considered branches in this step, and

qn+1 =
⋃
{q(s, i) : s ∈ splitn(qn), i ∈ {0, 1}}.

One can verify that the sequence {(qn, Xn)}n∈ω is a fusion sequence with witnesses. �

Lemma 14 (O. Spinas [16]). The poset Q(C) is ωω-bounding.

Proof. Let ḟ be a Q(C)-name for a function in ωω and let p ∈ Q(C). We will show that there is

q ≤ p and g ∈ V ∩ ωω such that q  ḟ ≤∗ ǧ.
By Lemma 13 we can assume that for all m ∈ ω, for all t ∈ splitm(p) there is ft ∈ m+1ω such

that p(t)  ḟ � (m+ 1) = f̌t. De�ne g ∈ ωω as follows:

g(n) = max{fs(n) + 1: s ∈ splitn(q)}.

Then q  ∀n(ḟ(n) < g(n)). �

4. Preservation Theorems

Lemma 15. Assume CH. Let A be an independent family, and let H be a Q(C)-generic �lter.

Then id(A)V [H] is generated by id(A)∩V , where V denotes the ground model. With other words

for each X ∈ id(A) ∩ V [H] there is Y ∈ id(A) ∩ V such that X ⊆ Y .

Proof. Fix p ∈ Q(C) such that p  Ẋ ∈ id(A). By Lemma 6 we can �nd q ≤ p and a name Ḃ for

a countable subset of A such that q  Ẋ ∈ id(B). Identifying FF(Ḃ) with 2<ω in V Q(C), we get

a Q(C)-name for a dense subset of 2<ω de�ned by

q  h ∈ Ḋ i� Ḃh ∩ Ẋ = ∅.
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Claim. Let {vi}i∈ω ⊆ <ω2. The set of all conditions r satisfying the following property is dense

below q: There is x ∈ [r] and {us}s∈x�split(r) such that for s = x � splitn(r) we have us ⊇ vn and

r(s)  ǔs ∈ Ḋ.

Proof. Let q′ ≤ q. Since q  “Ḋ is dense open”, one can construct a decreasing sequence {qi}i∈ω
of subconditions of q′ with strictly increasing stems such that un ⊇ vn and qn  ǔn ∈ Ḋ for

some un ∈ <ω2. We denote sn = stem qn and we set x =
⋃
i∈ω si. Finally, we take r =⋃

i∈ω qi(s
a
i 〈1− x(|si|)〉). �

Claim. The set ∆ of r ∈ Q(C) such that r  Ǩ ⊆ Ḋ for some dense K ⊆ 2<ω is dense below q.

Proof. Let 〈wn : n ∈ ω〉 enumerate 2<ω. We build a fusion sequence {(qn, Xn)}n∈ω. Let q0, x and

{us}s∈x�split(q0) be obtained from the claim for r and {wi}i∈ω. We set X0 = {x}.
Let 0 ≤ n < ω. Suppose we have de�ned qn ∈ Q(C) and �nite Xn ⊆ [qn]. Let s ∈ splitn(qn).

Take the unique branch x ∈ Xn extending s and denote the set of all already considered branches

as Xs (i.e., all branches in Xn and those assigned to previous nodes in some order of splitn(qn)).

We denote r = x � splitn+1(qn), i = x(|s|) ∈ {0, 1}, and we set q(s, i) = qn(r). Let t ⊇ sa〈1− i〉
be such that [qn(t)] ∩ Cαx = ∅ for all already considered branches x ∈ Xs. Use previous claim

for qn(t) and {vj}j∈ω such that vj is de�ned as the maximum among ux�splitn+j+1(qn)
for all

already considered branches x ∈ Xs. We obtain condition q(s, 1 − i) ≤ qn(t), branch x and

sequence {us}s∈x�split(q(s,1−i)).
Finally, let Xn+1 be the set of all considered branches in this step, and

qn+1 =
⋃
{q(s, i) : s ∈ splitn(qn), i ∈ {0, 1}}.

