THE CONSISTENCY OF $t = \omega_1 < h = \omega_2$

VERA FISCHER

1. Preliminaries

In this section we systemize some well known definitions which will be used throughout the talk.

Definition 1. Suppose E and F are maximal almost disjoint families. We say that E is a refinement of F if and only if for every $x \in E$ there is $y \in F$ such that $x \subseteq^* y$.

In the following consider the partial order $([\omega]^{\omega}, \subseteq^*)$ consisting of infinite subsets of ω with extension relation almost-inclusion. That is if $A, B \in [\omega]^{\omega}$ then $A \leq B$ if and only if $A \subseteq^* B$. Note that in this setting t is the greatest cardinal κ such that $[\omega]^{\omega}$ is κ-closed.

Definition 2. The *distributivity cardinal* h is defined as the least cardinal κ such that forcing with $[\omega]^{\omega}$ adds a new real $h: \kappa \to V$ (where V denotes the ground model as usual). Equivalently, h is the least cardinal such that any collection of less than κ-many maximal almost disjoint families have a common refinement.

The above remark implies $t \leq h$ and so we have the following inequalities

$$p \leq t \leq h \leq s.$$

Remark 1. Certainly every tower has the strong finite intersection property and has no pseudo-intersection, which establishes the first inequality. To obtain that $h \leq s$ consider a splitting family $A = \{a_\alpha : \alpha \in s\}$ and let G be a $[\omega]^{\omega}$-generic filter. Then in $V[G]$ define $f: s \to 2$ as follows:

$$f(\alpha) = 1 \text{ iff } a_\alpha \in G.$$

Consider any $a \in [\omega]^{\omega}$ as a condition in the associated partial order. Since the family A is splitting, there is an $\alpha \in s$ such that both

$$a \cap a_\alpha \text{ and } a \cap a_\alpha^c$$

are infinite. But then a does not decide $\dot{f}(\alpha)$ and so f is a new function $s \to V$. Here \dot{f} is an $[\omega]^{\omega}$-name for the function f.

Date: July 12, 2007.
Recall also that the following:

Definition 3. The Mathias forcing notion \mathbb{P} consists of all pairs $(s, A) \in [\omega]^{<\omega} \times [\omega]^\omega$ where $(t, B) \leq (s, A)$ (that is (t, B) is stronger than (s, A)) if and only if t end-extends s, $B \subseteq A$ and $t - s \subseteq B$.

Lemma 1. There is a two stage iteration $Q * \dot{R}$ of a countably closed forcing notion Q and a σ-centered forcing notion \dot{R} (that is $1 \Vdash_Q "\dot{R} \text{ is } \sigma \text{-centered}"$) such that the Mathias partial order \mathbb{P} is densely embedded into $Q * \dot{R}$.

Proof. Let $Q = ([\omega]^\omega, \subseteq)$ and let G be Q-generic filter. Then in $V[G]$ define R to be the partial order consisting of all pairs (s, A) in the Mathias partial order \mathbb{P} for which the pure part A belongs to G with the extension relation inherited from \mathbb{P} and let \dot{R} be a Q-name for R. Then Q is countably closed, $\Vdash_Q "\dot{R} \text{ is } \sigma \text{-centered}"$ and the mapping $(s, A) \mapsto (A, (s, A))$

is a dense embedding of \mathbb{P} into $Q * \dot{R}$. □

We will refer to the above two-stage iteration as factored Mathias forcing.

Theorem 1 (CH). Let \mathbb{P}_{ω_2} be ω_2-stage iteration of Mathias forcing, or factored Mathias forcing. That is for every $\alpha < \omega_2$, we have that $1_\alpha \Vdash "Q_\alpha \text{ is Mathias forcing}"$ or respectively for every $\alpha < \omega_2$, α-even $1_\alpha \Vdash "Q_\alpha * Q_{\alpha+1} \text{ is factored Mathias forcing}"$. Suppose that \mathbb{P}_{ω_2} satisfies the following conditions:

1. \mathbb{P}_{ω_2} is \aleph_2-c.c.
2. For every $p \in \mathbb{P}_{\omega_2}$ the support of p is bounded.
3. For every $\alpha < \omega_2$ $V^{\mathbb{P}_\alpha} \models CH$.
4. \mathbb{P}_{ω_2} preserves ω_1.

