INDEPENDENT FAMILIES AND COMPACT PARTITIONS
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ABSTRACT. Using a forcing of A. Miller, we prove that it is consistent that the independence
number is w; and there is no partition of size w; of 2“ into closed sets. Moreover, we establish
the consistency of a =i =w; < u=ar = ws.

1. INTRODUCTION

One of the oldest and more fundamental questions regarding the theory of cardinal invariants
of the continuum is the following question of Jerry Vaughan:

Problem 1 (Vaughan [48]). Is the inequality i < a consistent?!

Not only this problem is interesting since it involves two fundamental objects in infinite combi-
natorics (maximal independent families and MAD families), but a positive solution to the problem
will most likely require to develop new ideas and forcing techniques. The reason is that the most
common forcing methods do not seem to help with the problem:

(1) Finite support iteration of ccc forcings of length a regular cardinal over a model of CH.
This approach can not work since in the models obtained in this way, the size of the
continuum is equal to cov (M) and it is known that cov (M) < i.?

(2) Countable support iteration of definable proper forcings of length wo over a model of CH.
It follows by the results of M. Dzamonja, M. Hrusdk and J. Moore in [41] that in all of
this models the equality b = a will hold, so in particular we will have that a <.

(3) Countable support iteration of non-definable proper forcings of length wy over a model of
CH. This approach could work, however a model of i < a obtained by this method will
also be a model of w; = 0 < a, solving the problem of Roitman, which is consider to be
one of the hardest problems on the theory of cardinal invariants.
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Hernandez and M. Hrugék in [2] where they proved that cof (M) < i.
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(4) Forcing with ultrapowers and iterating along a template. The method of forcing with
ultrapowers and iterating along a template was introduced by S. Shelah in [45] to build
models of ? < a and u < a. This is a very powerful method that has been very useful
and has been successfully applied to this day. Unfortunately, it seems that all forcings
obtained using this method, tend to increase i for the same reason they increase a. To
learn more about this powerful method, see [9], [10], [8], |22], [36], [18], [16].

(5) Short finite support iterations over models of MA. Performing a finite support iteration of
length wy over a model of MA (for example) is a powerful method to add “small witnesses”
of some cardinal invariants while keeping others large. Models obtained in this way are
often called “dual models” (see [13] for several interesting results and applications of this
methods). In [2] a dual model was constructed to add a small maximal independent family
in order to build a model of i < non (N). Unfortunately, it is not clear how one could
avoid adding a small MAD family with this method. Moreover, it seems likely that the
principle O of M. Hrugdk will hold in this models® (see [26]).

In principle, it could be possible to construct a model of i < a using matrix iterations (see [7],
[11] and [37] to learn more about this method), but one would need to be very careful in order to
avoid problems like in the points 1 and 5 above.

In order to gain more insight into the problem of Vaughan, we can try to compare i with
other variants of the almost disjointness number. Several relatives of a have been introduced
and studied in the literature. In this article, we want to compare i with the following cardinal
invariant introduced by A. Miller in [40]:

Definition. Define ap as the smallest size of a partition of w* into compact sets.

It is well-known that the Baire space w® is not o-compact (see [31]), which implies that ar
is uncountable. Furthermore, 0 is the least size of a family of compact sets covering w* (see
[3]), so it follows that 0 < ap. It is known that the compact subspaces of the Baire space are
in correspondence with the finitely branching subtrees of w<%. Using this correspondence and
Konig’s lemma, it is easy to prove that ar is equal to least size of a maximal AD family of finitely
branching subtrees of w<“. M. DZzamonja, M. Hrugédk and J. Moore proved that {; implies that
ar = w; (see Theorem 7.6 of [41]), since Op holds in most of the natural models of 0 = wy (see
[41] and [26] for a precise formulation of this statement), ar = w; also holds in this models. To
learn more about ar, the reader may consult [40], [42], [47] and [27].

In the current article we obtain the following result. * (see Theorem 6).

Theorem. It is relatively consistent that i < ap.