One can see that the sequence {(qn, Xn)}n∈ω is a fusion sequence, so the fusion q′ is a condition.

The set K is de�ned as the set of all un =
⋃
{us : s ∈ splitn(q′)}. One can check that un ⊇ wn

and q′  ǔn ∈ Ḋ for all n. �

Then for some dense K ⊆ 2<ω we have V [H] � K ⊆ Ḋ[H]. Take Y =
⋂
t∈K(ω\At). Then

Y ∈ id(A) ∩ V and V [H] � Ẋ[H] ⊆ Y as desired. �

Lemma 16. Assume CH. Let A be an independent family and let 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be
a countable support iteration such that for each α there is a partition C of 2ω such that

V Pα � Qα = Q(C).

Then for every α ≤ ω2 the ideal id(A)V
P
α is generated by id(A) ∩ V . That is,

V Pα � (∀X ∈ id(A)∃Y ∈ id(A) ∩ V such that X ⊆ Y ).

Proof. The proof is a straightforward corollary to the above Lemma and [13, Ch. VI, Theo-

rem 0.A.3]. �
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5. Selective independence

De�nition 17. Let F ⊆ P(ω).

(1) F is centered if for every H ∈ [F ]<ω the intersection
⋂
H ∈ F .

(2) F is said to be a P-set if for every countable subfamily H ⊆ F there is A ∈ F such that

A ⊆∗ H for every H ∈ H.
(3) F is a Q-set if for every bounded partition E of ω there is X ∈ F such that |X ∩ E| ≤ 1

for every E ∈ E . We say that X is a semi-selector for E .

De�nition 18. A family F ⊆ P(ω) is said to be Ramsey if F is a centered family containing

the co-�nite sets which is both, a P-set and a Q-set.

Theorem 19. [12, Lemma 3.2] (CH) Let 〈Pα, Q̇β : α ≤ δ, β < δ〉 be a countable support iteration

of proper ωω-bounding posets. Let F ⊆ P(ω) be a Ramsey set and let H ⊆ P(ω)\〈F〉up. Suppose

for each α < δ, V Pα � P(ω) = 〈F〉up ∪ 〈H〉dn. Then, the same property holds at δ, i.e.

V Pδ � P(ω) = 〈F〉up ∪ 〈H〉dn.

We use a combinatorial characterization of Q-�lters, a similar one to a characterization of happy

families, see Proposition 0.7 by A. Mathias [8] or Proposition 11.6 in [7].

Lemma 20. Let F be a �lter. The following are equivalent:

(a) F is a Q-�lter.

(b) For any increasing function f ∈ ωω there is {k(n) : n ∈ ω} ∈ F such that f(k(n)) < k(n+ 1).

Proof. ((a)⇒ (b)) Inductively, choose a sequence {n(l)}l∈ω such that n(0) = 0 and

n(l + 1) = min{n : nl < n and ∀m ≤ nl(f(m) ≤ n)}.

We consider the partition E0 = {[n3l, n3l+3)}l∈ω. There is C1 ∈ F such that C1 is a semi-selector

for E0. Now, de�ne an equivalence relation E1 on C1 as follows:

m ∼E1 k i� m = k ∨m < k ≤ f(m) ∨ k < m ≤ f(k).

Each E1 equivalence relation has at most two members. Indeed, if there were three numbers

m1 < m2 < m3 in one equivalence class of E1 thenm1 < m2 < m3 ≤ f(m1). There are l1 < l2 < l3
such that mi ∈ [n3li , n3li+3). Then m1 < n3l2 ≤ m2 < n3l3 ≤ m3 ≤ f(m1). However, on the other

hand by the de�nition of sequence {n(l)}l∈ω we have f(m1) ≤ n3l2+1 < n3l3 , a contradiction.

Extend E1 to an equivalence relation E2 on ω by de�ning

m ∼E2 k i� m = k ∨m ∼E1 k.

