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Abstract. We prove that the generic maximal independent family obtained by itera-
tively forcing with the Mathias forcing relative to diagonalization filters is densely max-
imal. Moreover, by choosing the filters with some care one can ensure the family is
selective and hence forcing indestructible in a strong sense. Using this we prove that
under p = 2ℵ0 there are selective independent families and also we show how to add
selective independent families of any desired size.

1. Introduction

Recall that a family I ⊆ [ω]ω is independent if for all finite, disjoint A,B ⊆ I the set⋂
A \

⋃
B is infinite. Such a family is a maximal independent family or a m.i.f. if it is

maximal with this property. Denote by FF(I) the collection of finite functions h : I → 2
and for all h ∈ FF(I) let Ih :=

⋂
A∈dom(h)A

h where Ah = A if h(A) = 0 and Ah = ω \ A
if h(A) = 1. Thus I is independent if for all h ∈ FF(I) Ih is infinite. The sets of the form
Ih are called Boolean combinations.

Maximal independent families are one of several important examples of maximal com-
binatorial sets of reals studied in set theory. Other examples include MAD families, MED
families and ultrafilter bases. In each case there is an associated cardinal characteristic:
the least size of a maximal family of that type. In the case of m.i.f.’s this cardinal is
denoted i. See [3] for more information on i and related cardinals. When trying to prove
that such a cardinal can be consistently less than the continuum one often needs to con-
struct witnesses which satisfy a stronger maximality condition which can be preserved by
iterations of appropriate forcing notions.

In the case of independent families the associated “strongly maximal” families are called
selective independent families (defined below). These were first investigated by Shelah in
his proof of the consistency of i < u in [12], and further studies can be found in e.g.
[4, 5, 7, 13]. See in particular [8] where the authors proved that such families can be
preserved by any countable support iteration of Cohen preserving, proper forcing notions
for which each iterand preserves the dense maximality of the family1. However several
aspects of the combinatorics of such families remain unknown including exactly when
such families exist. In particular, it is open whether it is consistent with ZFC that there
are no selective independent families. In this paper we begin the investigation into such
questions. Our first main theorem is the following.
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1All undefined terms which we will use will be defined in Section 2 of this article.
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Theorem 1.1 (see Theorem 4.1 below). p = 2ℵ0 implies there are selective maximal
independent families.

This result actually follows as a corollary of the main result of the paper. To each
independent family I, maximal or not, there is an associated diagonalization filter, FI ,
the choice of which is not unique, so that forcing with the associated Mathias forcing
M(FI) adds a real m so that I ∪ {m} is independent but I ∪ {m, y} is not independent
for any ground model y ∈ [ω]ω. It follows that a finite support iteration of such Mathias
forcing notions of any length of uncountable cofinality, adding the generic real to the
independent family at each step, generically adds a maximal independent family. Now we
can state the main result of this paper.

Theorem 1.2. In the finite support iteration described above, the diagonalization filters
can be chosen so that the m.i.f. produced at the end is selective. More explicitly, any
finite support iteration of diagonalization filters produces a densely maximal family whose
density filter is a P -filter, and the diagonalization filters can be chosen so that the density
filter is a Q-filter as well.

While the the wording above is somewhat technical, the moral is that the obvious way of
producing a m.i.f. generically actually produces one which satisfies a stronger maximality
condition making its maximality forcing invariant (for appropriate forcing notions). An
immediate corollary of Theorem 1.2 is the following.

Theorem 1.3 (see Theorem 4.2 below). Let κ ≤ λ be cardinals of uncountable cofinality.
It is consistent that λ = 2ℵ0 and there is a selective independent family of size κ. If
moreover κ is regular then we can arrange i = κ as well.

Prior to the current work, the above was only known for the special case κ = ℵ1.

The rest of this paper is organized as follows. In the next section we recall some
preliminaries we will need. Section 3 provides the proof of Theorem 1.2. Section 4 proves
some corollaries and additional results including the proof of Theorems 1.1 and 1.3. The
paper closes with some relevant questions and lines for further research. Throughout
our notation is mostly standard, conforming to that of [11]. For all undefined notions
involving cardinal characteristics and set theory of the real line we refer the reader to [3]
or the monograph [1].

Acknowledgements. The authors thank Juris Stēprans for many helpful conversations
on the content relating to this paper as well as allowing us to inlcude Proposition 2.9.
They also thank Oswaldo Guzmán for pointing out Lemmas 6.6 and 6.7 of [9].