In order to achieve this, we will use a forcing introduced by A. Miller. In [40] for every partition
of w* into compact sets K, Miller defined a forcing P(K) that destroys K (i.e. K no longer covers

3<>a is the following principle: There is a family {d. | @ € w1} such that do : @ — w and for every F': wi — w;
there is @ > w such that F' [ a <* dq. In [26] it was proved that ¢, implies both 9 = w; and a = w;.
4For an alternative proof see [21].
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w* after forcing with [P (K)). He proved (essentially) that this forcing is proper and has the Laver
property. Some years later, O. Spinas proved that the forcing is w“-bounding (see [47]). By
combining this results, it follows that every partition of w* into compact sets can be destroyed
with a proper forcing that has the Sacks property, so the inequality cof (N) < ar is consistent (in
particular it is consistent that 9 < ap, which used to be an open question). In Proposition 4.1.31
of [50], J. Zapletal proved that P(K) is forcing equivalent to the quotient of the Borel sets of w®
modulo a o-ideal generated by closed sets. In this way, the forcing P(K) falls into the scope of the
theory developed in [50] and [49]. In [24], M. Hrusak, O. Téllez and the third author proved that
P(KC) preserves tight MAD families (see [30], |28],|17], |[1] to learn more about tight MAD families).

In order to prove that iterating forcings of the form P(K) keeps the independence number
small, we will use the notion of selective independent family, which was introduced by S. Shelah
in order to build a model of i < u (see [44]). Selective independent families are families with very
strong combinatorial properties, which resemble the combinatorial features of Ramsey ultrafil-
ters. Studying the similarities and differences between selective independent families and Ramsey
ultrafilters seems to be a very interesting line of research. The theory of selective independent
families has been further extended by V. Fischer and D. Montoya in [19]. In [14] D. Chodounsky,
V. Fischer and J. Grebik used selective independent families to build a model of f < u. In his
Ph.D. thesis, [43] Perron obtained more results regarding selective independent families. In [21]
the second and fourth authors obtain a different proof of the fact that P(K) preserves selective
independent families, show that P(K) preserves P-points and building on preservation theorems
from [44] and |24| obtain the consistency of each of the following: a =i=u=w; < ar = w; and
i=w <u=ar =ws.

In the current paper we show in addition that Shelah’s poset Q7 for destroying the maxi-
mality of a given maximal ideal from [44] strongly preserves tight MAD families and so establish
(see Corollary 2):

Theorem. It is relatively consistent that i = a =w; < u = ar = ws.

2. PRELIMINARIES

Recall that B C P(w)? is an almost disjoint family if every element of A is infinite and for every
distinct A, B € B, AN B =*{). A family B C P(w) is an independent family if for every distinct
Ag,...,An € Aand h: {Ap,..., A} — 2, A{(Ai) is infinite where A? = A% and A} = w\ A"

1<n
To learn more about independent families, the reader may consult [6], [19], [20] and [12].

Now we recall the definitions of some cardinal invariants.

e ¢ is the cardinality of 2%.

e i is the least size of a maximal independent family.

e b is the least size of an unbounded family in (w, <*).
e 0 is the least size of a dominating family in (w, <*)

5P(w) is the power set of w.
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o cov(M) is the least size of a family of meager sets which union is 2¢.

e cof(M) is the least size of a family X’ of meager sets in 2* such that every meager set in
2% is contained in some element of X

e a is the least size of an infinite maximal almost disjoint family.

To learn more about cardinal invariants, the reader may consult [6]. The Sacks forcing S

consists of all perfect trees in 2<% ordered by inclusion. That is, p € S if an only if

(1) pC 27,

(2) Vo epVr €2<¥(r Co =1 €p),

(3) Yo e par, 7’ Gp(UQT/\UQT’/\T,@T’/\T’ ,@T)
Regarding this forcing, let us fix some notation. If p € S and o € p we let p(o) = {7 €
p| T Cooro C 7}, and call o a splitting node if 07 € p for each i € 2. Let split(p) := {o €
p | o is a splitting node }. For each n € w let split,(p) := {o € split(p) | |[{T € split(p) | T C
o}| =n} and stem(p) the unique element in splity(p). Finally, for p € Slet [p] = {f € 2¥ | Vn €
w( fln € p)}. To learn more about Sacks forcing, the reader may read [5], [4], [29], 23], [38], [15]
or [51].

Definition 1. (Miller partition forcing) Let K C P(2“) be an uncountable partition of 2“ into
closed sets and let P(K) := {p € S | for every K € P, K N [p| is nowhere dense in [p]} ordered by
reversed inclusion.

This forcing destroys the partition K in the following way; if G is a P(K)-generic filter, then
Tgen := J[) G is an element of 2* which does not belong to to the interpretation in V[G] of any
element of K. So in V[G], K is no longer a partition of 2. Thus, if we start with a model of CH
and define PM as the resulting model after forcing with a countable support iteration of length
wo of all forcing notions of the form P(K) with K ranging over all uncountable partitions in closed
sets of 2% in all intermediate models, then PM will not have any uncountable partition in closed
sets of 2% of size less than ws.