There is C2 in F such that C2 is a semi-selector for E2. Without loss of generality C2 ⊆ C1

and 0 ∈ C2. Let {k(n)}n∈ω enumerate in increasing order C2. Thus for all n, n′ we have that

k(n) 6∼E2 k(n′). Thus, if n < n′ then k(n′) 6≤ f(k(n)) and so for all n ∈ ω, f(k(n)) < k(n+ 1).

((b)⇒ (a)) Let E be a bounded partition of ω. We set

f(n) = max
⋃
{E ∈ E : (∃i ≤ n) i ∈ E}.
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There is {k(n) : n ∈ ω} ∈ F such that f(k(n)) < k(n+ 1) for each n ∈ ω. The set {k(n) : n ∈ ω}
is a semi-selector for E . Indeed, k(n) ≤ f(k(n)) < k(n+1) and therefore k(n+1) is from di�erent

set of partition E than all k(i) for i ≤ n. �

Lemma 21. An ωω-bounding forcing notion preserves Q-�lters.

Proof. If P is an ωω-bounding forcing notion, F a Q-�lter in V , then we use part (2) of Lemma 20

for f ∈ V ∩ ωω dominating function g ∈ V P ∩ ωω. �

De�nition 22. An independent family A is said to be selective if it is densely maximal and fil(A)

is Ramsey.

Selective independent families exist under CH (see [12, 2]).

6. Indestructibility

Theorem 23. (CH) Let 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 be a countable support iteration such that for

each α, Qα = Q(Cα) for some partition Cα of 2ω. If A is a selective independent family then

(A is a selective independent family)V
Pω2 .

Proof. We begin with a proof that 〈fil(A) ∩ V 〉up has a property similar to being a happy family

by A. Mathias [8], see [7] as well. Note that A. Mathias [8, Proposition 0.10] has shown that

an ultra�lter G is Ramsey if and only if G is happy (see Proposition 11.7 in [7] as well).

Claim 1. In V Pα , let {Gn}n∈ω be a sequence of �nite subsets of 〈fil(A)∩V 〉up. There is {k(n) : n ∈
ω} ∈ fil(A) ∩ V such that

k(n+ 1) ∈
⋂
Gk(n).

Proof. G is a p-set and therefore there is C0 ∈ G such that C0 ⊆∗ G for each G ∈
⋃
{Gn : n ∈ ω}.

Thus, for some function f ∈ ωω

(∀n ∈ ω) C0 \ f(n) ⊆
⋂
Gn.

Since Pα is ωω-bounding, without loss of generality f ∈ V ∩ ωω, f is strictly increasing, and

n+2 < f(n). Let us take {k(n) : n ∈ ω} ∈ fil(A)∩V from Lemma 20 such that C = {k(n+1): n ∈
ω} ⊆ C0. Hence, we have k(n+ 1) ∈ C0 \ f(k(n)), and so

k(n+ 1) ∈
⋂
Gk(n).

�

We will prove by induction on α ≤ ω2 that the family A remains densely maximal in V Pα .

Suppose �rst that α is a limit. Note that for each β ≤ α

(fil(A))V
Pβ

= 〈fil(A) ∩ V 〉up.

Now, suppose for each β < α

V Pβ � A is densely maximal.
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That is V Pβ � fil(A) ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn = P(ω), i.e.

V Pβ � 〈fil(A) ∩ V 〉up ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn = P(ω).

However, by Shelah's preservation theorem

V Pα � 〈fil(A) ∩ V 〉up ∪ 〈{ω\Ah : h ∈ FF(A)}〉dn = P(ω).

Thus A remains densely maximal in V Pα .

Suppose V Pα � A is densely maximal. We will show that

V Pα+1 � A is densely maximal.

In V Pα+1 , take any Y ∈ P(ω)\〈fil(A) ∩ V 〉up. Suppose Y /∈ 〈{ω\Ah : h ∈ FF(A)}〉dn. Thus, for

all h ∈ FF(A), Y 6⊆ ω\Ah and so for all h ∈ FF(A), |Y ∩ Ah| = ω. Therefore in V Pα we can �x

p ∈ Qα and a Qα-name Ẏ for Y such that for all h ∈ FF(A),

p  |Ẏ ∩ Ah| =∞.

