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Abstract. Using almost disjoint coding, we show that for each 1 <

M < N < ω consistently d = ag = ℵM < c = ℵN , where ag = ℵM is
witnessed by a Π1

2 maximal cofinitary group.
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1. Introduction

We will be interested in subgroups of S∞, the group of all permutations
of the natural numbers which have the additional property that all of their
non-identity elements have only finitely many fixed points. Such groups are
referred to as cofinitary groups, while permutations which have only finitely
many fixed points are referred to as cofinitary permutations. A cofinitary
group which is not properly contained in another cofinitary group, is called
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a maximal cofinitary group, abbreviated MCG. The existence of maximal
cofinitary groups follows from the axiom of choice, which leaves many ques-
tions open regarding their possible cardinalities and their descriptive set-
theoretic definability.

The study of the possible sizes of maximal cofinitary groups, i.e., of the
set

spec(MCG) := {|G| : G is a maximal cofinitary group}
was of interest since the early development of the subject. Adeleke [1] proved
that every maximal cofinitary groups is uncountable, Neumann showed that
there is always a maximal cofinitary group of size c, while Zhang [22] showed
whenever ω < κ ≤ c, consistently there is a maximal cofinitary group of size
κ. A systematic study of spec(MCG) is found in [4], a study which was later
generalized to analyze also the spectrum of the κ-maximal cofinitary groups
(see [6]), where κ is an arbitrary regular uncountable cardinal. In [14] it was
shown that the minimum of spec(MCG), denoted ag, can be consistently of
countable cofinality.

Note that any two distinct elements of a cofinitary group are eventually dif-
ferent reals and so cofinitary groups can be viewed as particular instances of
almost disjoint families. Exactly this similarity was one of the major driving
forces in the early studies of the definability properties of maximal cofini-
tary groups. While there are no analytic maximal almost disjoint families, a
well-known result of A. R. D. Mathias, see [19], in the constructible universe
L there is a co-analytic maximal almost disjoint family (see [20]). Regard-
ing the definability properties of maximal cofinitary groups, Gao and Zhang
(see [15]) constructed in L a maximal cofinitary group with a co-analytic
set of generators, a result which was later improved by Kastermans [18],
who showed that in L there is a co-analytic maximal cofinitary group. The
existence of analytic maximal cofinitary groups was one of the most inter-
esting open questions in the area, a question which was answered in 2016
by Horowitz and Shelah [16], who showed that there is a Borel maximal
cofinitary group.1 Further studies of the definability properties of maximal
almost disjoint families can be found in [3, 9, 12, 21].

The present paper is motivated by the following question: What can we
say about the definability properties of maximal cofinitary groups G such
that |G| < c? Clearly a Borel maximal cofinitary group must be of size
continuum and a Σ1

2 maximal cofinitary group must be either of size ℵ1 or
continuum, since a Σ1

2 set is the union of ℵ1 many Borel sets. We show:

Theorem 1.1. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving
generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN
1Another interesting dissimilarity between MAD families and MCGs is the fact that

consistently d = ω1 < ag = ω2 (see [17]), while the consistency of d = ω1 < a = ω2 is a
well-known open problem.
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and in which there is a Π1
2 definable maximal cofinitary group of size ag.

The cardinal characteristics b and d referred to in the above theorem are
the bounding number and the dominating number. For readers unfamiliar
with them, we review definitions of all cardinals characteristics mentioned
in this paper in the next section.

Our techniques allow us to have also M = 1, i.e., to construct a model in
which ag = d = ℵ1 < c = ωN and in which ag is witnessed by a Π1

2-maximal
cofinitary group. The projective definition to the witness of ag though in
this model is perhaps not optimal. The consistency of ag = d = ℵ1 < c with
a Π1

1 witness to ag is work in progress of the first and third authors (see [11]).
The main result of the paper, should also be compared to [13], where

the authors construct a co-analytic, Cohen indestructible maximal cofinitary
group in L. Thus, consistently ag = ω1 < d = c with a Π1

1-witness to ag.
The methods of [13] and the current paper differ significantly. While the

result of [13] is rooted in the preservation properties of a specially constructed
cofinitary group in L, and so necessarily of cardinality ℵ1, the techniques of
the current paper allow us to control the value of ag beyond ℵ1.

There are many remaining open questions, some of which will be discussed
in our final section.

2. Some Notation and Terminology

Given an index set A, we will call a mapping ρ : A→ S∞ such that im(ρ)

generates a cofinitary group, a cofinitary representation. In particular, given
a freely generated cofinitary group with generating set {ga : a ∈ A}, the
mapping ρ : A → S∞ sending each a to ga is a cofinitary representation.
Given such a cofinitary representation ρ and an index a which does not
occur in dom(ρ), we denote by Wρ,{a} the set of all words w of the form
w = ajnn · · · aj11 where for each l such that 1 ≤ l ≤ n we have al ∈ dom(ρ) ∪
{a}, jl ∈ {1,−1} and no cancellations are allowed; or n = 0 and w = ∅.2
An injective partial function s : N ⇀ N will be referred to as a partial
permutation. Given a word w ∈ Wρ,{a} and a (possibly partial) injective
mapping s, we denote by w[s] the (possibly partial) injective mapping w[s]

obtained by substituting each occurrence of bj where b ∈ dom(ρ) and j ∈
{−1, 1} with ρ(b)j and aj where j ∈ {−1, 1} with sj . Now, given a word
w ∈ Wρ,{a}, w = ajnn · · · aj11 , where jl ∈ {−1, 1} and a (possibly partial)
injective mapping s, the evaluation path of a given integer m under w[s] is
the sequence 〈mk : k ∈ ω′〉, where m0 = m, for each k if k = nl + i, then

mk = (ajii [s] ◦ · · · ◦ aj11 [s] ◦ wnl[s])(m),

where ω′ is either ω, or denotes the least natural number for which mω′ is
not defined.

2Such words are referred to as reduced words.
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Following the notation of [13], we denote by use(w, s,m) the set of natural
numbers appearing in the evaluation path of m under w[s].

Another notion naturally appearing in the analysis of the fixed points and
evaluation paths associated to a given word w, is the notion of a circular shift
of a word (see [13]). More precisely, given a word w = wn · · ·w1, where wi =

ajii , ji ∈ {−1, 1} for each i, and a permutation σ : {1, · · · , n} → {1, · · · , n}
such that σ(i) = i+ k mod n for some k ∈ N, we will refer to wσ(n) · · ·wσ(1)

as a circular shift of w. Thus, in particular, for each n there are only finitely
many circular shifts of a given word.

Finally, for w0, w1 ∈ Wρ,{a} we say w1 is a proper conjugate subword of
w0 if w0 = w−1w1w for some word w ∈Wρ,{a} \ {∅} and w1 6= ∅.