Then $V^{\mathbb{P}_{\omega_2}} \models \aleph = \omega_2$.

Proof. Let $\langle E_\gamma : \gamma \in \omega_1 \rangle$ be a collection of $\omega_1 \mathbb{P}_{\omega_2}$-names for maximal almost disjoint families and let $p \in \mathbb{P}_{\omega_2}$. We can assume that for every $\gamma < \omega_1$

$p \Vdash |E_\gamma| = \aleph_2$

and fix sequences of \mathbb{P}_{ω_2}-names for infinite subsets of ω such that for every $\gamma < \omega_1$

$p \Vdash E_\gamma = \langle x_{\xi,\gamma} : \xi \in \omega_2 \rangle$.
We will show that there is a \mathbb{P}_{ω_2}-name \dot{x} for an infinite subset of ω such that for all $\gamma < \omega_1$

$$p \Vdash \dot{x} \text{ is almost contained in an element of } E_\gamma.$$

Claim. For every sentence ϕ in the forcing language of \mathbb{P}_{ω_2} there is an $\alpha < \omega_2$ such that if $q \in \mathbb{P}_{\omega_2}$ and q decides ϕ then $q \upharpoonright \alpha$ decides ϕ.

Proof. Fix a maximal antichain of conditions deciding ϕ. Then since \mathbb{P}_{ω_2} is \aleph_2-c.c. $|A| \leq \aleph_1$. Furthermore the support of every condition is bounded which implies that there is an $\alpha < \omega_2$ such that

$$\bigcup \{ \text{support}(a) : a \in A \} \subseteq \alpha.$$

Then certainly, for every q which decides ϕ, $q \upharpoonright \alpha$ decides ϕ. \hfill \Box

Claim. There is a function $f : \omega_2 \to \omega_2$ such that for every $\beta < \omega_2$, every $\gamma < \omega_1$, and every \mathbb{P}_β-name such that $p \Vdash \dot{y} \in [\omega]^\omega$, we have

$$p \Vdash (\exists \xi < g(\beta) | \dot{y} \cap \dot{x}_{\xi\gamma} | = \aleph_0).$$

Proof. Let $\beta < \omega_2$. Fix any $\gamma < \omega_1$. Then $p \Vdash "E_\gamma \text{ is mad}"$. Let \dot{y} be a \mathbb{P}_β-term such that $p \Vdash \dot{y} \in [\omega]^\omega$. Then

$$p \Vdash \exists \xi < \omega_2 (| \dot{y} \cap \dot{x}_{\xi\gamma} | = \aleph_0).$$

Fix a maximal antichain $A_\gamma(\dot{y})$ below p such that for every $q \in A_\gamma(\dot{y})$ there is $\xi_q \in \omega_2$ such that

$$q \Vdash | \dot{y} \cap \dot{x}_{\xi_q} | = \aleph_0.$$
Then $|A_\gamma(\dot{y})| \leq \aleph_1$ and so there is $\alpha_\gamma(\dot{y}) < \omega_2$ such that
\[
\bigcup \{ \text{support}(a) : a \in A_\gamma(\dot{y}) \} \subseteq \alpha_\gamma(\dot{y}).
\]

Then $\alpha(\dot{y}) = \sup_{\gamma \in \omega_1} \alpha_\gamma(\dot{y})$ is also smaller than ω_2. However $V^{P_\beta} \models CH$ and so we can define
\[
g(\beta) = \sup \{ \alpha_\gamma(\dot{y}) : \dot{y} \text{ is } P_\beta \text{-name s.t. } p \vdash_{\beta} \dot{y} \in [\omega]^\omega \}.
\]