By Lemma 13 we can assume that for all m ∈ ω, for all t ∈ splitm(p) there is ut ∈ m+12 such

that

p(t)  Ẏ � (m+ 1) = ǔt.

Now, in V Pα for each t ∈ p, let

Yt = {m ∈ ω : p(t) 6 m̌ /∈ Ẏ }.

Claim 2. (i) p(t)  Ẏ ⊆ Y̌t.
(ii) If s ⊆ t then Yt ⊆ Ys.
(iii) Yt ∈ fil(A) ∩ V Pα .

(iv) If m ∈ Ys for s ∈ splitn(p), and n < m then there is t ∈ splitm(p) extending s such that

p(t)  m̌ ∈ Ẏ .

Proof. (i) Let m ∈ Ẏ [G] for a generic G containing p(t). If p(t)  m̌ /∈ Ẏ then m /∈ Ẏ [G],

a contradiction.

(ii) Since p(t) ⊆ p(s), from p(t) 6 m̌ /∈ Ẏ we obtain p(s) 6 m̌ /∈ Ẏ .
(iii) If Yt /∈ fil(A) ∩ V Pα then there is h ∈ FF(A) such that Yt ⊆ ω\Ah, i.e. Yt ∩Ah = ∅. Since

p(t)  Ẏ ⊆ Y̌t, then p(t)  Ah ∩ Ẏ = ∅. However, p(t)  |Ẏ ∩Ah| =∞, which is a contradiction.

(iv) Since p(s) 6 m̌ /∈ Ẏ there is a condition q ≤ p(s) such that q  m̌ ∈ Ẏ . However, by

our assumption on p due to Lemma 13, for any t ∈ splitm(p) we have either p(t)  m̌ ∈ Ẏ or

p(t)  m̌ /∈ Ẏ . Since {p(t) : t ∈ splitm(p), t ⊇ s} is pre-dense in p(s), there is t ∈ splitm(p)

extending s such that p(t)  m̌ ∈ Ẏ . �

Claim 3. We can assume that a dense set X ⊆ [p] with C-di�erent elements has the associated

family {yx : x ∈ X} of sets in fil(A) such that if t = x � splitn(p) then

p(t)  yx(n) ∈ Ẏ .
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Proof. Hence, Yt ∈ 〈fil(A) ∩ V 〉up for each t ∈ split(p). By Claim 1 for Gn being the family of

all Yt's with t ∈ split≤n+2(p), we obtain {k(n) : n ∈ ω} ∈ fil(A) such that

k(n+ 1) ∈
⋂
{Yt : t ∈ split≤k(n)+2(p)}.

Moreover, by part (4) of Claim 2, for any s ∈ splitk(n)+1(p) there is t ∈ splitk(n+1)(p) extending s

such that p(t)  ǩ(n+ 1) ∈ Ẏ . For each branch x ∈ [p] we consider set

i(x) = {i : p(t)  ǩ(i+ 1) ∈ Ẏ for t = x � splitk(i+1)(p)}.

We say that x ∈ [p] is acceptable branch if i(x) is co�nite. The smallest n with i(x) ⊇ [n,∞) is

called a degree of acceptability of x. Due to part (4) of Claim 2 there are acceptable branches

extending each s ∈ p. Note that for each acceptable branch x, yx = {k(i+ 1): i ∈ i(x)} ∈ fil(A).

We continue using a fusion argument. We build a fusion sequence {(pn, Xn)}n∈ω.
To de�ne p0, take some acceptable branch x extending some node in splitk(0)+1(p) with degree

of acceptability at most 1, and a node s = x � splitk(1)(p). We set p0 = p(s) and X0 = {x}.
Let us assume that pn and Xn are de�ned, and consider s ∈ splitk(n)(p) ∩ split(pn). Take

the unique acceptable branch x ∈ Xn extending s. We set q(s, i) = qn(r). De�ne i = x(|s|) ∈
{0, 1} and si = x � splitk(n+1)(p). Then we set s1−i to be an extension of sa〈1− i〉 such that:

(i) [p(s1−i)]∩Cαx = ∅ for all already considered acceptable branches x (i.e., all branches in Xn

and those assigned to previous nodes in some order of splitk(n)(p) ∩ split(pn)).