We review definitions of the well-known cardinal characteristics a, ag, b,
and d (for an introduction to cardinal characteristics, see [2]). An almost
disjoint family is a collection of infinite subsets of ω any two of which have
finite intersection. A maximal almost disjoint (short MAD) family is an
almost disjoint family which is not a proper subset of an almost disjoint
family.

Write ωω for the set of functions from ω to ω. Given f, g ∈ ωω write f≤∗g
to mean that {n : f(n) > g(n)} is finite. Now

a = min{|A| : A ⊆ P(ω), A is an infinite MAD family},
ag = min{|G| : G ⊆ ωω, G is a MCG},
b = min{|F| : F ⊆ ωω, (∀g ∈ ωω)(∃f ∈ F) f 6≤∗ g},
d = min{|F| : F ⊆ ωω, (∀g ∈ ωω)(∃f ∈ F) g ≤∗ f}

where of course |x| denotes the cardinality of x.

3. Adding cofinitary groups of coding permutations

Fix a recursive bijection

ψ : ω × ω → ω.

Suppose that ρ : A → S∞ is a cofinitary group presentation and let a
be an index not included in A (i.e., we ask a, a−1 /∈ A). Write G for the
group generated by im(ρ), W = Wρ,{a} for the set of reduced words in the
alphabet dom(ρ) ∪ {a, a−1}, WD for the set of words from W in which a or
a−1 occurs at least once, and WS for the set of words w ∈ WD without a
proper conjugate subword.

Further, suppose that we are given

• F = {fm,ξ : m ∈ ω, ξ ∈ ω1}, a family of almost disjoint permutations
(i.e., the graphs are pairwise almost disjoint subsets of ω×ω) so that
fm,ξ /∈ im(ρ) and 〈im(ρ), fm,ξ〉 is cofinitary for each m ∈ ω, ξ ∈ ω1.
• For each w ∈WS, a family Yw = {Y w

m : m ∈ ω} of subsets of ω1,
• For each w ∈WS a subset zw of ω.
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Write F for 〈F : w ∈WS〉, Y for 〈Yw : w ∈WS〉, and z̄ for 〈zw : w ∈WS〉.
We will define a σ-centered poset, denoted QF ,Y,z̄ρ,{a} , which adjoins a generic

permutation g such that the mapping ρ̂ : A ∪ {a} → S∞, which extends ρ
and sends a to g is a cofinitary representation; moreover, for each w ∈WS

• the permutation w[g] codes (in a sense about to be defined) the real
zw,
• for each m ∈ ψ[g], w[g] almost disjointly via the family Fm = {fm,ξ :

ξ ∈ ω1} codes Y w
m .

In order to define the poset we must discuss how each zw will be coded
and introduce some related terminology. To this end, let S0 be the unique
function from WS into the set of words in the alphabet {a, a−1, y, y−1} which
in each word replaces each letter from A with y (and inverses of letters from A

with y−1). Moreover, fix a function S : WS→ ω such that for all w,w′ ∈WS

:

• S(w) = S(w′) ⇐⇒ S0(w) = S0(w),
• lh(w) < lh(w′)⇒ S(w) < S(w′), and
• S(w) > 1.

Definition 3.1 (Coding). Let a sequence χ ∈ 2≤ω be given. Suppose σ is a
partial function from ω to ω and w ∈WS.

(1) We say (w, σ) codes χ with parameter m if and only if

(3.1) (∀k < lh(χ)) σS(w)·(k+1)(m) ≡ χ(k) (mod 2).

(2) Suppose now that lh(χ) < ω. Write w = w1w0 where w0 is shortest
so that its leftmost letter is a or a−1. We say that (w, σ) exactly
codes χ with parameter m if (w, σ) codes χ and in addition

w0w
S(w)·lh(χ)[σ](m) is undefined,

that is, if the path of m under w[σ] terminates as soon as possible.
(3) We say that m′ is a critical point in the path of m under (w, σ) if this

path terminates with m′ and has length S(w)(k+ 1)− 1 for some k.

Note that clearly (w, σ) can only exactly code χ if the latter is finite and
σ is not a bijection (i.e., σ or σ−1 is a partial function).

Finally given F ,Y, z̄, ρ, {a} as above we define Q = QF ,Y,z̄ρ,{a} . First we
define an auxiliary forcing Q0; it consists of all tuples p = 〈sp, F p, m̄p, sp,∗〉
where:

(1) sp is an injective finite partial function from ω to ω;
(2) F p is a finite subset of WS which is closed with respect to taking

subwords;
(3) m̄p = 〈mp

w : w ∈ dom(m̄p)〉 with dom(m̄p) ⊆ F p and each mp
w ∈ ω;

(4) sp,∗ = 〈sp,∗w : w ∈ dom(sp,∗)〉 is a finite partial function from F p to{
fm,ξ : m ∈ ψ

[
w[s]

]
, ξ ∈ Y w

m

}
;
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The extension relation for Q0 is defined as follows: q = 〈sq, F q, m̄q, sq,∗〉 ≤0

p = 〈sp, F p, m̄p, sp,∗〉 if and only if

(A) sq end-extends sp, F q ⊇ F p;
(B) for every w ∈ F p ifm ∈ fix(w[sq]), then there is a non-empty subword

w′ of w such that letting w = w1w
′w0 and letting 〈. . .m1,m0〉 be the

(w, sq)-path of m, mk ∈ fix(w′[sp]) where k is the length of w0; i.e.,
the path has the following form:

m
w1←−− mk

w′←−− mk
w0←− m

(C) sq,∗ ⊇ sp,∗ and for all f ∈ sp,∗, sq\sp ∩ f = ∅.
(D) m̄q � (dom(m̄p) ∩ dom(m̄q)) = m̄p � (dom(m̄p) ∩ dom(m̄q))

Finally, Q is defined to be the set of p ∈ Q0 which in addition to items
(1)–(4) above also satisfy

(5) for each w ∈ dom(m̄p) there exists a (unique) l which we denote by
lpw such that (w, s) exactly codes χzw�l with parameter mp

w;

The ordering on Q, which we denote by ≤ is just ≤0 ∩ (Q×Q).

Proposition 3.2. Let G be a Q-generic filter and let

σG =
⋃
{s : ∃F, m̄, s∗ s.t. 〈s, F, m̄, s∗〉 ∈ G}.

The permutation σG has the following properties:

(A) The group 〈im(ρ) ∪ {σG}〉 is cofinitary.
(B) If f is a ground model permutation, f /∈ 〈im(ρ)〉, 〈{f} ∪ im(ρ)〉 is

cofinitary and f is not covered by finitely many permutation in F ,
then there are infinitely many n such that f(n) = σG(n) and so
〈im(ρ) ∪ {σG} ∪ {f}〉 is not cofinitary;

(C) For each w ∈ WS there is mw ∈ ω such that w[σG] codes the char-
acteristic function of zw with parameter mw.