A. Miller defined and used PM in [40] to show that cov(M) = w; does not imply that that
ar = wi. In that same paper, he proved that P(K) has the Laver property and essentially proved
that it is proper. Later, O. Spinas showed in [47] that P(K) is w“-bounding.

Notice that if K is the partition of 2* into singletons, then P(K) = S. Actually, it can be seen
that if K is an analytic subset of K(2“) ( The space of non empty closed subsets of 2* equiped
with the Vietoris topology ), then P(K) is actually forcing equivalent to the Sacks forcing S.

Theorem 1. Let K C K(2“) be an uncountable analytic partition of 2*. P(K) is forcing equivalent
to the Sacks forcing S.

Proof. Let p € P(K). It is enough to find ¢ € P(K) such that ¢ < p and {r € P(K) | r <
qt = {r € S| r C q}. To do this consider f : F(2¥) — 2“ given by f(A) = minA, and let
X ={Kn[p] | K € K}\{0}. Notice that X is an uncountable analytic subset of F'(2¥), f|x is
inyective and im(f|x) C [p]. This implies that there is ¢ € S such that [¢] C im(fx). It is easy
to see that ¢ C p and |[¢] N K| < 1 for every K € A. Checking that ¢ is as desired is straight
forward. O
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Through out the rest of the paper, we will try to adapt fusion techniques of the Sacks forcing
to the forcing P(K). The main problem is to know when does a fusion sequence belong to this
forcing. This problem will be simplified by means of the following proposition.

Proposition 1. Let p € S. p € P(K) if and only if there is a dense D C [p] such that every two
different elements of D belong to different elements of K.

The following lemmas will be used to prove Theorem 3.

Lemma 1. Let p € P(K) and let f be a P(K)-name such that p IF f € 2¥. Then there exists
q <p,g€l[q] and h € 2¥ such that for every m,n € w, if g|,, € split,(q) then

q(glm) IF h(n) = f(n).

Proof. Recursively construct a sequence {gp }new C P(K) such that:

(1) g <p

(2) Vn e W(QnJrl < QH)

(3) Vn € w(stem(gn) S stem(gn1))

(4) ¥n € wiy € 2(qn IF f(n) = iy)
This construction is straight forward.

Let g :== |J stem(qn), and for every n € w define s, := |stem(g,)|. Now define

new
g = an(stem(gn)”(1 = g(sn))),
new
and h such that h(n) = i, for every n € w. Using Lemma 1 it is easy to see that ¢ € P(K).
Moreover ¢ < p, g € q, for every n € w g|s, € split,(q), and q(gs,) < ¢,. This last statement
implies that for every n € w :
4(gls,) IF h(n) = f(n)

So we are done.

0

The following lemma can be deduced abstractly with Proposition 4.1.31 and Theorem 4.1.2
from the book [50]. For the convenience of the reader, we provide a direct proof.

Lemma 2. Let p € P(K) and let f be a P(K)-name such that p IF f € 2¥. Then there exists
g < p and a continuous H : [q] — 2“ such that

ql- H("'"gen) = f

Proof. For ¢ € P(K), g € [¢] and h € 2¥, let us provisionally call the triplet (q,g,h) good if
it satisfies the conclusion of Lemma 1. That is, for every m,n € w, if g|,, € split,(q) then
q(glm) IF h(n) = f(n). Notice that if a triplet (¢,g,k) is good and m € w then the triplet
(q(glm), g, h) is also good.

To aim our goal, recursively construct a sequence {(¢s, 9o, ho)}oeca<w of good triplets and a
sequence {1, },ec2<,, of elements of K, such that:
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(a) g9 < p,
(b) Yo,7 €2<¥(c C 7 = ¢r < qo).
(c) Yo,1 €2™(0 # 7 — [go] N [gr] = 0).
(d) Yo, T € 2”(0’ T = g NTr = @).
(e) Yo € 25Im € w((ds0: Yo0: hio0) = (45(9olm), 9os ho))
(f) Vo € 2<%(g, € T,,)
(g) Vo € Qn(QU I+ f(n) = ho(n))
This can be easily achieved by applying repeatedly Lemma 1 and using the fact that each
element of I is nowhere dense in every condition. Once the desired sequences are constructed,

define ¢ = (| U ¢o. To see that ¢ € P(K) just notice that conditions (b) and (c) will assure
new oe2n

that ¢ € S, conditions (e) and (f) will assure that g, € [q] for each o € 2<%, and condition (d),
together with the fact that necessarily {g, },co<~ is dense in ¢, will assure by Proposition 1 that
q is in fact in P(KC).

