UE GRUNDZÜGE DER MATHEMATISCHEN LOGIK (SS 2017): ÜBUNGSBLATT 10, 01.06.2017

Aufgabe 1. Sei \mathcal{L} eine beliebige Sprache und sei T eine widerspruchsfreie Theorie. Zeigen Sie, dass T eine vollständige Erweiterung hat.

Hinweis: Der Fall in dem \mathcal{L} abzählbar ist, wurde in der Vorlesung gemacht.

Aufgabe 2. Zeigen Sie mit Hilfe des Auswahlaxioms: Eine lineare Ordnung < auf einer Menge M ist genau dann eine Wohlordnung, wenn es keine Folge $\langle x_n : n \in \mathbb{N} \rangle$ von Elementen von M mit $x_{n+1} < x_n$ für alle $n \in \mathbb{N}$ gibt.

Aufgabe 3. Für eine Menge x definieren wir: $\bigcup^0 x = x$, $\bigcup^1 x = \bigcup x$ und $\bigcup^{n+1} x = \bigcup \bigcup^n x$. Ferner, sei $\operatorname{trcl}(x) = \bigcup \{\bigcup^n x : n \in \omega\}$. Wir sagen, dass x transitiv ist, wenn $\forall y (y \in x \to y \subseteq x)$. Seien x, y beliebige Mengen. Zeigen Sie, dass:

- (1) $x \subseteq \operatorname{trcl}(x)$;
- (2) trcl(x) transitiv ist;
- (3) wenn $y \subseteq x$ ist und x transitiv ist, dann auch $\operatorname{trcl}(y) \subseteq x$;
- (4) wenn $y \in x$, dann $trcl(y) \subseteq trcl(x)$;
- (5) wenn x transitiv ist, dann x = trcl(x).