2. Preliminaries

Let I be an independent family. We say that I is densely maximal if for every X ∈ [ω]ω

and every h ∈ FF(I) there is an h′ ⊇ h in FF(I) so that either Ih′ \X or Ih′∩X is finite. In
other words, I is densely maximal if for any X /∈ I the collection of h ∈ FF(I) witnessing
that X cannot be added to I while preserving maximality is dense in the partial order
(FF(I),⊇).

The density filter of an independent family is the collection of all X ∈ [ω]ω so that for

every h ∈ FF(I) there is an h′ ⊇ h in FF(I) so that Ih′ \X is finite. Denote this filter by
fil(I). Densely maximal independent families are characterized by the partition property,
explained below.
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Fact 2.1 (The Partition Property). Let I be an independent family. The following are
equivalent:

(1) I is densely maximal.
(2) P (ω) = fil(I) ∪ ⟨ω \ Ih | h ∈ FF(I)⟩dn where ⟨X ⟩dn denotes the downward closure

of X ⊆ [ω]ω under ⊇∗.

Some more facts about the density filter are listed below. The following are easily
verified, see [2, Lemma 5.5].

Lemma 2.2.

(1) If I ′ is an independent family and I ⊆ I ′ then fil(I) ⊆ fil(I ′);
(2) If κ is a regular uncountable cardinal and ⟨Iα | α < κ⟩ is a continuous increasing

chain of independent families then fil(
⋃

α<κ Iα) =
⋃

α<κ fil(Iα);
(3) If I is an independent family then fil(I) =

⋃
{fil(J ) | J ∈ [I]≤ω}.

We will need another type of filter associated to an independent family as well, which
we define now.

Definition 2.3. Let I be an independent family. A diagonalization filter for I is any
filter F on ω which is maximal with respect to the property that all X ∈ F have infinite
intersection with every Ih.

Note that in general diagonalization filters will not be unique. For instance, if I is
not maximal then there is some real y /∈ I so that I ∪ {y} is independent and, by the
definition of independence it follows that both y and ω \ y have infinite intersection with
every Boolean combination of I. As such there are diagonalization filters containing both
y and ω\y (which obviously therefore cannot be the same). However, it is an easy but key
observation that any y which has infinite intersection with every Boolean combination of
a given independent family I must have infinite intersection with Ih∩Z for every element
Z ∈ fil(I) and every h ∈ FF(I). Hence if F is a diagonalization filter then fil(I) ⊆ F . In
the case of dense maximality we have the converse.

Lemma 2.4 (Essentially Fischer-Montoya, see [7]). Let I be independent. The following
are equivalent.

(1) I is densely maximal.
(2) The diagonalization filter is unique and equals the density filter.

Proof. Item (1) implies item (2) is Corollary 36 of [7]. Let us show that (2) implies (1).
Thus suppose that fil(I) is a diagonalization filter. Note that it must be the unique one
since any other diagonalization filter extends it but, being a diagonalization filter it is
maximal. We will show that I is densely maximal. By the partition property, Fact 2.1, it
suffices to show that

P (ω) = fil(I) ∪ ⟨ω \ Ih | h ∈ FF(I)⟩dn
Suppose that X /∈ fil(I). Since fil(I) is the unique diagonalization filter for I, it follows

that X is not in any diagonalization filter. This means in particular that it does not
have infinite intersection with every Boolean combination of I (otherwise we could apply
Zorn’s Lemma to the filter generated by X to get a diagonalization filter which contains
X). Therefore there is an h ∈ FF(I) so that X is almost disjoint from Ih. But then X is
almost included in ω \ Ih as needed. □
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We will need to force with the Mathias forcing of diagonalization filters so we recall this
now.

Definition 2.5. Let I be an independent family and let F be a diagonalization filter for
I. Denote by M(F) the Mathias forcing relativized to F . A condition for this forcing
notion is a pair (s,A) so that

(1) s ∈ 2<ω is the characteristic function of a finite set of natural numbers.
(2) A ∈ F
(3) min(A) ≥ dom(s).

If (s,A) and (t, B) are conditions in M(F) then we let (s,A) ≤ (t, B) just in case:

(1) s ⊇ t
(2) A ⊆ B
(3) If n ∈ dom(s) \ dom(t) and s(n) = 1 then n ∈ B.