(D) For each w ∈WS, for all m ∈ ψ[w[σG]], for all ξ ∈ ω1

|w[σG] ∩ fm,ξ| < ω iff ξ ∈ Y w
m .

We shall now show these properties to hold, in a series of lemmas. It
is most convenient to start with the most involved of the series; it has a
precursor in [13, Lemma 3.12] and in conjunction with the following lemmas,
it proves Property (C).

Lemma 3.3 (Generic Coding). For any w ∈WD and any l ∈ N, let Dcode
w,l

denote the set of q ∈ Q such that w ∈ dom(m̄q) and for some l′ ≥ l, q exactly
codes zw � l′ with parameter m̄q

w. Then Dcode
w,l is dense in Q.

Proof. Suppose p ∈ Q and w ∈ WS are given. If w /∈ dom(m̄p) it is clear
that we can choose m large enough so that letting

q = 〈sp, F p, m̄p ∪ {(w,m)}, sp,∗〉
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we obtain a condition q ∈ Q with lqw = 0 (i.e., that we can chose m so that
(w, sp) codes the trivial string ∅ with parameter m).

So suppose w ∈ dom(m̄p). Write m for m̄p
w and l for lpw. It suffices to find

s ⊇ sp such that letting

q = 〈s, F p, m̄p, sp,∗〉

we obtain a condition q ∈ Q with lqw = l + 1.
Letm0 be the terminating value in the path ofm under w and suppose the

next letter in w that should be applied is ai for i ∈ {−1, 1}. Let W0 denote
the set of words w′ in dom(m̄p) whose path from mp

w′ also terminates with
m0 and with next letter also ai (we cannot avoid extending coding paths of
words in W0 and have to ensure exact coding for all of them). Note that
this path has length lpw′ · S(w′) if the right-most letter of w′ is a or a−1 and
lpw′ · S(w′) + 1 otherwise.

For each w′ ∈ W0 let g(w′) ∈ im(ρ) ∪ {∅} be the rightmost letter if this
letter is not a nor a−1, and g(w′) = ∅ otherwise. Then

m0 = g(w′)w′
S(w′)·lp

w′ [sp](m).

The next point in the path at which we must meet a coding requirement
for a word w′ ∈W0 will be reached after applying (w′)S(w′) to g(w′)−1(m0).
Write W (w′) for the set of initial segments of (w′)S(w′) and consider the tree

T =
⋃

w′∈W0

W (w′)

ordered by end-extension. We make finitely many extensions of sp, each
time extending a coding path starting with m0 by one step, working along
all words in T by induction on their length.

So suppose w′ ∈ T and we have already extended sp to s′ so that

w′[s′](m0) = m′,

and that for no extension w′′ of w′ in T is w′′[s′](m0) defined, and fix a word
ajw′ ∈ T where j ∈ {−1, 1}. For each w∗ ∈ W0 denote by l(w∗) the length
of the path of mp

w∗ under (w, s′). We shall now find s′′ extending s′.
Let

E = dom(s′) ∪ ran(s′) ∪ ran(m̄p)

and let F consist of all subwords of circular shifts of words in F p. Find m′′

satisfying the following requirements:

m′′ /∈
⋃
{fix(u[s′]) : u ∈ F \ {∅}},(3.2)

m′′ /∈
⋃
{fix(g−1

0 g1[s′]) : u0, u1 ∈ F ∩ 〈im(ρ)〉 \ {∅}, g0 6= g1},(3.3)

m′′ /∈
⋃
{giuj [s′][E] : i, j ∈ {−1, 1}, u ∈ F, g ∈ F ∩ 〈im(ρ)〉},(3.4)
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and if m′ is a critical point in the path under (w∗, s′) of m̄p
w∗,

m′′ ≡ zw∗
(

l(w∗) + 1

S(w∗) lh(w∗)

)
(mod 2).(3.5)

Note that all but the last requirement exclude only finitely many values for
m′′. To see that m′′ as above can be found, we show that m′ is a critical
point in the path under (w∗, s′) of m̄p

w∗ for at most a single w∗. Therefore
we can chose m′′ to be any large enough number with the parity prescribed
by (3.5).

Claim 3.4. There is at most one word w∗ ∈ W0 such that the path of mp
w∗

under (w∗, s′) terminates at m′ and l(w∗) + 1 = (lpw∗ + 1) · S(w∗) · lh(w∗),
i.e., so that we must respect the coding requirement (3.5) for w∗.

Proof. Suppose there are w∗0 6= w∗1 with the above property. Depending
on whether g(w∗i ) = ∅ or g(w∗i ) ∈ im(ρ) we have l(w∗i ) = k · lh(w∗i ) or
l(w∗i ) = k · lh(w∗i )− 1 for each i ∈ {0, 1}. First assume the words are not of
equal length, w.l.o.g. lh(w∗0) < lh(w∗1). But then

S(w∗0) · lh(w∗0) < S(w∗1) · lh(w∗1)− 1

so for at most one i ∈ {0, 1} can the length of the path from m0 to m′ under
(w∗i , s

′) be of length S(w∗0) · lh(w∗0) or S(w∗0) · lh(w∗0)−1. If on the other hand
lh(w∗0) = lh(w∗1) then since w∗0 6= w∗1 the path of m0 under (w∗0, s

′) must
diverge from its path under (w∗1, s

′) before reaching m′: These paths diverge
at some mk where w∗0 and w∗1 disagree at the next letter since by induction,
s′ was chosen to satisfy Requirements (3.3) and (3.4) each time we made
an extension; and these paths are long enough to witness a disagreement
between w∗0 and w∗1 because S(w∗i ) > 1 (this is necessary and sufficient to
deal with words where the only difference is in the first letter and this letter
is from im(ρ)). Claim 3.4. �

Let s′′ = s′ ∪ {(m′,m′′)}; the next two claims shall show that p′ =

〈s′′, F p, m̄p, sp,∗〉 is a condition in Q0 below p (that is, a condition in Q
except for the requirement of exact coding).

Claim 3.5. For any w ∈ dom(m̄p)\W0, the path of mp
w under (w, sp) is the

same as under (w, s′′).

Proof. This is obvious by Requirement (3.4) above. Claim 3.5. �

The next claim shows that p′ ≤0 p.