Let $\alpha < \omega_2$ be such that $\cof(\alpha) = \omega_1$ and $\forall \beta < \alpha$, $f(\beta) < \alpha$ and $g(\beta) < \alpha$. Then the definition of f implies that for every $\gamma < \omega_1$
\[
p \vdash (x_\xi : \xi < \alpha) \in V[G_\alpha]
\]
and furthermore the definition of g implies that
\[
V[G_\alpha] \models \forall \gamma < \omega_1 (\langle x_\xi : \xi < \alpha \rangle \text{ is mad})
\]
since every real in $V[G_\alpha]$ appears in some $V[G_\beta]$ for $\beta < \alpha$. Really, suppose \dot{x} is a P_α-name for an infinite subset of ω, which does not appear in $V[G_\beta]$ for any $\beta < \alpha$. Then in $V[G_\alpha]$ we can define a cofinal function $f : \omega \to \alpha$ as follows:
\[
f(n) = \gamma \text{ iff } \exists q \in G \Downarrow \gamma(q \text{ decides } "\dot{n} \in \dot{x}"),
\]
which is a contradiction since $V[G_\alpha]$ preserves ω_1.

However, the Mathias generic real is almost contained in a member of every maximal almost disjoint family from the ground model and so if g_α is the α-th Mathias real, then
\[
V[G] \models \forall \gamma < \omega_1 \exists x_\xi < \alpha (\text{range}(g_\alpha) \subseteq x_\xi).
\]

The following theorem is due to Baumgartner.

Theorem 2. Let P be the Mathias partial order and let $\langle x_\alpha : \alpha < \kappa \rangle$ be a tower in $[\omega]^\omega$. Then $\langle x_\alpha : \alpha < \kappa \rangle$ remains a tower in V^P.

Proof. Suppose not. Then there is a P-generic extension $V[G]$ such that
\[
V[G] \models \exists x \in [\omega]^\omega \forall \alpha < \kappa (x \subseteq^* x_\alpha).
\]

Then there is a P-name for an infinite subset of ω and a condition $p = (s_0, A_0) \in G$ such that for every $\alpha < \kappa$
\[
(s_0, A_0) \vdash \dot{x} \subseteq^* x_\alpha.
\]

We can assume that the condition (s_0, A_0) is pre-processed for \dot{x}. That is for every $k \in \omega$ and $t \leq (s_0, A_0)$ (that is t end-extends s_0 and $t - s_0 \subseteq A_0$) if there is $C \subseteq A_0$ such that $(t, C) \vdash \dot{k} \in \dot{x}$ then there is
some \(m \in \omega \) such that \((t, A_0 - m) \models k \in \check{x} \). Then we can define for every \(s \leq (s_0, A_0) \) the set
\[
F_s = \{ k : \exists C \subseteq A_0((s, C) \models k \in \check{x}) \} = \{ k : (\exists m)(s, A_0 - m) \models k \in \check{x} \}.
\]

Claim. There is \((s, A) \leq (s_0, A_0) \) such that for every \(t \leq (s, A) \) the set \(F_s \) is finite.