If F is clear from context, or unimportant we often write M(I) to emphasize the inde-
pendent family. If G ⊆ M(I) is generic then the real mG := {n | ∃(s,A) ∈ Gs(n) = 1}
is denoted the Mathias real for I (or F depending on the context). It is readily checked
that m is an infinite set of natural numbers which diagonalizes F i.e. m ⊆∗ A for each
A ∈ F where X ⊆∗ Y means that X \ Y is finite. Also V [G] = V [mG]. Moreover we
have that I ∪ {mG} is independent but for any ground model y ∈ [ω]ω ∩ V we have
I ∪ {mG, y} is not independent, see [7]. It follows that an iteration with finite support of
Mathias forcing relativized to the increasing independent families obtained by adjoining
the generic Mathias reals (of length an uncountably cofinal ordinal) will result in a model
with a m.i.f. of length the iteration. Let us call such a m.i.f. a generic m.i.f.. That such
a filter exists, and produces a maximal independent family was first observed by Brendle,
see [10]. Indeed by performing such an iteration of length ℵ1 < 2ℵ0 Brendle obtained the
first model of i < 2ℵ0 .

As stated in the introduction, the main goal of this paper is to improve this result by
showing that such an iteration produces a selective maximal independent family. Selec-
tivity is a further strengthening of dense maximality. We recall some more definitions.

Definition 2.6. Let F be a family of subsets of ω. We say that:

(1) F is a P -set if every countable family {An | n < ω} ⊆ F has a psuedointersection
B ∈ F , i.e. B ⊆∗ An for all n < ω,

(2) F is a Q-set if given every partition of ω into finite sets {In | n < ω} there is a
semiselector A ∈ F i.e. |A ∩ In| ≤ 1 for all n < ω,

(3) F is Ramsey if it is both a P -set and a Q-set.

If F is a filter and a P -set (respectively a Q-set, Ramsey set) we call F a P -filter (respec-
tively a Q-filter, Ramsey filter).

We can now give the definition of a selective maximal independent family.

Definition 2.7. An independent family I is selective if it is densely maximal and fil(I)
is Ramsey.

Selective independent families were first introduced by Shelah in [12], where it is shown
in the course of his proof of the consistency of i < u that under CH there is a selective
independent family. Since then the following results have been shown concerning the
forcing indestructibility of selective independent families.
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Fact 2.8. Let I be a selective independent family. Then I is remains selective (and
hence maximal) after forcing with a countable support product of Sacks forcing (Shelah,
see [4, Theorem 4.6] or [7, Corollary 37]). Moreover, I remains selective independent after
forcing with the countable support iteration of any of the following:

(1) Sacks forcing (Shelah, see [4, Theorem 4.6] or [7, Corollary 37]);
(2) forcing notions of the form QI from Shelah’s [12];
(3) Miller partition forcing (see [6]);
(4) h-Perfect Tree Forcing Notions for different functions h : ω → ω with 1 < h(n) < ω

for all N < ω (see [13]);
(5) Coding with perfect trees (see [2]);
(6) Miller lite forcing, (see [8, Theorem 4.1]);
(7) any mix of the above (a consequence of [8, Theorem 3.8]).

Obviously all the forcing constructions described above produce a model where the
selective independent family is of size ℵ1. As stated in the introduction, the purpose of
this paper in part is to show that consistently there are selective families of other sizes.

We finish these preliminaries by remarking that there are in fact maximal, non-densely
maximal independent families. This is due to Juris Steprāns and is included with his kind
permission.

Proposition 2.9 (Steprāns). For any cardinal κ for which there is a maximal independent
family there is a maximal, non densely maximal independent family of size κ. In particular
there is always one of size i.

Proof. Fix a cardinal κ for which there is a maximal independent family. Let Z ⊆ ω be
an infinite, co-infinite set. By translation there is a maximal independent family I =
{Aα | α < κ} on Z (so all the Aα’s are subsets of Z). Let J = {Bα | α < κ} be an
independent, but not maximal independent family on ω \ Z. Note that there is always
an independent family of size continuum ([3, Proposition 8.9]) so in particular there is
one of size κ. Finally let K = {Aα ∪ Bα | α < κ} ∪ {Z}. It is routine to check that this
is independent. Moreover if X /∈ K then either X ∩ Z is almost disjoint, in which case
K ∪ {X} is not independent or X ∩ Z = Aα for some α in which case K ∪ {X} is not
independent or else there is a Boolean combination h on I witnessing that X ∩ Z cannot
be added to I and hence K ∪ {X} is not independent. Therefore K is maximal.