Claim 3.6. For every w ∈ F p and m ∈ fix(w[s′′]) there is a non-empty
subword w0 of w such that letting w = w′w0w

′′ and letting 〈. . .m1,m0〉 be
the (w, s′′)-path of m, mk ∈ fix(w0[s′]) where k is the length of w′′; i.e., the
path has the following form:

m
w′←−− mk

w0←−− mk
w′′←− m.
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Proof. Fix w ∈ F p. Assume that m0 ∈ fix(w[s′′]) \ fix(w[s′]). As the (w, s′)-
path of m0 differs from the (w, s′′)-path, the latter must contain an applica-
tion of a to m′ or of a−1 to m′′. Write this latter path as

(3.6) . . .mk(3)
w′′←− mk(2)

aj←− mk(1)
w′←− mk(0) = m0

where j ∈ {−1, 1} and mk(1) = n when j = 1, mk(1) = n′ when j = −1;
moreover we ask that w′, w′′ ∈W are the maximal subwords of w such that
from mk(0) to mk(1) and mk(2) to mk(3), the path contains no application of
a to m′ or of a−1 to m′′ (allowing either of w′, w′′ to be empty). Thus, w′

and w′′ correspond to path segments where s′ and s′′ agree:

w′[s′′](mk(0)) = w′[s′](mk(0)) = mk(1),

w′′[s′′](mk(2)) = w′′[s′](mk(2)) = mk(3).

It is impossible that w = w′′ajw′ and m0 = mk(3) (for then

m′′ = (w′w′′)−j [s′′](m′),

again contradicting the choice of m′′). Therefore, at step k(3) again a is
applied to m′ or a−1 to m′′ by maximality of w′′. Write the path as

. . .
aj
′

←− mk(3)
w′′←− mk(2)

aj←− mk(1)
w′←− mk(0) = m0

with j′ ∈ {−1, 1} and observe:
1. mk(2) = mk(3); for otherwise, m′′ = (w′′)i[s′](m′) for some i ∈
{−1, 1}, contradicting the choice of m′′.

2. Thus, w′′ 6= ∅, since on one side of w′′ we have a and on the other
a−1 and w is in reduced form.

3. As m′′ /∈ fix(w′′[s′]), we have that mk(2) = mk(3) = m′.
So m′ ∈ fix(w′′[s′]) proving the claim. Claim 3.6. �

Repeating the above argument for each relevant word in T we obtain a
condition q ≤ p also satisfying the exact coding condition (5) and such that
for each w∗ ∈W0, l

q
w∗ = lpw∗ + 1 as promised. Lemma 3.3. �

The next lemma shows that g is permutation of ω.

Lemma 3.7. For each n ∈ ω the sets Dn = {q ∈ Q : n ∈ dom(sq)} and
Dn = {q ∈ Q : n ∈ ran(sq)} are dense in Q.

Proof. To see Dn is dense, let p ∈ Q be given and find q ∈ Dn, q ≤ p.
If n occurs as the last value in a coding path, the previous lemma applies.

Otherwise let W ∗ be the set of subwords of circular shifts of words in F p

and pick n′ arbitrary such that

n′ /∈
⋃{

fix(w′[sp]) : w′ ∈W ∗ \ {∅}
}
,

n′ /∈
⋃{

w′[sp]i(n) : i ∈ {−1, 1}, w′ ∈W ∗
}
, and

n′ /∈ ran(sp).
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Let s′ = s ∪ {(n, n′)} and q = 〈s′, F p, m̄p, sp,∗〉. Then q ∈ Q and q ≤ p by
exactly the same argument as in Claims 3.5 and 3.6 above. The case Dn is
symmetrical and is left to the reader. �

Property (A) above is established by the previous lemma and the following
one.

Lemma 3.8. For each w ∈Wρ,{a}, the set

Dw = {q ∈ Q : q  |fix(w[σG])| <∞}

is dense in Q.

Proof. First note that q  |fix(w[σG])| <∞ if w ∈ F q: This is because such
q forces—by the definition of the ordering on Q—that any fixed point of
w[σG] must arise from a fixed point of w′[sq] where w′ is a subword of w and
there are only finitely many such points.

Therefore clearly Dw is dense, since we may always add the shortest con-
jugated subword of any word w to F q to form a new condition, and of course
w[σG] has the same number of fixed points as its shortest conjugated sub-
word. �

The next lemma shows Property (B) above. Moreover, Property (D) is
a direct corollary to this lemma and the almost disjoint requirement in the
extension relation of our poset.

Lemma 3.9. Suppose we are given m ∈ ω, w ∈WS and τ ∈ S∞.
(1) If τ /∈ 〈im(ρ)〉, 〈im(ρ), τ〉 is cofinitary, and τ is not covered by finitely

many elements of F , the set Dhit
τ,m = {q ∈ Q : (∃n ≥ m) w[sq](n) =

τ(n)} is dense.
(2) If τ ∈ F , τ = fwn,ξ, and ξ /∈ Y w

m then too is the set Dhit
τ,m dense.

(3) If τ ∈ F , τ = fwn,ξ, and ξ ∈ Y w
m the set Dhit

τ,m∪{p ∈ Q : n ∈ ψ[w[sp]]}
is dense in Q.

Proof. Let τ and m as in the lemma be given. Note that in all three cases
τ /∈ 〈im(ρ)〉 and 〈im(ρ), τ〉 is cofinitary and we can assume τ /∈ s∗,p (for in
the third case, otherwise n ∈ ψ[w[sp]]) and therefore that

(3.7) |τ \
⋃
sp,∗| = ω.

Let E′ = dom(sp) ∪ ran(sp) ∪ ran(m̄p), and find n ∈ ω \m such that

n /∈ τ−1
[⋃{

fix(w[s]) : w ∈ F ∗ \ {∅}
}]
,

n /∈ τ−1
[⋃{

g−1w′[s]i[E′] : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ 〈 im(ρ)〉
}]
,

n /∈
⋃{

fix(τ−1g−1w′[s]i) : i ∈ {−1, 1}, w′ ∈ F ∗, g ∈ F ∗ ∩ 〈 im(ρ)〉
}
, and

τ(n) 6= f(n) for each f ∈ sp,∗.

The first two requirements obviously exclude only finitely many n; the same
holds for the third requirement since τ /∈ 〈im(ρ)〉 and 〈im(ρ), τ〉 is cofinitary.
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Since the last requirement holds for infinitely many n by (3.7), we can pick
n satisfying all the requirements.

It follows that letting n′ = τ(n) and E = {n}∪dom(sp)∪ran(sp)∪ran(m̄p),
n′ satisfies the requirements from (3.2)–(3.5). Therefore as in Lemma 3.3 we
can let s = sp ∪ {(n, n′)} and q = 〈s, F p, m̄p, sp,∗〉 is a condition below p

satisfying q ∈ Dhit
τ,m. �

Finally we show the following.

Lemma 3.10. The forcing Q is Knaster.