(ii) s1−i ∈ splitk(m+1)(p) with m ∈ i(x) for some acceptable branch x ∈ [p] with degree of

acceptability at most m.

Finally, let Xn+1 be the set of all considered acceptable branches in this step, and

pn+1 =
⋃
{p(si) : s ∈ splitk(n)(p) ∩ split(pn), i ∈ {0, 1}}.

One can see that the sequence {(pn, Xn)}n∈ω is a fusion sequence with witnesses. Moreover,

the fusion q =
⋂
{pn : n ∈ ω} satis�es the requirements. We set X =

⋃
{Xn : n ∈ ω}.

We shall show that the family {yx : x ∈ X} possesses the desired properties. Indeed, let

x ∈ X. For each n ∈ ω we have yx(n) = k(i(x)(n) + 1). Due to construction of q we have

x � splitn(q) = x � splitk(jn+1)(p) for some increasing sequence {ji}i∈ω, and if t = x � splitn(q)

then p(t)  ǩ(jn + 1) ∈ Ẏ . Thus k(jn + 1) ∈ yx and consequently jn ≥ i(x)(n) for each n.

Let us now �x n and consider t = x � splitn(q). The de�nition of yx guaranties that p(s) 
ǩ(i(x)(n) + 1) ∈ Ẏ for s = x � splitk(i(x)(n)+1)(p). Thus we have q(s)  y̌x(n) ∈ Ẏ . On the other

hand, s = x � splitk(i(x)(n)+1)(p) ⊆ x � splitk(jn+1)(p) = x � splitn(q) = t. �

Our last part of the proof resembles the proof of previous claim. Let xs for s ∈ split(p) be

the branch in X extending s such that if s ⊆ t ⊆ xs then xt = xs. The corresponding yxs is

denoted ys. The set ys belongs to 〈fil(A) ∩ V 〉up. By Claim 1 for Gn being the family of all yt's

with t ∈ split≤n+2(p), we obtain {l(n) : n ∈ ω} ∈ fil(A) such that

l(n+ 1) ∈
⋂
{yt : t ∈ split≤l(n)+2(p)}.
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Let us denote C = {l(n+ 1): n ∈ ω}. We shall construct a condition q ≤ p such that q  Č ⊆ Ẏ .
Then q  Ẋ ∈ fil(A) which is a contradiction.

We build a fusion sequence {(pn, Xn)}n∈ω. Let p0 = p, X0 = {xt} for t ∈ split0(p), and suppose

we have de�ned pn. For each t ∈ splitn(pn) and each i ∈ {0, 1} take w∗(t, i) ∈ splitl(n)+1(p) such

that w∗(t, i) end-extends tai. Then

l(n+ 1) ∈
⋂
{yw∗(t,i) : t ∈ splitn(pn), i ∈ {0, 1}}

and so for each t, i we take w(t, i) = xw∗(t,i) � splitl(n+1)(p). Note that by Claim 3 and the fact

that l(n+ 1) ≥ j for l(n+ 1) = yw∗(t,i)(j) we obtain

p(w(t, i))  ľ(n+ 1) ∈ Ẏ .

Take pn+1 =
⋃
{p(w(t, i)) : t ∈ splitn(pn), i ∈ {0, 1}} and Xn+1 = {xw(t,i) : t ∈ splitn(pn), i ∈

{0, 1}}. �

Theorem 24. The forcing notion Q(C) preserves P-points and Ramsey ultra�lters.