Finally let Y ⊆ ω \Z be a set so that Y /∈ J but J ∪{Y } is independent. Observe that
as a result no Boolean combination h ∈ FF(K) extending ⟨Z, 1⟩ will be such that Kh \ Y
or Kh ∩ Y is finite. Thus K is not densely maximal. □

This counterexample should be contrasted with the combined content of Lemmas 6.6
and 6.7 of [9] where it is shown that every maximal independent family is densely maximal
below some Boolean combination i.e. for each m.i.f. I there is an h ∈ FF(I) so that the set
{A∩ Ih | A ∈ I \ dom(h)} is densely maximal as a family on Ih. Note that as a corollary
of this it follows that in ZFC there are densely maximal independent families and indeed
they exist in every cardinality for which there is a maximal independent family.

3. The Selectivity of the Generic Maximal Independent Family

Next we prove Theorem 1.2. Let us fix some notation for the rest of this section. Let
κ be an ordinal of uncountable cofinality. Let I0 be some fixed independent family and
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F0 be a diagonalization filter. Now inductively let ⟨Pα, Q̇α | α < κ⟩ be a finite support

iteration and İα and Ḟα be Pα-names defined as follows.

(1) P0 is the trivial forcing, Q̇0 is the trivial name for M(F0).

(2) Pα forces that İα is an independent family with a diagonalization filter Ḟα.

(3) Pα+1 = Pα ∗M(Ḟα).

(4) Pα+1 forces that İα+1 = İα ∪ {ṁα} where ṁα is the name for the M(Ḟα)-generic
real.

(5) If β is a limit ordinal then Pβ forces that İβ =
⋃

γ<β İγ .

Let İκ be the Pκ-name for the union of the İα’s. Let Gκ ⊆ Pκ be generic over V and, in
V [Gκ] let Iα, Fα, mα etc refer to the evaluation of all of the corresponding names with
the dots. Finally let for each α < κ the generic Gα = Gκ ∩ Pα as usual. For the rest of
this section we fix all such objects. We refer to Iκ (in V [Gκ]) as the generic m.i.f.. Let us
now restate Theorem 1.2 more precisely.

Theorem 3.1. Pκ forces that the generic m.i.f. is densely maximal and its density filter
is a P -point. Moreover, if κ is a cardinal and κ<κ = κ in the ground model then the Ḟα’s
can be chosen so that the generic mif is selective.

It is unclear whether the above can be improved so as to eliminate the need to choose
the filters so as to ensure that fil(Iκ) is a Q-filter. We will discuss this more later. To prove
Theorem 3.1 we need to show three things: that Iκ is densely maximal, that its density
filter is a P -point and that its density filter is a Q-point given good enough bookkeeping.
We will prove each of these separately, beginning with dense maximality.

3.1. Dense Maximality. Again, we fix the notation described in the first paragraph of
this section.

Lemma 3.2. Pκ forces that the generic m.i.f. is densely maximal.

Proof. By Lemma 2.4 it suffices to show that if X ∈ V [Gκ] has infinite intersection with
every Boolean combination then it is in the density filter of Iκ as this implies that the
density filter is the unique diagonalization filter and hence Iκ is densely maximal. So
suppose that X ∈ V [Gκ] has infinite intersection with every Boolean combination and let

h ∈ FF(I). We need to find an h′ ⊇ h so that Ih′
κ \X is finite. Let α < κ be such that

X,h ∈ V [Gα].