Proof. It is straightforward to check that if p, q ∈ Q are such that sp = sq

and m̄p agrees with m̄q on dom(m̄p) ∩ dom(m̄q) then

r = 〈sp, F p ∪ F q, m̄p ∪ m̄q, sp,∗ ∪ sq,∗〉

is a condition in Q and r ≤ p, q. Therefore Q is Knaster by a standard
∆-systems argument. �

4. The forcing iteration

Since the proof is long and involved, we present a short road-map which
may also be used as a reference for notation. We proceed in several steps:

(1) We start with the constructible universe L as the ground model.
We chose a sequence 〈Sδ : δ < ωM 〉 of stationary subsets of ωM−1

and force to add a sequence 〈Cδ : δ < ωM 〉 such that Cδ is a club
in ωM−1 which is disjoint from Sδ, “killing” the stationarity of Sδ.
Then we force to add a sequence 〈Yδ : δ < ωM 〉 such that Yδ ⊆ ω1

and Yδ “locally codes” Cδ. By “locally coding” we mean the property
(∗ ∗ ∗)γ,m below. For this purpose we also have to add a sequence
W = 〈W 0

γ : γ ∈ Lim(ωM )〉 of auxillary subsets of ω1 where W 0
γ will

serve as a code for the ordinal γ.
The forcing that adds 〈Cδ : δ < ωM 〉, the auxillary setsW, as well

as 〈Yδ : δ < ωM 〉 is denoted by P∗0, and the (P∗0, L)-generic extension
is denoted by V1. It will be the case that P(ω)V1 = P(ω)L.

(2) We force over V1 to add a sequence

C = 〈cWγ : γ ∈ Lim(ωM )〉

of reals such that cWγ codes W 0
γ . We denote the forcing that adds C

by P(C) and the (V1,P(C))-generic extension by V2.
(3) We increase 2ω by adding ωN -many reals forcing with Add(ω, ωN ).

Write V3 for the (V2,Add(ω, ωN ))-generic extension.
(4) We now force to add the definable MCG. This is done in an itera-

tion P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉 of length ωM over V3. The final
(V3,P(G))-generic extension is denoted by L[G].

We denote the (V3,PGα)-generic extension by V3[GGα]. At step α <
ωM in the iteration we force over V3[GGα] with Qα = PFα ∗ Pcd

Fα ∗ P
G
α

where:
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(a) The first forcing PF adds a family Fα of size ω1 consisting of
cofinitary permutations of ω. We do this so that in the final
model L[G] the graphs of any two elements of

⋃
α<ωM

Fα will
be almost disjoint.

(b) The next forcing Pcd
Fα adds a real cFα which almost disjointly

codes Fα via a definable almost disjoint family F∗ ∈ L which
remains fixed throughout the iteration.

(c) Finally PGα is the forcing discussed in the previous section adding
a single generator of our MCG, using all the machinery added in
the previous steps to ensure definability of the resulting group.

Step (1) is described in Section 4.1 below. In this part we do not add
countable sequences. Steps (2) and (3) are described in Section 4.2. Finally
Steps (4a)–(4c), in which we force to add a MCG of size less than 2ω, are
described in Section 4.3.

4.1. Preparing the Universe. We will work over the constructible uni-
verse L. Fix 2 ≤ M < N < ω arbitrary. We will show that consistently
ag = ωM < c = ωN with a Π1

2 definable witness to ag.
Let S̄ = 〈Sδ : δ < ωM 〉 be a sequence of stationary costationary subsets

of ωM−1 consisting of ordinals of cofinality ωM−2 and such that for δ 6= δ′,
Sδ ∩ Sδ′ is non-stationary. We also ask that S̄ be definable in LωM . Every
element of the intended Π1

2-definable maximal cofinitary group will witness
itself by encoding a pattern of stationarity, non-stationarity on a segment
(a block of the form [γ, γ + ω) for γ ∈ Lim(ωM )) of S̄. To achieve this, the
following terminology will be useful.

Definition 4.1. A suitable model is a transitive model M such that M �
ZF−, (ωM )M exists and (ωM )M = (ωM )L

M (by ZF− we mean an appropriate
axiomatization of set theory without the Power Set Axiom).

For each ordinal γ ∈ Lim(ωM ) write Wγ for the L-least subset of ωM−1

such that
〈γ,<〉 ∼= 〈Wγ ,∈〉.

For each m = 1, · · · ,M − 2, let S̄m = 〈Smξ : ξ < ωM−m〉 be a sequence
of almost disjoint subsets of ωM−m−1 which is definable LM−m−1 (without
parameters). Successively using almost disjoint coding with respect to the
sequences S̄m (see [10]), we can code each Wγ into a set W 0

γ ⊆ ω1 such that
the following holds:

If ω1 < β ≤ ω2 andM is a suitable model with ωM2 = β, {W 0
γ } ∪ ω1 ⊆M,

thenM � “Using the sequences {S̄m}m=M−2
m=1 , the set W 0

γ almost disjointly
codes a set W such that for some γ < ωM , 〈γ,<〉 ∼= 〈W,∈〉”.

Write PW for the forcing which adds W = 〈W 0
γ : γ ∈ Lim(ωM )〉. It is

easy to see that this forcing preserved stationarity of each Sδ for δ < ωM ,
preserves cofinalities, and does not add countable sequences (see again [10]).
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Fix (until the last paragraph of this section) some δ < ωM . Using bounded
approximations adjoin a closed unbounded subset Cδ of ωM−1 such that
Cδ ∩ Sδ = ∅. The forcing Pcl

δ which adds Cδ preserves stationarity of Sη for
each η ∈ ωM \ {δ}, has size ωM−1, preserves cardinals and cofinalities, and
doesn’t add any countable sequences.

Following the notation of [10], for a set of ordinals X, Even(X) denotes
the subset of all even ordinals in X. Furthermore reproducing the ideas
of [10], in L[Cδ] we can find subsets Zδ ⊆ ωM−1 such that

(∗)δ: If β < ωM−1 and M is a suitable model such that ωM−2 ⊆ M,
(ωM−1)M = β, and Zδ ∩ β ∈ M, then M � θ(ωM−1, Zδ ∩ β), where
θ(ωM−1, X) is the formula “Even(X) codes a triple (C̄, W̄ , X̄) where W̄ ,
X̄ are the L-least codes of ordinals γ, δ < ωM respectively such that γ is the
largest limit ordinal not exceeding δ, and C̄ is a club in ωM−1 disjoint from
Sδ".

Using the same sequences S̄m as when coding Wδ into W 0
δ , we code the

sets Zδ into subsets Xδ of ω1 with the following property (again using the
construction from [10]):

(∗∗)δ: Suppose that ω1 < β ≤ ω2,M is a suitable model with ωM2 = β, and
letting γ be the largest limit ordinal below δ, it holds that {W 0

γ , Xδ} ∪ω1 ⊆
M. Then M � ϕ(W 0

γ , Xδ), where ϕ(W,X,m) is the formula: “Using the
sequences {S̄m}m=M−2

m=1 , the set W almost disjointly codes W̄ 0 ⊆ ωM−1 and
X almost disjointly codes a subset Z of ωM−1 whose even part codes the
triple (C̄, W̄ , X̄) with W̄ = W̄ 0 and where W̄ , X̄ are the L-least codes of
ordinals γ, δ < ωM such that δ = γ + m and C̄ is a club in ωM−1 disjoint
from Sδ”.