Proof. We prove just �rst part. The second claim follows from the �rst one and the fact that

the forcing notion Q(C) is ωω-bounding, see [7, Lemma 21.12]. Note that a family G generates

an ultra�lter on ω if and only if P(ω) = 〈G〉up ∪ 〈G∗〉dn.
Let U be an ultra�lter in V . We shall prove that the family U generates an ultra�lter in V Q(C),

i.e., V Q(C) � P(ω) = 〈U〉up ∪ 〈U∗〉dn. In V Q(C), take any set in P(ω). We �x p ∈ Q(C) and

a Q(C)-name Ẏ such that p  Ẏ ⊆ ω. By Lemma 13 we can assume that for all m ∈ ω, for all
t ∈ splitm(p) there is ut ∈ m+12 such that

p(t)  Ẏ � (m+ 1) = ǔt.

Note that the latter property remains true for any stronger condition q, since t in the m-th level

of q is an extension of some s in the m-th level of p. Let {xt : t ∈ p} ⊆ [p] be a dense set in [p]

containing C-di�erent elements (enumerated such that s ⊆ xs, and if s ⊆ t ⊆ xs then xt = xs).

We set Yt =
⋃
{us : s ⊆ xt}.

Claim. We can assume that the set Y0 = {Ys : s ∈ p} is in U or the set Y1 = {ω \ Ys : s ∈ p} is
in U .

Proof. We set U0 = {s ∈ p : Ys ∈ U} and U1 = {s ∈ p : (ω \ Ys) ∈ U}. The sets U0, U1 are disjoint

and their union is p. We may distinguish two cases:

(i) There is s ∈ p such that p(s) ⊆ U0. In this case, just take p(s).

(ii) For each s ∈ p there is t ∈ p(s) such that t ∈ U1. We build a fusion sequence {(pn, Xn)}n∈ω
such that the fusion has the required properties. Taking s ∈ split0(p) there is t ∈ p(s) such
that t ∈ U1. We set p0 = p(t) and X0 = {xt}.

Let 0 ≤ n < ω. Suppose we have de�ned pn ∈ Qα and �nite Xn ⊆ [pn]. Let s ∈ splitn(pn).

Take node r = xs � splitn+1(pn), and number i = xs(|s|) in {0, 1}. We set p(s, i) = pn(r).

Let t ⊇ sa〈1− i〉 be splitting such that t ∈ U1. We set p(s, 1− i) = p(t).
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Finally, let

pn+1 =
⋃
{p(s, i) : s ∈ splitn(pn), i ∈ {0, 1}}.

and let Xn+1 be the set of all xt's for t ∈ splitn+1(pn+1). One can verify that the sequence

{(pn, Xn)}n∈ω is a fusion sequence with witnesses.

�

We assume that Y0 ∈ U , the other case may be handled analogously. We take a pseudoint-

ersection Z of Y0 in U , with Z ⊆ Y∅. We shall simultaneously build two fusion sequences with

witnesses, namely {(p0n, X0
n)}n∈ω, {(p1n, X1

n)}n∈ω, and a partition of Z into two sets Z0, Z1 such

that for their respective fusions q0, q1 ≤ p we obtain q0  Ž0 ⊆ Ẏ and q1  Ž1 ⊆ Ẏ .
Let p0 = p1 = p, X0

0 = X1
0 = {Y∅}, and k0 = 0, k1 = 2. We assume that p0n, p

1
n, k2n, and

k2n+1 are constructed. Let t ∈ splitk2n(p) ∩ split(p0n), and set w∗(t) = xt � splitk2n+1
(p). For each

i ∈ {0, 1}, we take w∗(t, i) ∈ splitk2n+1+1(p) extending w
∗(t)ai. There is k2n+2 > k2n+1 + 1 such

that

Z \ k2n+2 ⊆
⋂
{Yw∗(t,i) : t ∈ splitk2n(p) ∩ split(p0n), i ∈ {0, 1}}.