Case 1: There is a β ≥ α so that X is forced to be in Ḟβ, the diagonalization filter used
at stage β. Now the generic real mβ ∈ Iκ is a pseudointersection of this filter and in

particular mβ ⊆∗ X. But then we get that if h′ = h ∪ ⟨mβ, 0⟩ then Ih′
β ⊆∗ mβ ⊆∗ X so h′

is as needed. Note that this was valid since h ∈ V [Gα] and so in particular β /∈ dom(h).
Case 2: X is not forced to be in any diagonalization filter at any stage β ≥ α. Work V [Gα]
and let Fα be the choice of diagonalization filter for Iα. Note that the assumption implies
in particular thatX is not in Fα. Since Fα is maximal with the property that every element
has infinite intersection with every Boolean combination of Iα, there must be a Y ∈ Fα

and a Boolean combination g ∈ FF(Iα) so that X ∩ Y ∩ Ig
α is finite. But now note that

ṁα is forced to be an almost subset of Y thus we get that V [Gα+1] |=“X ∩ ṁ
Gα+1
α ∩ Ig

α

is finite”. But ṁ
Gα+1
α ∩ Ig

α is a Boolean combination of Iκ, contradicting the defining
property of X. □
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Having established dense maximality we go on to consider the property of the density
filter being a P -filter.

3.2. fil(Iκ) is a P -Filter. We continue with our notation outlined above.

Lemma 3.3. The density filter of the generic m.i.f. added by Pκ is a P-filter.

Proof. Let {Ȧn | n < ω} name an ω-sequence of elements of fil(Iκ). By the fact that κ

has uncountable cofinality there is a γ < κ so that Ȧn ∈ V [Gγ ] and, moreover, by Lemma

2.2 we can find such a γ so that Ȧn ∈ fil(Iγ) for all n < ω. Work in such a V [Gγ ] and let

An be the evaluation of Ȧn in this model.
Since An ∈ fil(Iγ) for each n < ω we must have that for each n < ω the set An is in

every diagonalization filter we choose from stage γ on, again by Lemma 2.2. Consequently
for all ξ > γ we have that mξ ⊆∗ An for all n < ω. In particular (working now in
V [Gγ+ω]) we have mγ+n ⊆∗ Am for all n,m < ω. For each k < ω let lk(n) be such that
mγ+n \ lk(n) ⊆ Ak. Let f : ω → ω dominate all of the lk’s. Finally set

B =
⋃
n<ω

(mγ+n \ f(n))

We claim that B ⊆∗ An for each n < ω and B is forced to be in the density filter for
Iκ, which completes the proof. For the first part fix k < ω and let m be such that for all
n > m we have f(n) > lk(n). Now we have

B =
⋃
n≤m

(mγ+n \ f(n)) ∪
⋃
n>m

(mγ+n \ f(n))

Observe that
⋃

n≤mmγ+n ⊆∗ Ak since it is a finite union of almost subsets of Ak and⋃
n>mmγ+n \ f(n) ⊆ Ak (true inclusion - not mod finite) since f(n) > lk(n) and by

definition of lk we have that mγ+n \ lk(n) ⊆ Ak. Putting these two observations together
proves the first part of our claim, namely that B ⊆∗ Ak.

For the second part let h ∈ FF(Iκ). Since h is finite there is an n < ω so that mγ+n /∈
dom(h). Fix such an n < ω and let h′ = h∪⟨mγ+n, 0⟩. Now Ih′

κ = Ih
κ∩mγ+n ⊆ mγ+n ⊆∗ B

so B is in the density filter as needed. □

Remark 1. By one of the results of [7] we know that forcing with M(I) for I selective
adds a dominating real. It follows that, once we have proved Lemma 3.9 below and hence
Theorem 3.1 in Mathias iterations as we have been describing we get that b = d = cof(κ).
The existence of such dominating reals allows us to sup up the argument for 3.3 (since
the only place we used countability was to get a dominating function) so we will have
shown that in fact, assuming we choose the diagonalization filters correctly, fil(Iκ) is a
Pcf(κ)-filter i.e. any <cof(κ)-many elements have a pseudointersection in the filter.

The proof of Lemma 3.3 actually shows that a basis for the density filter of Iκ in V [Gκ]
is given by simply

⋃
n<ω(mξn \f(n)) for functions f : ω → ω and elements mξn ∈ Iκ (with

infinitely many distinct). Extracting from this we get the following.

Lemma 3.4. Let A ∈ [ω]ω ∩ V [Iκ]. The following are equivalent.