To finish, just note that conditions (c¢) and (f) assure that the function H : [¢] — 2“ given by

H(g)(n) = hy(n) if and only if 0 € 2" A g € ¢5-.
is well defined, and continuous. Moreover
q I+ H(igen) = f
So we are done. O
It can be seen that by slight modifications of the proof given above, one can show that P(K)
has minimal real degree of constructibility, the Sacks property, and is Proper.
Let C, = {h : kK = 2| |h| < w} be the poset for adding x Cohen reals ordered by reverse

inclusion. For dense sets C, D C C,; we say that C refines D if for each h € C' there exists g € D
such that g C h.

Definition 2. Let V' a model of ZFC and W an extension of V. We say that W is Cohen-
preserving over V if for each dense D C C, in W there is a dense C' € V' such that C refines
D. Additionally we say that a forcing P is Cohen-preserving if every generic extension via this
forcing is Cohen-preserving.

The proof of the following propositions can be found in [14], but the first one was implicitly
proved in [39].

Proposition 2. If a forcing notion has the Sacks property, then it is Cohen-preserving.

Proposition 3. Let P be a proper Cohen-preserving forcing notion and G a P generic filter. For
each k and each dense D C Cj in V[Gy], there exists a dense C' € V refining D.

3. SELECTIVE FILTERS

Let F over w. We say that F is a selective filter if and only if for every partition {X;};c, of w
into elements of F* ( the dual ideal of F ), there exists Y € F such that |Y N X;| < 1 for each
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1 € w. Selective filters have been shown to be useful to prove preservation theorems regarding i.
See [44], [19] and [14].
The following game was introduced by C. Laflamme in |33].

Definition 3. Let F be a filter over w. We define the game &(F,w,F) as follows. On the n
turn, Player T will play some U, € F and Player II will respond with some a,, € U,. After w
turns, Player I wins if the sequence {a, }new belongs to F. Otherwise, Player I wins.

It is not hard to prove that the Player Il never has a winning strategy in this game. On the
other hand, the following theorem was proved by C. Laflamme in [33] (see also [34]).

Theorem 2. Let F be a filter on w. F is not selective if and only if Player I does have a winning
strategy for the game &(F,w, F).

Lemma 3. Let F be a selective filter, p € S and H : [p] — P(w) be a continuous function such
that for every s € p, |JH [[p(s)]] € F. Then there are ¢ € S, and Y € F such that ¢ C p, and for
every f € [q], Y C H(J).

Proof. Before we start, define for every ¢ € S such that ¢ C p, L(q) := |JH[[g]]. Now consider
the game &(F,w, F). Player I will play the following strategy at the same time that he constructs
a sequence {t,}yeo<w C p such that:

(a) Vo € 2<9Vi € 2(ty C tymy)-

(b) Yo, 7 € 2"(0 # T — (t, and ¢, are incomparable )).
On the first turn, Player I defines ty := () and plays Uy := L(p(tp)). As the rules dictate, Player
II responds with some ag € Uy.

As ag € UH][[p(ty)]], there is f € [p(tp)] such that ag € H(f). As H is continuous there is
k € w such that for every g € [p(flx)], ao € H(g). Now Player I extends f|; to incomparable
to,t1 € p such that ty C to,t1 and plays Uy := L(p(to)) N L(p(t1)). As rules dictate, Player II
responds with some a; € Uj.

In general, suppose that it is the n + 1 turn, and that Player I has constructed {ts},co<n-
Moreover, suppose that for every m < n he played Uy, := () L(p(ts)).

oce2sm

Asa, € () (UH|[[p(s)]]), for every o € 2" there is f, € [p(to)] such that a, € H(f,). As
oe2n

H is continuous, there is k € w such that for every o € 2" and every g € [p(f,|x)], an € H(g).

Now Player I extends each f,|; to incomparable t,~q,t,~; € p such that t, C t,~¢,t,~; and plays

g
Unt1:= [\ L(p(ts)). As rules dictate, Player II responds with some ap4+1 € Up41.
og2sn+1
Since F is a selective filter, this is not a winning strategy for Player I, so there is a match where

Player I plays by this strategy but Player II wins. Let {a,}new and {ty},co<o be the sequences
associated to one of this matches and let ¢ := {7 € p | 3o € 2*(7 C ¢,)}. It is straightforward
that ¢ and Y := {a,, }ne. are the objects we are looking for. O

Theorem 3. Let F be a selective filter and G be a P(K)-generic filter. In V[G], for every
X € P(w) one of the following statements occurs:
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(a) Thereis Y € FNV such that Y C X.
(b) There is Z € V, such that Z ¢ F and X C Z.