Proof. Suppose the claim is not true. That is for every \((s, A) \leq (s_0, A_0) \) there is \(t \leq (s, A) \) such that \(F_t \) is infinite. However there are only countably many \(F_t \)'s and so there is some \(\alpha < \kappa \) such that for every \(t \leq (s, A) \) such that \(F_t \) is infinite, \(F_t \not\subseteq \check{x}_\alpha \). Otherwise, for every \(\beta < \kappa \) there is an infinite \(F_t \) such that \(F_t \subseteq \check{x}_\beta \). However if \(F \) is an infinite subset of \(\omega \) such that \(F \subseteq^* F_t \) for every infinite \(F_t \), then \(F \) is a pseudo-intersection of \(\langle x_\alpha : \alpha < \kappa \rangle \) which belongs to the ground model which is a contradiction to \(\langle x_\alpha : \alpha < \kappa \rangle \) being a tower. Since \((s_0, A_0) \models k \in \check{x} \subseteq^* x_\alpha \), there is an extension \((s, A) \in G \) and \(j \in \omega \) such that
\[
(s, A) \models \check{x} - j \subseteq x_\alpha.
\]
By assumption there is \(t \leq (s, A) \) such that \(F_t \) is infinite. But then there is \(k \in F_t - x_\alpha - j \) and so by definition of \(F_t \) there is some \(m \in \omega \) such that \((t, A_0 - m) \models k \in \check{x} \). However \((t, A - m) \) extends both \((s, A) \) and \((t, A_0 - m) \) and so
\[
(t, A - m) \models (k \in \check{x} - j) \land (\check{x} - j \subseteq x_\alpha)
\]
which is a contradiction since \(k \not\in x_\alpha \). \(\square \)

Furthermore we have the following property.

Claim. Suppose \((s_0, A_0) \) is a condition in \(\mathbb{P} \) such that for every \(s \leq (s_0, A_0) \) \(F_s \) is finite. Then there is \(B \subseteq A_0 \) such that for every \(t \leq (s_0, B) \)
\[
(s_0, B) \models \check{F}_t \subseteq \check{x}.
\]

Proof. We will construct the set \(B \) inductively. Suppose we have defined \(b_0 < b_1 < \cdots < b_{n-1} \) and a set \(B_n \subseteq A_0 \) such that \(b_0 > \max s_0, b_{n-1} < \min B_n \) and such that for every \(t \) which end-extends \(s_0 \) and such that \(t \setminus s_0 \subseteq \{ b_0, \ldots, b_{n-1} \} \), \((t, B_n) \models \check{F}_t \subseteq \check{x} \). Let \(b_n = \min B_n \). Consider any \(t \) which end-extends \(s_0 \) such that \(t \setminus s_0 \subseteq \{ b_i \}_{i=0}^{n-1} \). Then \(F_{t - b_n} \) is finite and for every \(k \in T_{t - b_n} \) there is \(n_k \in \omega \) such that
\[
(t \setminus b_n, A_0 - n_k) \models k \in \check{x}
\]
and since \(B_n \subseteq A \) this implies that
\[
(t \setminus b_n, B_n - n_k) \models k \in \check{x}.
\]
Let $n_t = \max\{n_t^k : k \in F_t - b_n\}$. Then if m is the maximum of all such n_t’s the set $B_n - m$ has the property that for every t which end-extends s_0 and such that $t \setminus s_0 \subseteq \{b_i\}_{i \leq n}$

$$t \setminus b_n, B_n - m \models \hat{F}_{t - b_n} \subseteq \hat{x}.$$

Let $B_{n+1} = B_n - m$. With this the inductive construction is complete. The set $B = \cap\{\{b_0, \ldots, b_{n-1}\} \cup B_n\} = \{b_i\}_{i \in \omega}$ has the desired properties. \qed

Thus we can assume that the chosen condition (s_0, A_0) has the properties that for every $s \leq (s_0, A_0)$, F_s is finite and there is $m \in \omega$ such that $(s, A_0 - m) \models F_s \subseteq \hat{x}$. Inductively, we will obtain an infinite subset A of A_0 such that for every $s \leq (s_0, A)$ one of the following two conditions holds:

1. $\forall a \in A - (|s| + 1)F_{s - a} = F_s$.
2. $(\exists \alpha < \kappa)(\forall j \in \omega)(\exists m_j \in \omega)(\forall a \in A - m_j)F_{s - a} - x_{\alpha} - j \neq \emptyset$.