(1) There is a γ < κ so that for all α ∈ (γ, κ) we have mγ ⊆∗ A.
(2) There are strictly increasing ordinals ξn < κ for n < ω so that for all n < ω we

have mξn ⊆∗ A.
(3) A ∈ fil(Iκ).
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Proof. Fix A as above and work in V [Iκ]. Since (1) is an obvious strengthening of (2) we
have (1) implies (2) and (2) implies (3) is exactly as in the proof of Lemma 3.3. Thus it
suffices to show that (3) implies (1). Observe that by the ccc there is a γ < κ so that
A ∈ [ω]ω ∩ V [Iγ ]. Moreover since A ∈ fil(Iκ) we can assume without loss of generality
that A ∈ fil(Iγ) (the γ where A first appears might be before the one in which A ends up
in the density filter but we just take the latter in this case). Now we get that A ∈ Fα for
each α > γ hence mα ⊆∗ A for every such α since mα is a pseudointersection of Fα. □

3.3. fil(Iκ) is a Q-Filter. Finally we will show that fil(Iκ) is a Q-filter when the diagonal-
ization filters Fα are chosen carefully enough. As noted in the hypotheses of Theorem 3.1,
we will eventually need that κ is a cardinal and κ<κ = κ but we will state this explicitly
when we need it. For now we proceed with the notation given above. We will use the
following characterization of Q-filters.

Fact 3.5 (See Lemma 3.7 of [6]). Let F be a filter on ω. The following are equivalent.

(1) F is a Q-filter.
(2) For every strictly increasing f : ω → ω there is a A ∈ F so that, letting A =

{k(n)}n<ω be an increasing enumeration of A, f(k(n)) < k(n+ 1).

Moving forward, in the pursuit of brevity, if f and A have the property described in (2)
above we will say that A Q-dominates f . We need one more fact.

Lemma 3.6. In V [Gα] there is a diagonalization filter F ′ ⊇ Fα for Iα+1. Consequently we
can always choose the diagonalization filters for the iteration to be a ⊆-strictly increasing
sequence.

Proof. Work in V [Gα] and fix X ∈ Fα. It suffices to show that, under the hypotheses

we have that ⊩M(Fα) “X̌ has infinite intersection with every h ∈ FF(İα+1)” as in this
case every X ∈ Fα has infinite intersection with every Boolean combination of Iα+1

(note that we are assuming the maximal condition forces this) so we can extend Fα to
some diagonalization filter for Iα+1. Fix an arbitrary condition (s,A) and an arbitrary
h ∈ FF(Iα+1). If mα /∈ dom(h) then by hypothesis we have X ∩Ih

α+1 is infinite so assume
mα ∈ dom(h) and let h′ = h \ {⟨mα, h(mα)⟩}. We need to show that for each n < ω and

each i < 2 we have that there is a k > n with k ∈ Ih′
α ∩X ∩mi

α. Fix n < ω, and i < 2.
Without loss we can assume that dom(s) ⊋ n and A ⊆ X as the set of conditions whose
stem has domain containing n is dense and, since X ∈ Fα we can always replace A by
A∩X if we so choose. Note that again we have that A∩Ih′

α has infinite intersection, and

therefore there is in particular a k ∈ A ∩ Ih′
α and k > n since (s,A) is a condition and

therefore min(A) > n. Let s′ ⊇ s so that s′(k) = i. Then (s′, A \ dom(s′)) is a condition

extending (s,A) which forces that k ∈ Ih′
α ∩A ∩mi

α ⊆ Ih′
α ∩X ∩mi

α, so we are done. □

Lemma 3.7. If γ < κ and f ∈ ωω ∩ V [Gγ ] is strictly increasing, then there is a choice

of diagonalization filters Ḟγ+i for i ∈ ω + ω so that (using this choice of filters for the
Mathias forcing notions) we have that in V [Gγ+ω+ω] there is an A ∈ fil(Iγ+ω+ω) which
Q-dominates f .

Proof. Fix γ and f as in the hypothesis of the lemma. Observe by the finiteness of
the support, a density argument ensures that for every k < ω there is an n < ω so
that min(mγ+n) > k. Using this, inductively define A = {k(n)}n<ω so that k(n + 1) =
min(mγ+nn+1) where nn+1 is the least number l so that min(mγ+l) > f(k(n)). Clearly
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A, which is in V [Gγ+ω], Q-dominates f so it remains to show that the next ω-many
diagonalization filters can be chosen so that A is forced to be in fil(Iγ+ω+ω).

Work in V [Gγ+ω].

Claim 3.8. A has infinite intersection with every Boolean combination in Iγ+ω.