Note that ϕ is a statement about (ωM−1)M and ({S̄m}m=M−2
m=1 )M, i.e.,

about the interpretation of their definition in M (indeed of course these
objects are generally too large to be a parameter in ϕ).

The forcing Pcd
δ over L[W][Cδ] described above which codes Zδ into Xδ

preserves stationarity of preserves stationarity of Sη for each η ∈ ωM \ {δ},
has size ωM−1, preserves cardinals and cofinalities, and doesn’t add countable
sequences.

Next, suppose δ = γ +m for γ ∈ Lim(ωM ). We will force over L[W][Xδ]

(which is the same as L[W][Cδ][Xδ]) to achieve localization of the pair of
sets W 0

γ , Xδ (see [10, Definition 1]). Let ϕ be as above.

Definition 4.2. Let W , X be subsets of ω1 such that ϕ(W,X,m) holds in
any suitable model M with (ω1)M = (ω1)L containing both W and X as
elements. Denote by L(W,X,m) the poset of all functions r : |r| → 2, where
the domain |r| of r is a countable limit ordinal such that

(1) if ξ < |r| then ξ ∈ X iff r(3 · ξ) = 1,
(2) if ξ < |r| then ξ ∈ X ′ iff r(3 · ξ + 1) = 1,
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(3) if ξ ≤ |r|, M is a countable suitable model containing r�ξ as an
element and ξ = ωM1 , then

M � ϕ(W ∩ ξ,X ∩ ξ,m).

The extension relation is end-extension.

For each γ ∈ Lim(ωM ) and m ∈ ω we use the poset L(W 0
γ , Xγ+m,m) to

add the characteristic functions of a subset Yγ+m of ω1 such that:

(∗ ∗ ∗)γ,m: If β < ω1, M is suitable with ωM1 = β, W 0
γ ∩ β ∈ M, and

Yγ+m ∩ β ∈M, thenM � ϕ(W 0
γ ∩ β,Xγ ∩ β,m).

With this the preliminary stage of the construction is complete. We let
P0 denote the forcing

PW ∗
∏
δ∈ωM

Pcl
δ ∗ Pcd

δ ∗ L
(
W 0
γ(δ), Xδ,m(δ)

)
.

where γ(δ) is the greatest limit ordinal below δ andm(δ) is the uniquem such
that δ = γ(δ) +m and where the product is with the appropriate support as
in [10]. Denote by V0 the resulting model. Note that V0 ∩ [ω]ω = L ∩ [ω]ω.

4.2. Adding reals. Fix (for the rest of the proof) a constructible almost
disjoint family

F∗ := {ai,j,ξ : i ∈ ω, j ∈ 2, ξ ∈ ω1 · 2}
which is Σ1 (without parameters) in Lω2 and such that ai,j,ξ ∈ Lµ whenever
Lµ � |ξ| = ω. Next force with the finite support iteration

P(C) := 〈PWδ , Q̇Cδ : δ ∈ Lim(ωM )}

where for each δ, Q̇2
δ adds the real c

W
δ which almost disjointly via the family

F∗ codes W 0
δ . Let V2 be the (Ṗ(C), V0)-generic extension .

Using the standard forcing Add(ω, ωN ) (finite partial functions from ωN×
ω into 2) adjoin ωN -many reals to V2 to increase the size of the continuum
to ωN and denote the resulting model to obtain a model V3.

4.3. Adding the MCG. We shall now define a finitely supported iteration
P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉 which adds a self-coding MCG to the model V3.

Along the iteration, for each α ∈ ωM we will define a PGα-name İα ⊆
[βα, βα+1) for a set of ordinals, such that at stage α of the construction we
adjoin reals encoding a stationary kill of Sδ (that is, a real locally coding Cδ)
for δ ∈ Iα. We then show that there is “no accidental coding of a stationary
kill” in Lemma 5.1.

In order to define P(G) := 〈PGα, Q̇Gα : α ∈ ωM 〉, first fix primitive set
recursive bijections

ψ : ω × ω → ω

and ψ′ : ω1×ω×ω → ω1. The function ψ′ will be used to identify the family
Fα which we add at stage α with a subset of ω1.
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Suppose now by induction we are in the (V3,PGα)-generic extension by
V3[GGα]. We presently define Qα = PFα ∗ Pcd

Fα ∗ P
G
α.

For the definition of PFα assume by induction that at previous stages we
have added families Fβ for β < α consisting of cofinitary permutations. We
now adjoin a family

Fα = 〈fαm,ξ : m ∈ ω, ξ ∈ ω1〉

of permutations such that |fαξ ∩ f
β
ξ′ | < ω when β < α or ξ 6= ξ′. For this we

can use a finite support iteration of the σ-centered posets with finite condi-
tions defined in [14]. Denote this forcing by PFα and by Vα,1 the resulting
model.

Next let Pcd
Fα be the forcing to add a real cα which almost disjointly via

the family F∗ (see Section 4.2) codes

ψ′

 ⋃
ξ<ω1

{ω · ξ +m} × fαm,ξ

 ,
a subset of ω1 which via ψ′ codes Fα. Let Vα,2 be the extension of Vα,1 which
contains cFα .

Finally, working in Vα,2 we define PGα, the forcing which adds a new group
generator.

Suppose by induction that PGα has added a cofinitary representation ρα. Its
image generates a cofinitary group Gα. Suppose by induction that dom(ρα) =

{βξ}ξ<α and write CDα = {βγ}γ<α, the set of generators used at a stage
before α. Moreover suppose ρα(βξ) = gξ for each ξ < α. Our next forcing
will add the generic permutation gα thus enlarging our group to Gα+1, the
group generated by Gα ∪ {gα}.

If α is a limit, let
βα = sup{βξ : ξ < α}

and otherwise, let
βα = βα−1 + |α · ω|

(we mean ordinal addition of course). This is the ordinal generator to which
we associate the generic generator gα so that

ρα+1 = ρα ∪ {(βα, gα)}

is a cofinitary representation.
Every element of the group freely generated by CDα ∪{a} corresponds to

a reduced word in the alphabet CDα ∪ {a}, where a = βα. Let WDα be the
set of such words in which a occurs. Note that the set WDα corresponds to
the new permutations in the group Gα+1. More precisely, every permutation
in Gα+1\Gα is of the form w[gα] (which is the same as ρα+1(w) by definition)
for some w ∈WDα.

As before write WSα for the set of words in WDα which do not have a
proper conjugated subword. Let iα : WSα → Lim(|α|) be a bijection sending
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a to 0; we shall use iα to associate the ordinal βα + iα(w) to each w ∈WSα.
We note that those elements of Gα+1 \ Gα which correspond via ρ−1

α+1 to
words in WSα will be associated to ordinals in [βα, βα+1), and in fact gα
is associated to βα (elements of Gα+1 which are not of the form ρα(w) for
w ∈WD \WS we can ignore for now) .