Again, suppose we have defined $\{a_0, \ldots, a_{n-1}\}$ and $A_n \subseteq A_0$ such that for every s which end-extends s_0 and such that $s - s_0 \subseteq \{a_i\}_{i \leq n}$ the corresponding two conditions above hold (A substituted by A_n). Let $a_n = \min A_n$. Then successively consider all end-extensions s of s_0 such that $s - s_0 \subseteq \{a_i\}_{i \leq n}$ and define a set $A_{s,n}$ which is contained in $A_{s',n}$ for every s' considered prior to s and A_n as follows.

If $B^* = \bigcup\{F_{s - a} : a \in A_n\}$ is finite, then for every $k \in B^*$ either the set $B_k = \{a \in A_n : k \in A_n\}$ is finite or it is infinite. If B_k is finite than we can remove the corresponding a’s from A_n (note also that in this case k does not belong to F_s). If B_k is infinite, then for every $b \in B_k$ (by inductive hypothesis) we have $(s - b, B_k) \models \hat{k} \in \hat{x}$ and so $(s, B_k) \models \hat{k} \in \hat{x}$ which implies that $k \in F_s$.

If $B^* = \bigcup\{F_{s - a} : a \in A_n\}$ is infinite, then let $\alpha < \kappa$ be such that $B^* \not\subseteq x_\alpha$. Define $A_{s,n}$ so that if a is the j-th element of $A_{s,n}$ then there is $k \geq j$ such that $k \in F_{s - a} - x_\alpha - j$.

Then define A_{n+1} to be the intersection of all such $A_{s,n}$’s. Finally, let $A = \{a_n\}_{n \in \omega}$. Then $A \subseteq A_0$ and for every $s \leq (s_0, A)$ one to the two conditions above hold. Again since there are only countably many $s \leq (s_0, A)$ we can choose an $\alpha < \kappa$ such that α is greater than all β’s associated to finite sequences $s \leq (s_0, A)$ by part (ii) of the above two conditions. Than since (s_0, A) extends (s, A)

$$(s_0, A) \models \hat{x} \subseteq x_\alpha$$

and so there is some $(s, B) \leq (s_0, A)$ and $j \in \omega$ such that

$$(s, B) \models \hat{x} - j \subseteq x_\alpha.$$
If for every \(b \in B \), \(F_{s \upharpoonright b} = F_s \), then \((s, B) \models \hat{x} \subseteq \hat{F}_x \) which is a contradiction, since \(F_s \) is finite. Otherwise, we can find \(b \in B \) such that there is \(k \in F_{s \upharpoonright b} - x_\alpha - j \). Then there is some \(m \in \omega \) such that

\[
(s \upharpoonright b, B - m) \models \hat{k} \in \hat{x}
\]

which is a contradiction since \((s \upharpoonright b, B - m)\) is an extension of \((s, B)\) and so we would obtain \((s \upharpoonright b, B - m) \models k \in x_\alpha\), which is not possible. \(\Box\)

2. Mixed-support iteration of factored Mathias forcing

We will begin with a well known definition of iterated forcing:

Definition 4. A partial order \(P_\kappa \) is a \(\kappa \)-stage iteration if and only if \(P_\kappa \) is a set of \(\kappa \)-sequences and there is a sequence \(\langle Q_\alpha : \alpha < \kappa \rangle \) such that \(P_\alpha = \{ p \upharpoonright \alpha : p \in P_\kappa \} \) for all \(\alpha < \kappa \), the following holds:

1. \((\forall \alpha < \kappa) P_\alpha \) is an \(\alpha \)-stage iteration, with stages \(\langle Q_\beta : \beta < \alpha \rangle \).
 Let \(\models P_\alpha \) denote forcing with \(P_\alpha \).
2. \((\forall \alpha < \kappa) \models P_\alpha \) is a partial order”.
3. \((\forall p \in P_\kappa) (\forall \alpha < \kappa) \models P_\alpha p_\alpha \in Q_\alpha \) and there is \(r \in P_{\alpha + 1} \) where \(r \upharpoonright \alpha = p \upharpoonright \alpha \) and \(r(\alpha) = \hat{q} \).
4. \(\forall p, q \in P_\kappa (p \leq q) \) if and only is \((\forall \alpha < \kappa) p \upharpoonright \alpha \models p(\alpha) \leq q(\alpha) \).
5. \((\forall \beta < \alpha \leq \kappa) (\forall p \in P_\alpha, q \in P_\beta) \) if \(q \leq p \upharpoonright \beta \) then \(q \wedge p \in P_\alpha \), where \(q \wedge p(\gamma) = q(\gamma) \) for all \(\gamma < \beta \) and \(q \wedge p(\gamma) = p(\gamma) \) for \(\gamma \geq \beta \).
6. The trivial condition \(1 \in P_\kappa \), where for every \(\alpha < \kappa \), \(1(\alpha) \) is forced to be the trivial condition in \(Q_\alpha \).

For limit \(\alpha \leq \kappa \) we have to specify how \(P_\alpha \) is constructed from

\[
\{ p : \text{dom}(p) = \alpha \land (\forall \beta < \alpha) p \upharpoonright \beta \in P_\beta \}.
\]

Usually we require \(P_\alpha \) to consists of all conditions for which

\[
\text{support}(p) = \{ \beta \in \text{dom}(p) : p(\beta) \neq 1 \}
\]

is finite or countable. Then we refer to the iteration \(P_\kappa \) as \textit{finite} respectively \textit{countable support iteration}.

In particular, we will be interested in mixed support iteration:

Definition 5. For \(\kappa \) any ordinal, let \(P_\kappa \) be an iterated forcing construction such that for every \(\alpha < \kappa \) either \(\models P_\alpha \) ”\(Q_\alpha \) is \(\sigma \) -centered” or \(\models P_\alpha \) ”\(Q_\alpha \) is countably closed”. We thus speak about \(\sigma \)-centered stages and countably closed stages. For \(p \in P_\kappa \) let

\[
\text{Fsupport}(p) = \{ \alpha < \kappa : \alpha \text{ is a } \sigma \text{ centered stage} \}.
\]
Then \(\mathbb{P}_\kappa \) is the finite/countable support iteration of the \(Q_\alpha \) is for every \(p \in \mathbb{P}_\kappa \), support \((p)\) is countable, \(\text{Fsupport}(p) \) is finite and (\(\forall \alpha < \kappa \) \(\vdash \kappa
\)) \(p(\alpha) \in Q_\alpha \).

Definition 6. We say that \(p \) is a direct extension of \(q \), denoted \(p \leq_D q \) if \(p \leq q \) and for all \(\sigma \)-centered stages \(\alpha < \kappa \), \(p \vdash_\alpha p(\alpha) = q(\alpha) \).

Similarly, we say \(p \) is a \(C \)-extension of \(q \), denoted \(p \leq_C q \) if \(p \leq q \) and for all countably closed stages \(\alpha < \kappa \), \(p \vdash_\alpha p(\alpha) = q(\alpha) \).

Remark. Similarly, we say \(p \) is a \(C \)-extension of \(q \), denoted \(p \leq_C q \) if \(p \leq q \) and for all countably closed stages \(\alpha < \kappa \), \(p \vdash_\alpha p(\alpha) = q(\alpha) \).

Lemma 2. Let \(\{p_n\}_{n \in \omega} \) be a sequence in \(\mathbb{P}_\kappa \) such that for every \(n \) \(p_{n+1} \leq_D p_n \). Then there is a condition \(p \in \mathbb{P}_\kappa \) such that \(p \leq_D p_n \) for all \(n \).