Proof of Claim 3.8. This is a density argument. Suppose that k < ω, and h ∈ FF(Iγ+ω).
Let n be large enough that dom(h) ⊆ Iγ+n and let m be such that the first m-entries of
A are the minimums of elements from among mγ+l for l < n and denote these elements
{k(j)}j<m. Without loss of generality we can assume that m > k. Work in V [Gγ+n]. We

now let a > f(k(m−1)) be in Ih
γ+n. Since this set is infinite such an a < ω exists. Finally

let s ∈ 2<ω be the sequence of length a + 1 so that for all b < a we have s(b) = 0 and
s(a) = 1. Clearly, regardless of the choice of Fγ+n we have that (s, ω) ∈ M(Fγ+n) and

forces that the mth-element of A is in Ih
γ+n \ k. Since k, h and n were arbitrary, the proof

is complete. □

Given Claim 3.8, observe that we can put A into Fξ for ξ ∈ [γ + ω, γ + ω + ω). The
first step i.e. putting A in Fγ+ω follows from the claim since A has infinite intersection
with every Boolean combination. The following steps follow from Lemma 3.6. Therefore
A ∈ fil(Iγ+ω+ω) and hence A ∈ fil(Iκ) by Lemma 3.4, thus completing the proof. □

Now we can prove the following lemma which implies Theorem 3.1.

Lemma 3.9. If κ<κ = κ is a cardinal then there is a choice of diagonalization filters so
that Pκ forces that fil(İκ) is a Q-filter.

Proof. We want to show that we can choose the diagonalization filters so that every strictly
increasing f ∈ ωω ∩ V [Gκ] is Q-dominated by some A ∈ fil(Iκ). By Lemma 3.7 we can
ensure for any fixed f ∈ ωω ∩ V [Gκ] this can be done but then the cardinal arithmetic
hypothesis, alongside the ccc of the forcing ensures that there is enough space to handle
every f with some bookkeeping as there are only κ-many nice names for reals. □

As stated before the combination of Lemmas 3.2, 3.3 and 3.9 prove Theorem 3.1 (and
hence Theorem 1.2).

4. Arbitrarily large selective independent families

Since Mathias forcing notions relativized to a filter are all σ-centered, by [3, Theorem
7.12], we get the following, which strengthens a theorem of Shelah from [12], who proved
the same under the stronger hypothesis of CH in place of p = 2ℵ0 .

Theorem 4.1. Assume p = 2ℵ0. Every independent family I0 of size <2ℵ0 can be extended
to a selective independent family.

Proof. Fix I0, an independent family of some size λ < 2ℵ0 . Enumerate the elements of
I0 as {Aξ | ξ < λ}. For I0, and further independent families we will build in this proof,

we associate a finite partial function h : 2ℵ0 → 2 to a Boolean combination by mapping

e.g. Aα to A
h(α)
α . We will not comment on this again and assume implicitly that some

enumeration of our independent families has been chosen to make sense of this. If there is a
ζ ∈ dom(h) which is greater than λ then we consider the Boolean combination undefined.
Enumerate all pairs consisting of an element of Ramsey space and a finite partial function
h : 2ℵ0 → 2 as {(Xα, hα) | α < 2ℵ0}, enumerate countable subsets of Ramsey space
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{(Aα
n) | n < ω, α < 2ℵ0} so that every sequence appears unboundedly often and fix a

scale {fα | α < 2ℵ0} ⊆ ωω (so α < β implies fα ≤∗ fβ and this family is dominating).
Note that the assumption on p guarantees such a scale exists. We will inductively define
a continuous, ⊆-increasing sequence of independent families {Iα}α<2ℵ0 so that the union⋃

α<2ℵ0 Iα is selective. Indeed it suffices to show that given Iα independent we can find
Iα+1 ⊇ Iα so that the following hold:

(1) If Xα has infinite intersection with every Boolean combination of Iα and hα is

defined on Iα then there is an h′ ⊇ hα so that Ih′
α \Xα is finite.

(2) If (Aα
n) ⊆ fil(Iα) then there is a B ∈ fil(Iα+1) so that for all n < ω we have

B ⊆∗ Aα
n.

(3) There is a C ∈ fil(Iα+1) which Q-dominates fα.