Proof. Let X be a name for a subset of w, p € P(K) and suppose that there is no condition below
p that forces (b). By Lemma 2 we can suppose that there is a continuous H : [p] — P(w) such
that

Pl H(gen) = X
For every ¢ € § such that g C p, let

L(q) = JF[lq]].

Notice that if such ¢ is in P(K) then L(q) € F. This is because ¢ I X C L(q) and q does not
force (b). Now, call ¢ € S ( not necessarily in P(K) ) special if ¢ C p and for every s € ¢ we have
that

L(q(s)) € F.
We will divide the proof by cases.

Case 1 For every s € p there is an ordered pair (q¢,T) such that:
(1) q €S is special,

(2) T e K,

(3) la) € [p(s)] NT.

In this case, consider the game &(F,w,F). Player I will play by the following strategy at
the same time that he recursively constructs sequences {qo}yeo<e C S, {So}sea<e C p, and
{T,},e2<w C K such that:

(a) Vo € 2<¥((go, T,,) satisfies Case I conditions for s,).
(b) Vo € 25(g,p C d5).

(c) Vo € 2°9(Tyng =T,).

(d) Vo,r €20 #£1— T, #T7).

(e) Vo € 2Vi € 2(s5 C Syy)-

(f) Vo € 2<v (80"\0 € qo N [p(55~1)| NTy = (Z)).

On the first turn, Player I defines sy := ), and (qg, T) that satisfies Case I conditions for sy.
Then he plays Uy := L(qp). As the rules dictate, Player II responds with some ay € Up.

As a9 € UH [[gg]], there is some f € [gy] such that ag € H(f). As H is continuous there
is k € w such that for every g € [p(f|x)], a0 € H(g). Notice that since (qg, Ty) satisfies Case I
conditions for sy, then f|j is compatible with s, and moreover we can extend f|j to incomparable
S0, 81 € p such that sy C so, 1, so € gy, and [p(s1)] N Ty = 0. Now Player I defines go := gg(s0),
Ty := Ty, and (q1,7T1) that satisfies Case I conditions for s;. Then he plays Uy := L(qo) N L(q1).
As the rules dictate, Player II responds with some n; € U .

In general, suppose that is the n + 1 Turn, and that Player I has constructed ¢,, s,, and T, for

every o € 25", Moreover, suppose that for every m < n he has played U,, = [\ L(qo)-
oe2m
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Asan € N (UH|[[go]]), for every o € 2" there is f, € [g,] such that an € H(f,). As H is
oe2n

continuous, there is k € w such that for every for every o € 2" and every g € [p(fo|x)], an € H(g).
As all the pairs (¢, T,) satisfy Case I conditions for the respective s,, we have that fy|; is

compatible with s,, and that |J 75 N [p] is nowhere dense in [p]. Then we can extend each fs |
oe2n
to incomparable s, -, S,~; € p such that so C s,~0, So~15 Sg~0 € ¢o, and p(s,~1)] N T = 0.

Now Player I defines ¢,~¢ := ¢o(Sy~0); Lo~0 = T, and (¢,~1,7,~1) that satisfies Case I condi-

tions for s,~;. Then he plays U,4+1:= () L(g,). As the rules dictate, Player II responds with
O—EQ’I’L+1
some Gn+1 € Upt1.

Since F is a selective filter, this is not a winning strategy for Player I, so there is a match
where Player I plays by this strategy but Player II wins. Let {ap}new, {¢o}oc2v, {So}oecaw, and
{Ts}se2+ be the sequences associated to one of these matches.

To finish this case, define ¢ :== {7 € p | 3o € 2*(r C s,)}. Moreover, if ¢y is the constant 0
function in 2¥, and o € 2<¥ then g, := J{s; | 7 C 0"} € T,, and the set Q := {g, | 0 € 2<%}
is dense in [g]. This implies by Lemma 1 that ¢ € P(K).Sine for every n € w, every o € 2"+!
and every g € [p(s,)], an € H(g), and every g € [q] satisfies this condition for some o € 2"*!, we
conclude that for every g € [q], {an} C H(g). In particular we have that:

qIF {antnes C X.
Since {ap fnew € F, we are done.

Case 2 There is so € p for which every ordered pair (q,T) does not satisfy one of the following
conditions:
(1) q €S is special,
(2) T €K,
(3) la] € [p(s0)] NT.

In this Case, we use Lemma 3 to find ¢ € §, and Y € F such that ¢ C p(sg) and for every
f€lql, Y C H(f). Notice that ¢ is special.