We set w(t, i) = xw∗(t,i) � splitk2n+2
(p). Take pn+1 =

⋃
{p(w(t, i)) : t ∈ splitk2n(p) ∩ split(p0n), i ∈

{0, 1}} and Xn+1 = {xw(t,i) : t ∈ splitk2n(p) ∩ split(p0n), i ∈ {0, 1}}. One can see that p0n 

Ž ∩ [k2n, k2n+1) ⊆ Ẏ . The construction of condition p1n and the choice of number k2n+3 are done

similarly, and leads to p1n  Ž ∩ [k2n+1, k2n+2) ⊆ Ẏ . Finally, we de�ne

Z0 = Z ∩
⋃
{[k2n, k2n+1) : n ∈ ω} and Z1 = Z ∩

⋃
{[k2n+1, k2n+2) : n ∈ ω}.

�

One of the most interesting open questions regarding the independence number is the consis-

tency of i < a. Relying on the above preservation theorem, we obtain the consistency of i < aT
where aT is the least cardinality of a maximal almost disjoint family of �nitely branching subtrees

of 2<ω. Miller [9] showed that aT is the least cardinality of a partition of ωω into compact sets.

Let us recall that in the Q(C)-generic extension, C is no longer a partition of 2ω.

Theorem 25. Assume CH. There is a cardinals preserving generic extension in which

cof(N ) = a = u = i = ω1 < aT = ω2.

Proof. Let V denote the ground model. We assume that A is a selective independent family in V ,

U is a P-point in V , and E is a tight MAD family in V (according to [6]). Using an appropriate

bookkeeping device de�ne a countable support iteration 〈Pα, Q̇β : α ≤ ω2, β < ω2〉 of posets such
that for each α, Pα forces that Qα = Q(C) for some uncountable partition of 2ω into compact sets

and such that V Pω2 � aT = ω2. Pω2 is
ωω-bounding, and therefore cof(N ) = ω1. By Theorem 23,

the family A remains maximal independent in V Pω2 and so a witness to i = ω1. Similarly, U
generates a P-point in V Pω2 , so u = ω1 as well. And �nally, a = ω1 since E is a tight MAD family

(see [6]). �
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For a maximal ideal I on ω, the forcing notion QI is the one used by S. Shelah [12]. He

has shown that QI is proper, ωω-bounding and even has a Sacks property. In the QI-generic
extension, I is no longer a maximal ideal. The assumptions of the next theorem are satis�ed in

the constructible universe.

Theorem 26. Assume 2ω = ω1, 2ω1 = ω2, and ♦(δ<ω2:cf(δ)=ω1). There is a cardinals preserving

generic extension in which

cof(N ) = i = ω1 < aT = u = ω2.

Proof. Let V denote the ground model. We assume that A is a selective independent family

in V . Using an appropriate bookkeeping device de�ne a countable support iteration 〈Pα, Q̇β : α ≤
ω2, β < ω2〉 of posets such that for even α, Pα forces that Qα = Q(C) for some uncountable

partition of 2ω into compact sets, for odd α, Pα forces that Qα = QI for some maximal ideal

on ω, and such that V Pω2 � aT = u = ω2. Pω2 is ωω-bounding, and therefore cof(N ) = ω1. By

Theorem 23, the family A remains maximal independent in V Pω2 and so a witness to i = ω1. �

7. Questions

The poset Q(C) satis�es Axiom A. We recall that it is ωω-bounding and has the Sacks property

(see [9, 16]). By our Theorem 24, Q(C) preserves P-points and Ramsey ultra�lters. Further-

more, the countable support iteration of Q(C) preserves selective independent families, see our

Theorem 23. Finally, it preserves tight MAD families (see [6]).

Question 27. Does the forcing notion Q(C) preserve Q-points?

We know the only ZFC bound for aT , namely d ≤ aT (and its consequences). It is known

that aT = ω1 in Sacks and random real models. Together with our result we obtain that aT is

independent on i, u, r, cof(M), cof(N ), non(M), and cov(N ). However, we do not know about a

and non(N ) (see [6] as well).

Question 28. Is any of the inequalities a ≤ aT or non(N ) ≤ aT provable in ZFC?
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