For each w ∈ WSα it is the pattern of stationarity on the block of S̄
consisting of the next ω ordinals after βα + iα(w) that will code w. Let for
such w ∈WSα

zw = {2m : m ∈ cFα } ∪ {3m : m ∈ cWβα+iα(w)}

and define
z̄ = 〈zw : w ∈WSα〉.

Further, define
Y w
m = Yβα+iα(w)+m

for each w ∈WSα and let

Y = 〈Y w
m : w ∈WSα,m ∈ ω〉.

With the notation from Section 3 we now define

QGα = QFα,Y,z̄ρα,{βα}.

In Proposition 3.2 we have seen that QGα adjoins a new generator gα such
that the following properties hold:

(Aα) The group 〈im(ρα) ∪ {gα}〉 is cofinitary.
(Bα) If f ∈ V Pα\Gα is a permutation which is not covered by finitely many

members of Fα and 〈Gα ∪ {f}〉 is cofinitary, then for infinitely many
k, f(k) = gα(k). This property, will eventually provide maximality
of GωM .

(Cα) for each w ∈ WSα there is mw ∈ ω such that for all k ∈ ω,
w2k[gα](mw) = χzw(k) mod 2. That is, every new permutation
w[gα] encodes Fα via the real cFα as well as W 0

βα+iα(w) via the real
cWβα+iα(w).

(Dα) for each w ∈WDα, for all m ∈ ψ
[
w[gα]

]
, for all ξ ∈ ω1

|w[gα] ∩ fαm,ξ| < ω iff ξ ∈ Y w
m .

That is, w[gα] encodes Y w
m for each m ∈ ψ−1(w[gα]).

As we are going to see in the next section, property (Dα) implies that the
new permutation w[gα] encodes itself via a stationary kill on the segment
〈Sδ : βα + iα(w) ≤ δ < βα + iα(w) + ω〉. Furthermore, this stationary kill is
accessible to countable suitable models containing w[gα].

Let İα be a P̄Gα+1-name for

Iα =
{
βα + iα(w) +m : w ∈WSα,m ∈ ψ

[
w[gα]

]}
.
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Thus Iα denotes the set of indices of the stationary sets for which we explicitly
adjoin reals encoding a stationary kill at stage α of the iteration. Note that
βα = sup Iα. With this the inductive construction is complete.

5. Definability and maximality of the group

Forcing with P(G) over V3 we obtain a generic G over L for the entire
forcing

P := P∗0 ∗ P(C) ∗Add(ω, ωN ) ∗ P(G)

recalling that P∗0 was the product which added the sets W 0
α and Yα+m, and

P(C) added a real cWα “locally coding” the ordinal α for each α ∈ Lim(ωM );
Add(ω, ωN ) made 2ω = ωN ; and finally P(G) added a generic self-coding
subgroup of S∞. Also recall that all the forcings after P∗0 are Knaster, and
P∗0 did not add any countable sequences.

Work in L[G] from now on. We shall now show that in this model there
is a MCG of size ℵN . First we must show that no real codes an “accidental”
stationary kill.

Lemma 5.1. For each δ which is not in

I =
⋃
{Iγ : γ ∈ Lim(ωM )}

there is no real in L[G] coding a stationary kill of Sδ, i.e., there is no r ∈
P(ω) ∩ L[G] such that L[r] � Sδ ∈ NS.

Proof. The argument closely follows [10, Lemma 3]; for the readers conve-
nience we give a brief sketch. Let İ be a name for I and suppose that for all
γ ∈ Lim(ωM ) we have p  δ̌ /∈ İ. In the (L,PW)-generic extension, write

P 6=δ0 =
∏

ξ∈ωM\{δ}

Pcl
ξ ∗ Pcd

ξ ∗ L(W 0
sup ξ∩lim, Xξ)

and

Pδ0 = Pcl
δ ∗ Pcd

δ ∗ L(W 0
γ , Xγ ,m).

where γ is the greatest limit ordinal below δ and m is the unique m such
that δ = γ +m.

Use that P∗0 = PW ∗ (P 6=δ0 ×Pδ0) to decompose the P0-generic G0 as follows:

G0 = GW ∗ (G 6=δ0 ×G
δ
0).

Working in L[G0] = L[GW ][G 6=δ0 ][Gδ0] let

P′ =
(

Add(ω, ωN ) ∗ P(G)
)
� p

be the quotient P/P∗0 below p, it is easy to verify that P′ ∈ L[GW ][G 6=δ0 ] since
the iteration never uses Yδ. Thus letting G′ be shorthand for the P′ generic,
we may decompose G = (GW ∗G 6=δ0 ∗G′)×Gδ0.

Let r be any real in L[G] = L[GW ][G 6=δ0 ][G′][Gδ0] and write

V∗ = L[GW ][G 6=δ0 ]
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Then in fact r ∈ V∗[G
′] = L[GW ][G 6=δ0 ][G′] since Pδ0 adds no countable se-

quences over V∗ and since P′ is Knaster and so Pδ0 also adds no countable
sequences over V∗[G′]. But since PW ∗P6=δ∗P′ preserves stationarity of Sδ, the
latter is still stationary in V∗[G′] = L[GW ][G 6=δ0 ][G′] and hence in L[r]. �

Let G be the group generated by {gα : α ∈ ωM} =
⋃
α<ωM

im(ρα). Given
w ∈ WDα, we write wG for ρα(w), i.e., for the interpretation of w that
replaces every generator index βγ by the corresponding generic permutation
gγ .

Lemma 5.2. The group G is a maximal cofinitary group.

Proof. By property (Aα) of the iterands Q̇α the group G is cofinitary. It
remains to show maximality. Suppose by contradiction that G is not max-
imal. Then there is a cofinitary permutation h /∈ G such that the group
generated by G ∪{h} is cofinitary. Find β such that h ∈ V3[Gβ]. Then there
is β′ ∈ {β, β + 1} such that h is not a subset of the union of finitely many
members of Fβ′ : For otherwise by the pigeonhole principle we find f ∈ Fβ
and f ′ ∈ Fβ+1 such that |f ∩ f ′| = ω, contradicting the choice of Fβ and
Fβ+1. Letting α = β′ + 1, by property (Bα) of the poset Qα in V3[Gα], the
generic permutation gα infinitely often takes the same value as h, and so
gα ◦ h−1 is not cofinitary, which is a contradiction. �

It remains to show that G is Π1
2.

Lemma 5.3. Let g ∈ S∞ ∩ L[G]. Then g = wG for some w ∈
⋃
α<ωM

WSα
if and only if there is γ ∈ Lim(ωN ) and k ∈ ω such that

(5.1) ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS} =

{m ∈ ω : (∃r ∈ P(ω)) L[r] � Sγ+m ∈ NS}

Proof. Suppose g = wG for w ∈ WSα and w has no proper conjugated
subword. We prove the lemma for γ = βα + iα(w). By property (Cα) of the
poset Qα the real g codes zw and therefore

Fβα+iα(w) ∈ L[g].