Suppose towards a contradiction that ¢ ¢ P(K). Since every element of K is closed, this means
that there is some T' € K such that 7'M [¢] has nonempty interior in [¢]. So let 7 € ¢ such that
[¢(7)] CT. Then (q(7),T) satisfies all three Case I conditions for sg, but this is a contradiction.
We conclude that g € P(K).

To finish this case, just note that as before ¢ IF Y C X. ([l

Suppose that K is the partition of 2¥ in singletons. In this particular case we have that
P(K) =S, thus Case 1 of Theorem 3 never occurs. This means that Lemma 3 actually yields a
complete proof of Theorem 3 for Sacks forcing.

Corollary 1. P(K) preserves selective ultrafilters.
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4. INDEPENDENT FAMILIES

Following the notation of [14], for an independent family .4 we let C 4 be set of all finite partial
functions from A to 2 and order it by inclusion. For each h € C4 we put A" = N{AMY | A €
dom(h)} where A = w\A, and A' = A for each A € w. For each h € Cy, and each X € w we
will say that A hits X if A" C* X. Additionally we will say that h reaps X if h hits either X or
his complement.

Definition 4. Let A be an independent family. We say that A is dense if and only if for every
X € w we have that

{h € C4|h reaps X}

is dense in C 4.

Notice that every dense independent family is maximal. This observation is the key to preserv-
ing maximal independent families.

Definition 5. Let A be an independent family. We define
Fa:={X € Pw)|{heCxl|h hits X} is dense in C4}.
Additionally, let C4 := {X\A" | h € C4}.

It is easy to see that F 4 is a filter and that C4 C P(w)\F. Moreover, the definition of C4 is
absolute. The following results are proved in [14].

Lemma 4 ([14]). Let A € V be an independent system and let W be a Cohen-preserving
extension of V. In W, F 4 is generated by ]-"X.

Lemma 5 ([14]). Let A € V be a dense independent family, and W be a Cohen-preserving
extension of V.In W, If C4 is cofinal in P(w)\(FY )% then A remains dense in W.

An independent family is called selective if it satisfies properties (1) and (2) of the following
theorem.
Theorem 4 ([14]). Assume CH. There exists an independent family A such that:
(a) A is dense,
(b) F4 is a selective filter.

In order to prove that i = w; in the model PM, we will need the following preservation result
due to S. Shelah.

Lemma 6 ([44], Lemma 3.2). Let F and H be families of subsets of w such that:

(1) F is a selective filter,
(2) H C P(w)\F is cofinal in P(w)\F with respect to C* .

6if F is a subset of P(w) then (F) is the filter generated by F
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If (Pq, Qa | @ < ) is a countable support iteration of w*-bounding proper forcing notions such
that for all o < 6,

Ip, IF H is cofinal in P(w)\(F).
then the same holds for 9.

Theorem 5. Let A be a selective independent family, and G be a P(K)-generic filter. In V[G],
A is still selective independent.

Proof. Since P(A) is proper and has the Sacks property, (FY) is a selective filter in V[G], but by
Lemma 4 we know that ]:X[G] = (FY). To show that A remains dense in V[G], just notice that
Theorem 3 implies that P(w)"\FY is cofinal in P(w)" [\ (FY), but by Hypothesis we know that
C 4 is cofinal in P(w)"\FY, so by Lemma 5 we are done. O

As a direct consequence of Lemma 6 and Theorem 5 we have the following.

Theorem 6. In PM, wy =i < ar = ¢ = ws.

5. THE POSET Qg

For a maximal ideal Z on w, below Q7 denotes the forcing notion introduced by S. Shelah in [44]
for obtaining the consistency of i < u. In [44] it is shown that Q7 is proper [44, Claim 1.13], “w-
bounding [44, Claim 1.12] and even has the Sacks property [44, Claim 1.12]. In the Qz-generic
extension, Z is no longer a maximal ideal [44, Claim 1.5]. For completeness of the presentation
we repeat below the definition and some of the key properties of Q7.

Definition 6. Let Z be an ideal on w.

(1) An equivalence relation E on a subset of w is an Z-equivalence relation if dom F € Z* and
each F-equivalence class is in Z.

(2) For Z-equivalence relations E7, Fy, we denote F1 <7 E5 if dom F; C dom E5, and Ej-
equivalence classes are unions of Fs-equivalence classes.

(3) Let A C w. A function g is A-n-determined if g: 4{0,1} — {0,1} and there is w C
AN (n+ 1) such that for any n,v € 4{0,1} with n [ w = v [ w we have g(n) = g(v).