The rest of the proof is standard bookkeeping argument. So fix α < 2ℵ0 . At each stage
we will add at most countably many reals so we can assume that Iα has size <2ℵ0 . We
will deal with the three requirements in three steps. In the first step, if Xα does not have
infinite intersection with every Boolean combination of Iα or hα is not defined on Iα then
we do nothing and let I0

α = Iα. Otherwise we use the forcing axiom characterization of
p = 2ℵ0 applied to M(Fα) where Fα is a diagonalization filter containing Xα. By <2ℵ0-
many dense sets we can find a Y which is independent over Iα and Y ⊆∗ X since there
are <2ℵ0-many Boolean combinations. Let I0

α = Iα ∪ {Y } and note that by the same
argument as in the proof of Lemma 3.2 this satisfies criterion (1) above.

Next, if (Aα
n) ⊈ fil(Iα), let I1

α = I0
α. Otherwise, by successively choosing diagonalization

filters (which will all have all the Aα
n’s) we can find countably many sets (Yn)n<ω so that

I1
α := I0

α ∪ {Yn | n < ω} is independent and each Yn is an almost subset of every Aα
n.

As in the proof of Lemma 3.3, for each k let lk(n) be such that Yn \ lk(n) ⊆ Aα
n and

let f ∈ ωω dominate all the lk’s. The same proof as in Lemma 3.3 ensures then that
B =

⋃
n<ω(Yn \ f(n)) is in fil(I1

α) and B ⊆∗ Aα
n for all n < ω as needed for criterion (2).

Finally for criterion (3), we can again use the forcing axiom characterization of p = 2ℵ0

applied in this case to mimic the proof of Lemma 3.7 to find a Z which Q-dominates fα
and has infinite intersection with every Boolean combination in I1

α. Finally similar to the
proof of criterion (2) in the previous paragraph we can find sets {Zn | n < ω} so that
Iα+1 := I2

α = I1
α ∪ {Zn | n < ω} is independent and Zn ⊆∗ Z for all n < ω. By the

same proof again as in Lemma 3.7, this ensures that Z ∈ fil(Iα+1), thus completing the
construction and hence the proof. □

We also get the following.

Theorem 4.2. Let κ < λ be cardinals both of uncountable cofinality. It is consistent that
2ℵ0 = λ and there is a selective independent family of size κ. Moreover if κ is regular we
can have that i = κ i.e. the selective independent family is of minimal size.

Proof. By forcing if necessary assume that 2ℵ0 = λ. Let µ = cf(κ) and let {iα | α < µ}
be a µ-length cofinal sequence. We will force that b = d = µ and there is a selective
independent family of size κ. Since d ≤ i in ZFC, see [3, Theorem 8.13], in the case κ is
regular this will complete the proof of the “moreover” part as well. Now, define a finite
support iteration ⟨Pα, Q̇α | α < κ⟩ so that if α /∈ {iξ | ξ < µ} then Pα forces that Q̇α is the
Mathias forcing for some inductively defined independent family as in the construction
described in Theorem 3.1. If α is some iξ then let Pα force that Q̇α is Hechler forcing,
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followed by the ω+ω stage iteration described in Lemma 3.7 to make the Hechler Generic
Q-dominated by some element of the filter of the family we are adding.

Let Iκ be the generic independent family added by this iteration. By the arguments in
the previous section, it is clear that this family will be densely maximal and have a density
filter which is a P -filter. Moreover, the Hechler reals will form a scale of length µ (and
every set of reals of size <µ will be dominated by some Hechler real) hence b = d = µ.
Also, each Hechler real will be Q-dominated by some element of fil(Iκ). Since the family of
Hechler reals is dominating this is enough to ensure that fil(Iκ) is aQ-filter thus completing
the proof. □

5. Conclusion and Open Questions

We conclude this paper with a list of questions for further research. The most important
of these, as mentioned in the introduction is the following.

Question 1. Is there always a selective independent family? If there is one, is there always
one of size i?

Towards answering this question we note that very little is even known about the
existence of selective independent families in models where the ground model selective
independent families are not preserved. Indeed, until the current paper we did not know
if i = 2ℵ0 > ℵ1 was consistent with the existence of a selective independent family. In
particular we would like to know:

Question 2. Are there selective independent families in the Cohen model?

Turning our attention to the results of this paper point out to the following loose end
from the proof of Theorem 3.1: Did we need to choose the diagonalization filters to ensure
the Q-filter property? More precisely of interest is the following:

Question 3. Can an iteration of Mathias forcing as described above produce an indepen-
dent family whose diagonalization filter is not a Q-filter?
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