By property (Dα) of the poset Qα the real g codes almost disjointly via the
family Fα codes Yβα+iα(w)+m for each m ∈ ψ[g]. However Yβα+iα(w)+m codes
Xβα+iα(w)+m which implies that for every m ∈ ψ[g], the real g codes the
closed unbounded subset Cβα+iα(w)+m, which is disjoint from Sβα+iα(w)+m.

If m /∈ ψ[g], then βα + iα(w) +m /∈ Iα and so by Lemma 5.1, there is no
real r in L[G] coding the stationary kill of Sβα+iα(w)+m (i.e., such that in
L[r], Sβα+iα(w)+m is no longer stationary).

Now, suppose there is γ ∈ Lim(ωM ) and k ∈ ω such that the following
holds for all n ∈ ω: L[g] � Sγ+m ∈ NS if and only if m ∈ ψ[g]. Then by
Lemma 5.1, ψ[g] = {n ∈ ω : γ + n /∈ Iα} = ψ[wG] where w is such that
βα + iα(w) = γ for some α < ωM . So g = w[gα] = wG. �
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Lemma 5.4. Let g = wG for some w ∈ WSα with α < ωM . Then for
every countable suitable model M such that g ∈ M there is a limit ordinal
γ < (ωM )M such that

(L[wG])M � ψ[g] = {m ∈ ω : L[wG] � Sγ+m ∈ NS}.

Proof. LetM be a countable suitable model and let g ∈M. Let γ = iα(w).
Since wG encodes zw (by property (Cα) of Qα) we have that

{fαm,ξ : m ∈ ω, ξ < (ω1)M} ∈ M

and W 0
γ ∩ (ω1)M ∈ M. By property (Dα), wG almost disjointly codes

Yγ+m ∩ (ω1)M for each m ∈ ψ[gα] and hence Yγ+m ∩ (ω1)M ∈ M and also
Xγ+m ∩ (ω1)M ∈ M. These sets belong also to L[g]M. Then for each
m ∈ ψ[g], by (∗ ∗ ∗)γ,m we have that L[g]M � ϕ(W 0

γ ∩ β,Xγ+m ∩ β) where
β = (ω1)M. This means:

Using the sequences {S̄k}k=M−2
k=1 , the set W 0

γ ∩ β almost disjointly codes
W̄ 0 ⊆ ωN−1 and Xγ+m∩β almost disjointly codes a subset Z of ωM−1 whose
even part codes the triple (C̄, W̄ , X̄) with W̄ = W̄ 0 and where W̄ , X̄ are
the L-least codes of ordinals γ̄, δ̄ < ωM such that δ̄ = γ̄+m and C̄ is a club
in ωM−1 disjoint from Sγ̄ .

In particular, in the above γ̄ = γ, δ̄ = γ+m and C̄ is a club disjoint from
Sγ+m. As m ∈ ψ−1[g] was arbitrary, γ indeed witnesses that the lemma
holds. �

Lemma 5.5. Let g be a real such that for every countable suitable modelM
containing g as an element there is γ < (ωM )M such that

(L[g])M � ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS}.

Then for some α < ωM , g = wG where w ∈WSα.

Proof. By Löwenheim-Skolem take a countable elementary submodel M0

of Lωn+1 such that g ∈ M0 and let M be the unique transitive model
isomorphic toM0. Then by assumption

(L[g])M �
(
∃γ ∈ Lim(ωM )

)
ψ[g] = {m ∈ ω : Sγ+m is non-stationary}

so by elementarity the same holds with (L[g])M replaced by LωM+1 [g], and
hence for some γ ∈ Lim(ωM )

L[g] � ψ[g] = {m ∈ ω : L[g] � Sγ+m ∈ NS}.

But at some stage α < ωM we adjoined a generic permutation wG such that
βα + iα(w) = γ and by (5.1) we have

ψ[wG] = {m ∈ ω : (∃r ∈ P(ω) L[r] � Sγ+m ∈ NS}.

Since there is no accidental coding of a stationary kill (Lemma 5.1) ψ[g] ⊆
ψ[wG], and so g = wG. �

Lemma 5.6. The MCG G is Π1
2 in L[G].
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Proof. Recall that we denote by g0 the first generator added by PG1 = QG0 over
V3. Note first that g ∈ G if and only if there is k ∈ ω, α < ωM , and w ∈WSα
(i.e., w has no proper conjugated subwords) such that (g0)kg = wG.

By the previous lemmas, g ∈ G if and only if g ∈ S∞ and the following
statement Φ(g) holds: For every suitable countable model M if for some
g∗ ∈M∩ S∞

L[g∗]
M � ψ[g∗] = {m ∈ ω : Sm is stationary}

then for some k ∈ ω

L[(g∗)
kg]M �

(
∃γ ∈ Lim(ωM )

)
ψ
[
(g∗)

kg
]

=
{
m ∈ ω : Sγ+m is stationary

}
.

It is standard to see Φ(g) can be expressed by a Π1
2 formula. �

Thus we obtain our main result:

Theorem 5.7. Let 2 ≤M < N < ℵ0 be given. There is a cardinal preserving
generic extension of the constructible universe L in which

ag = b = d = ℵM < c = ℵN

and in which there is a Π1
2 definable maximal cofinitary group of size ag.

Proof. The construction outlined in steps (1) − (4) and developed in detail
in Sections 4 and 5, provide a generic extension in which there is a Π1

2-
definable maximal cofinitary group of cardinality ℵM , while c = ℵN . To
guarantee that in the same model there are no maximal cofinitary groups of
cardinality strictly smaller than ℵM , we slightly modify the definition of Qα

from step (4) to PFα ∗Pcd
Fα ∗P

G
α ∗ Ḋ, where D is Hechler’s forcing for adding a

dominating real. Thus in the final model, there is a scale of length ωM and
so b = d = ℵM . Since b ≤ ag we obtain ag = ℵM . �

6. Questions

In this section, we state some of the remaining open questions.

(1) Can one construct in ZFC a countable cofinitary group which can
not be enlarged to a Borel MCG? Note that in L, every countable
group can be enlarged to a Π1

1 MCG.
(2) Can we add a countable cofinitary group which cannot be enlarged

to a Π1
1 MCG using forcing?

(3) Is there a model where 2ω > ω1 and every cofinitary group G0 of size
< 2ω is a subgroup of a definable MCG of the same size as G0?

(4) Suppose that α < 2ω is a cardinal and there is a Σ1
2 MCG of size α.

Is there a Π1
1 MCG of size α?

(5) Is there a model where there is a projective MCG of size α with
ω1 < α < 2ω but there is no MED family of size α?
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