For i € A, by g; we denote a function from 4{0,1} to {0,1} which maps n € 4{0,1} to n(i).
Claim 1. Each A-n-determined function is equal to a function ¢(go,...,g,) which is obtained
as a maximum, minimum, and complement (i.e., 1 — g;) of go,...,gn, 0, 1.

For an Z-equivalence relation E we denote A = A(E) = {z: x € dom E,z = min[z|g}.

Definition 7 (Set of conditions in Qz). Let Z be an ideal on w. We define a forcing notion Qz:
p € Qziff p=(H,E) = (HP, EP) where
(1) E is an Z-equivalence relation,
(2) H is a function with dom H = w,
(3) a value H(n) is an A(FE)-n-determined function,
(4) if n € A(F) then H(n) = gy,
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(5) if n € dom E \ A(E) and nEi for i € A(E) then H(n) is g; or 1 — g;.
For a condition ¢ € Qz, let A? be A(E?) in the following.

Definition 8. If p, ¢ € Q7 with AP C A9 then we write HP(n) =** H9(n) if for each n € 47{0,1}
we have HP(n)(n) = HY(n)(n') where
,._{Mﬂ jear,
m(5) = . .
HP(j)(n) j € AT\ AP.

Definition 9 (The order of Q7). If p,q € Q7 then p < g if

(1) EP <1 E9,

(2) If H%(n) = g; for n € dom EY then HP(n) = HP(i),

(3) If H%(n) =1 — g; for n € dom E? then HP(n) =1 — HP(i),

(4) If n € w\ dom E? then HP(n) =** H(n).
Finally, p <,, ¢ if p < g and AP contains the first n elements of A9.

The following has been proven in [44]. Items (1) and (2) correspond to [44, Claim 1.7, (2)],
item (3) is a straightforward modification of |44, Claim 1.8|.

Claim 2. Let p € Q7. For an initial segment u of AP, and h: u — {0,1}, let pl" be the pair
q = (H?, E?) defined by (i) and (ii) below:
(i) B9=EP [ | U{[i]gr: i€ AP\ u}.
(ii) If HP(n) is ¢(go,-..,gn) then Hi(n) is ©(go,-..,gi/h(i),...,gn), where the substitution is
done just for ¢ € u.
Then we have:
(1) pl" is a condition in Q7 stronger than p.
(2) The set {p!"): h € “{0,1}} is predense below p.
(3) If u is the set of first n elements of AP, D a dense subset of Q7 then there is ¢ € Q7 such that
q <n p and ¢/"! € D for any h € “{0,1}.

Definition 10 (The game GMz(FE)). GMz(E) is the following game. In the n-th move, the first
player chooses an Z-equivalence relation E} <7 E2_; (E(I) = F), and the second player chooses
an Z-equivalence relation E2 <7 E!. In the end, the second player wins if

|J(dom E;, \ dom E}) € T.
n>0
Otherwise, the first player wins.

Remark 2. If the second player wins in the game GMz(F), then the game is invariant to taking
2%

subsets. That is, the game is invariant to taking <z-extensions {E>"}new with dom(E2*) C
dom E2.
The next lemma corresponds to [44, Claim 1.10, (1)]

Lemma 7. The game GMz(F) is not determined for a maximal ideal Z.
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6. TiIGHT MAD FAMILIES

Tight MAD families were investigated in [35, 32, 24]. An AD family A is called tight if for every
{X:n€ew}t CZ(A)" there is B € Z(A) such that BN X, is infinite for every n € w.

Preservation theorem for tight MAD family under countable support iteration of proper forcing
notions was developed by O. Guzméan, M. Hrugék and O. Téllez [24].

Definition 11. Let A be a tight MAD family. A proper forcing P strongly preserves the tightness
of A if for every p € P, M a countable elementary submodel of H(x) (where k is a large enough
regular cardinal) such that P, A,;p € M and B € Z(A) for which [BNY| = w for every Y €
Z(A)* N M, there is ¢ < p an (M, P)-generic condition such that

qIF “(VZ € Z(A) N M[G]) |ZNB| =w”,
where G denotes the name of generic filter.

We restate Corollary 32 by O. Guzmén, M. Hrusak and O. Téllez [24] which is crucial for
preserving MAD families in the forthcoming model.

Theorem 7 (O. Guzmén, M. Hrugak, O. Téllez). Let A be a tight MAD family. If the sequence
(Po,Qp: o < wo, B < wy) is a countable support iteration of proper posets such that

P, IFo “Qq strongly preserves the tightness of A”,
then P, IF, “A is a tight MAD family”.