Proof. Construct \(p \) inductively. If \(\alpha \) is a limit and \(p \upharpoonright \beta \) is defined for every \(\beta < \alpha \), then \(p \upharpoonright \alpha \) is clear. At successor stage \(\alpha + 1 \) there are two cases. If \(\alpha \) is a countably closed stage and

\[
\begin{align*}
p \upharpoonright \alpha \models p_0(\alpha) &\geq p_1(\alpha) \geq \cdots \geq p_n(\alpha) \cdots
\end{align*}
\]

then since \(Q_\alpha \) is countably closed we can choose \(p(\alpha) \) to be a \(\mathbb{P}_\alpha \)-name for an element of \(Q_\alpha \) such that \(p \upharpoonright \alpha \models p(\alpha) \leq p_n(\alpha) \) for every \(n \). If \(\alpha \) is a \(\sigma \)-centered stage and

\[
\begin{align*}
p \upharpoonright \alpha \models p_0(\alpha) = p_1(\alpha) = \cdots = p_n(\alpha) = \ldots
\end{align*}
\]

then we can simply define \(p(\alpha) = p_0(\alpha) \). \(\square \)

Lemma 3. Let \(p \leq q \) in \(\mathbb{P}_\kappa \). Then there is \(r \in \mathbb{P}_\kappa \) such that \(p \leq_C r \leq_D q \).

Proof. The condition \(r \) is defined by induction on \(\alpha \). If \(\alpha \) is a limit and \(r \upharpoonright \beta \) is defined for every \(\beta < \alpha \) then \(r \upharpoonright \alpha \) is clear. So, consider successor stages \(\alpha + 1 \). If \(\alpha \) is a \(\sigma \)-centered stage, then define \(r(\alpha) = q(\alpha) \). If \(\alpha \) is a countably closed stage we define \(r(\alpha) \) to be a \(\mathbb{P}_\alpha \)-term as follows:

\[
\begin{align*}
(1) \text{ if } \overline{r} \leq p \upharpoonright \alpha, \text{ then } \overline{r} \upharpoonright r(\alpha) &\models p(\alpha) \\
(2) \text{ if } \overline{r} \perp p \upharpoonright \alpha, \text{ then } \overline{r} \upharpoonright r(\alpha) &\models q(\alpha).
\end{align*}
\]

With this the inductive construction is defined. It remains to verify that \(p \leq_C r \) and \(r \leq_D q \).

By induction on \(\alpha \) verify that \(p \upharpoonright \alpha \leq r \upharpoonright \alpha \) and for countably closed stages \(p \upharpoonright \alpha \models p(\alpha) = r(\alpha) \) (holds by definition of \(r(\alpha) \)), and for \(\sigma \)-centered stages \(p \upharpoonright \alpha \models p(\alpha) \leq q(\alpha) = r(\alpha) \) (again by definition of \(r(\alpha) \)).

Similarly, by induction on \(\alpha \) verify that \(r \upharpoonright \alpha \leq q \upharpoonright \alpha \) and for countably closed stages \(r \upharpoonright \alpha \models r(\alpha) \leq q(\alpha) \), and for \(\sigma \)-centered stages
Then $r \upharpoonright \alpha \models r(\alpha) = q(\alpha)$. The latter holds by definition of $r(\alpha)$, so it remains to verify the former. Consider any $\bar{r} \leq r \upharpoonright \alpha$. If $\bar{r} \leq p \upharpoonright \alpha$, then

$$\bar{r} \models r(\alpha) = p(\alpha) \land p(\alpha) \leq q(\alpha).$$

If $\bar{r} \not\models p \upharpoonright \alpha$, then again by definition of $r(alpha)$, $\bar{r} \models r(\alpha) = q(\alpha)$. Therefore every extension of $r \upharpoonright \alpha$ forces that $\uparrow r(\alpha) \leq q(\alpha)$ and so $r \upharpoonright \alpha \models r(\alpha) \leq q(\alpha)$. □

Definition 7. Suppose α is a σ-centered stage. Then in $V^{\mathbb{P}_\alpha}$ define a function $s : Q_\alpha \to \omega$ so that

$$\models_{\alpha} (\forall p, q \in Q_\alpha)(s(p) = s(q) \implies p \not\models q).$$

Remark 3. Abusing notation we will identify s with its \mathbb{P}_α-name \dot{s}.