We need the following fact about the outer hulls observed in [24].

Lemma 8. Let A be an AD family, P a partial order, B a P-name for a subset of w and peP
such that p I+ “B € Z(A)™”. Then the set {n: (3¢ <p) ¢IF “n € B”} is in Z(A)*.

And now we are ready to show the main result of the paper.

Theorem 8. Let A be a tight MAD family, Z being a maximal proper ideal on w. The poset Q7
strongly preserves the tightness of A.

Proof. Let p € Qz, M a countable elementary submodel of H(x) such that Z,4,p € M and
B € Z(A) for which |[BNY| = w for every Y € Z(A)* N M. We fix an enumeration {D,,: n € w}
of all open dense subsets of Q7 that are in M, and an enumeration {Zn n € w} of all Qz-names
for elements of Z(A)™ that are in M with names repeating infinitely many times.

We define a strategy for the first player in the game GMz(F), which cannot be winning in all
rounds.

We set po = qo = p and ug = . We assume that the first player has chosen E}L, Qn, Pn, Unp,
and the second one an E2. We give instructions to choose E} 11> Gn+1s Pntl, Unt1. We begin
with gn41:

(1) dom E%+1 = dom EP~,
(2) zEM+1y iff one of the following holds:
(i) zE2y.
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(ii) There is k € u,, with x,y € [k]gen and z,y ¢ dom E2.
(iii) There are ko, k1 & U{[i]gen: i € up} with & € [ko|gen, y € [ki]pen and ko, k1 &
dom E2.
(3) Hi+1 is chosen such that:

(i) If I € w\ dom EPn then Hn+1(l) =** HPn(l).

(ii) If I € dom EP» \ A%+t HP(]) = g; then HI+1 (1) = HI+1(3).

(iii) If I € dom EP» \ A1) HPn () = 1 — g; then HI+1 (1) = 1 — H™+1(3).

(iv) If [ € AP» \ A%+1 then HI+1(]) =** HP"(min[l] gani1).
Note that for the already defined condition ¢,4+1 we have ¢n+1 <n pn.- Take upy1 = up U
{min(A%+1\u,)}. By Lemma 8, the set D!, = {r € Qz: r IF “(Z,NB)\n”} is open dense below p
(and also below gp4+1). Then D] N D,, is dense below g,+1. Therefore we can apply Lemma 7 to

obtain pyy1 <nt1 gnt1 such that for each h € “»+1{0, 1}, the condition ng_]H € D), NnD,NM.

In particular, if h € *»+1{0,1} then pm_l I+ “(Zn NB)\n # (0" and pgil € D,NM. By Lemma 7
we have ppy1 IF “(Z, N B)\ n # (. Finally, we set

By = EP 1 (dom EP\ | {[i) a1 € unga}).

We define a fusion ¢ of a sequence (p,,: n € w). Relation E? has dom FY = ({dom EP": n € w},
and xEy if for every n large enough, x EP*y. Function H? is equal to HP» for large enough n. In
order to guarantee ¢ € QQz, it is necessary to choose a play with the first player using described
strategy, but he looses. Thus the second player wins and by Remark 2, we can assume that
mindom E2 > maxu,;1. Consequently, dom EP» \ dom E2 C | J{[k]gan+1: k € ups1}, and thus
dom E? € 7*. One can check that other properties for ¢ € Q7 are satisfied by the definition of q.

Finally, condition ¢ is (M, Qz)-generic, and ¢ <, p, for each n. Hence, we have ¢ I+ “(VZ €
(A NMI[G)) |ZNB| =w”. O

7. SELECTIVE INDEPENDENCE AND TIGHT MADNESS
In the statement below, we put all of the above preservation results together.
Corollary 2. It is relatively consistent that cof(N) =i=a=w; < ap =u = ws.

Proof. Work over a model of CH. Let Ay be Shelah’s selective independent family and let A4; be a
tight mad family. Using an appropriate bookkeeping device define a countable support iteration
<PQ,Q5: a < we, B < we) of posets such that for even «, P, forces that Q, = P(K) for some
uncountable partition of 2* into compact sets, for odd «, P, forces that Q, = Qz for some
maximal ideal on w, and such that VF«2  ap = u = wy. The iteration P, has the Sacks property
and therefore cof(N) = w;. By the indestructibility of selective independence the family A,
remains maximal independent in VF«2 and so a witness to i = w;. Moreover, by the preservation
properties of tight MAD families, see |24], and the above preservation theorems, A; is a witness to
a = wi in the final model. O

Acknowledgement. The authors would like to thank Michael Hrugak for his valuable comments
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