Definition 8. Condition $p \in \mathbb{P}_\kappa$ is said to be determined if for all $\alpha \in \text{Fsupport}(p)$ there is $n \in \omega$ such that

$$p \upharpoonright \alpha \models s(p(\alpha)) = \check{n}.$$

Lemma 4. The set of determined conditions in \mathbb{P}_κ is dense. Suppose determined conditions q_1 and q_2 are given with

$$\text{Fsupport}(q_1) = \text{Fsupport}(q_2)$$

and for all α in this finite support there is $n \in \omega$ such that $q_1 \upharpoonright \alpha \models s(q_1(\alpha)) = \check{n}$ and $q_2 \upharpoonright \alpha \models s(q_2(\alpha)) = \check{n}$. Suppose also that for some $p \in \mathbb{P}_\kappa$, $q_1 \leq p$ and $q_2 \leq_C p$. Then q_1 and q_2 are compatible.

Proof. Proceed by induction on κ. Let $p \in \mathbb{P}_\kappa$. If κ is a limit, then there is $\alpha < \kappa$ such that $\text{Fsupport}(p) \subseteq \alpha$. Then by inductive hypothesis there is a determined $\bar{r} \leq p \upharpoonright \alpha$ and so $\bar{r} \land p^\alpha$ is a determined condition extending p. At successor σ-centered stages $\alpha + 1$, we can find determined $\bar{r} \leq p \upharpoonright \alpha$ such that for some $n \in \omega$ $\bar{r} \models s(p(\alpha)) = \check{n}$. Then $\bar{r} \land r^\alpha$ is a determined extension of p.

To obtain the second claim of the Lemma, we will define a common extension r of q_1 and q_2 inductively. Suppose α is a limit and for every $\beta < \alpha$ we have defined $r \upharpoonright \beta$. Then let $r \upharpoonright \alpha = \bigcup_{\beta < \alpha} r \upharpoonright \beta$. At countably closed stages let $r(\alpha) = q_1(\alpha)$. Then

$$r \upharpoonright \alpha \models q_1(\alpha) = r(\alpha) \leq p(\alpha) = q_2(\alpha).$$

At σ-centered stages we have $r \upharpoonright \alpha \models s(q_1(\alpha)) = s(q_2(\alpha)) = \check{n}$ for some n. Therefore we can choose $r(\alpha)$ to be a \mathbb{P}_α-name for a common extension of $q_1(\alpha)$ and $q_2(\alpha)$ and so

$$r \upharpoonright \alpha \models (r(\alpha) \leq q_1(\alpha)) \land (r(\alpha) \leq q_2(\alpha)).$$ □
Lemma 5. Let \mathbb{P}_α be a finite/countable support iteration with α a limit ordinal and let $\langle x_\xi : \xi < \lambda \rangle$ be a tower in $[\omega]^\omega$ for some regular λ. If there is an infinite $x \subseteq \omega$ in $V^{\mathbb{P}_\alpha}$ such that for all $\xi < \lambda$, $x \subseteq^* x_\xi$, then there is $\beta < \alpha$ and an infinite $y \subseteq \omega$ in $V^{\mathbb{P}_\beta}$ such that $\forall \xi < \lambda, y \subseteq^* x_\xi$.

Theorem 3 (CH). Let \mathbb{P}_{ω_2} be the ω_2-stage finite/countable factored Mathias iteration. Then, in $V^{\mathbb{P}_{\omega_2}}$ we have $\mathfrak{h} = 2^{\aleph_0} = \aleph_2$ and there are no ω_2-towers in $[\omega]^\omega$.

References